
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

Cond-itions for the Equivalence of Synchronous and
Asynchronous Systems

ERALP A. AKKOYUNLU, ARTHUR J. BERNSTEIN, SENIOR MEMBER, IEEE, FRED B. SCHNEIDER, MPMBER, IEEE
AND ABRAHAM SILBERSCHATZ

Abstmct-Synchronous and asynchronous operation of software cesses. Such a state may not have been anticipated by the sys-

systems are defined. It is argued that certifying the correct operation
of a system in the synchronous mode is significantly simpler than in the
asynchronous mode. A series of compile-time and run-time restrictions
for systems constructed in Concuirent Pascal are presented which
assure equivalent operation in the synchronous and asynchronous
modes.

Index Terms-Asynchronous processes, classes, Concurrent Pascal,
concurrent processes, correctness, hierarchical operating systems,
modularity, monitors, mutual exclusion, sequential operation, struc-
tured multiprogramming, synchronization.

I. INTRODUCTION

As SOFTWARE SYSTEMS get increasingly complex, it
has become more and more difficult to ensure their

correctness. Attempts to deal with this problem range from
the practical to the theoretical. On the practical side, tech-
niques for improving the clarity of code (use of high-level
languages, structured programming) and for modularizing
programs have proved extremely valuable [61, [161, [8]. On
the theoretical side, mechanisms for proving the correctness
of programs are under development [10], [1t1] .
Certification of systems that involve the concurrent activity

of several processes is particularly difficult. This is because the
behavior of the system in the concurrent mode of operation
may be different than that obtained when each component
process is run alone. In the concurrent mode of operation one
asserts that each process will have a chance to execute (some-
times referred to as "finite progress"), but no specification is
made as to the way concurrent process execution is interleaved
or relative execution speeds. Even by employing the various
synchronization mechanisms (e.g., Dijkstra's P and V [7],
Brinch Hansen's Conditional Critical Regions [3], Monitors
[3], [12]) it is possible for a process to see the system as a
whole in a state that reflects partial execution of other pro-

Manuscript received June 19, 1978. This work was supported in part
by the National Science Foundation under Grant MCS 76 04828.

E. A. Akkoyunlu is with the Department of Computer and Informa-
tion Sciences, Brooklyn College, CUNY, Brooklyn, NY 11210.
A. J. Bernstein is with the Department of Computer Science, SUNY

at Stony Brook, Stony Brook, NY 11794.
F. B. Schneider is with the Department of Computer Science, Cornell

University, Ithaca, NY 14853.
A. Silberschatz is with Programs in Mathematical Sciences, University

of Texas at Dallas, Richardson, TX 75080.

tem designers, nor can it be easily reproduced.
The first proposals to control the complexity of a system

were made by Dijkstra [6], [7]. He described a level struc-
tured approach to system construction in which a system can
be implemented and debugged incrementally. This method
produces a sequence of abstract machines gradually approach-
ing the design target. The designer of the abstract machine
implemented at some level need not be aware of the imple-
mentation details of the lower levels. Presumably, in such a
system, each level will support one or more abstractions, which
are then used by higher levels. The notion of "process" and its
attendant synchronization primitives (P and V) is often de-
fined at the lowest level of an operating system constructed in
this manner. To guarantee that the operation of no level is
dependent on the implementation details of a lower level, the
information stored in a particular level is inaccessible to higher
levels.
Parnas [16] stresses information hiding and implementation

of abstractions by requiring that certain decisions made in the
implementation of a module be hidden from other modules.
Again, the system design task is simplified, because the de-
signer need only be concerned with the properties of the ab-
straction, and not its implementation.
This notion of information hiding has been included in

several high4evel languages as abstract data types [5], [15]
and has been adapted for use in asynchronous systems through
the concept of a monitor [3], [12]. A monitor is a module
that consists of a number of entry procedures, local proce-
dures, and permanent variables. The latter are inaccessible to
procedures external to the monitor. The only way to execute
in the monitor is to call an entry procedure. Entry to a moni-
tor is regulated by mutual exclusion so that at most one pro-
cess is permitted to execute in the monitor at any time. This
allows many processes to share the permanent variables in an
orderly manner, and is an aid in guaranteeing their integrity.
The wait statement is provided so that a process may suspend
itself and relinquish control of a monitor in the event that the
state of the monitor is not conducive to continued execution.
Hierarchical structuring of systems, abstract data types, and

monitors are powerful tools for the design and construction
of operating systems. They significantly reduce the complex-
ity with which a designer must deal at any given time. Never-
theless, the designer must still understand the effects of parallel

0098-5589/78/1100-0507$00.75 © 1978 IEEE

507

Authorized licensed use limited to: Yale University. Downloaded on February 23,2022 at 15:19:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

activity in the system in order to ensure that all interactions of
concurrent processes are as intended. Such a task is consider-
ably simplified if the sequence of computations within the sys-
tem can be controlled so that specific orderings can be exam-
ined and reproduced. Unfortunately, this is frequently not
possible in an operating system environment where sequencing
depends upon factors (time quantum, device latency, cycle
stealing) which are beyond the control of any user (debugger).
Failure to anticipate interactions usually results in what are
referred to as "time-dependent errors," caused by the sequence
in which modules are executed by concurrent processes. The
mutual exclusion and information-hiding properties of moni-
tors are mechanisms for controlling access to the monitor's
permanent variables. They do not, however, guarantee the
consistency of the modules taken together. One would like to
develop a programming methodology which ensures this con-
sistency. Such a methodology was first described in a Ph.D.
dissertation by Silberschatz [17], [18]. The systems dis-
cussed in that thesis were confined to those which did not
contain wait or signal operations and several results proved
here are analogous to results obtained there. This work ex-
tends those results to the case where synchronization primi-
tives can be embedded in monitors.
An operating system implements a number of functions

which can be called by the processes which it supports. The
execution which results when a particular function is invoked
by a particular process with specific parameters will be called a
request. Thus two READ operations, even if they are invoked
by the same process with identical parameters, will be consid-
ered two distinct requests. A request terminates if it completes
execution and exits from the system. We define a quiescent
state of the system to be one in which all requests which have
been made by processes have terminated, and an experiment as
the-execution which occurs in the system in response to a set
of system calls starting in a quiescent state and ending when all
requests have either terminated or can progress no further
(e.g., are waiting in monitors).
A large number of errors which may be present in an asyn-

chronous system can be uncovered by testing the system in a
purely sequential fashion. If we assume that a single request
involves no asynchronous computation, then the system can
be run sequentially if it is restricted to operate in such a way
that it will not start processing a new request until the preced-
ing one has either terminated or can progress no further. An
experiment conducted in this way will be referred to as a
synchronous experiment. Of course, if during the execution
of a request it should awaken a previous request which had
been suspended in the system, asynchronous activity will
result and the experiment will not be synchronous. Note that
since a synchronous experiment involves purely sequential
operation, a synchronous experiment starting in a particular
quiescent state always produces the same result. All other
experiments involve the handling of two or more requests at
the same time and will be called asynchronous experiments. If
all synchronous experiments produce behavior acceptable to
the designers of the system we will say that the system oper-

Although asynchronism is essential in an operating system,
arbitrary interactions between concurrently executing requests
should be avoided. The results produced by a request should
not depend on how its execution is interleaved with other
requests or, more generally, on whether or not other requests
are being serviced simultaneously. In this case, time-dependent
behavior will have been eliminated and the outcome of an
asynchronous experiment will be deterministic and reproduci-
ble. In this research we propose restrictions on the language
used to implement a system which eliminates such time-
dependent behavior. The restrictions guarantee that any result
produced asynchronously can also be obtained by a synchro-
nous experiment involving the same requests. Thus, if the sys-
tem operates correctly in the synchronous mode, it will also
function correctly in the asynchronous mode. This permits a
designer to think of the processing associated with a request in
isolation-as if no other activity were occurring in the system.
Any interaction between concurrently executing requests is
reduced to interaction between sequentially related requests.
Debugging a system that exhibits this property is simplified
since all timing-dependent errors, those errors that can occur
only in the asynchronous mode of operation, are eliminated
and the system need only be validated for synchronous opera-
tion to guarantee its complete correctness. Conversely, any
error that occurs during asynchronous operation can always
be reproduced while operating in the synchronous mode. It
is our purpose in this paper to develop conditions for the
equivalence of synchronous and asynchronous operation of a
system, not to prove the correctness of the modules that com-
prise the system or the system as a whole.
The results presented here are described in terms of Con-

current Pascal [2]. This language provides for monitors. In
addition its usefulness in the development of operating systems
has been demonstrated in the implementation of several small
systems [4].

II. AN EXAMPLE
We now illustrate the kind of problems that may appear in

systems that do not exhibit equivalence between asynchronous
and synchronous modes of operation by way of an example.
A restructured version of the example, eliminating these errors,
is given in Section IV.
Consider the following subsystem to be used for interprocess

communication. In order to exchange "messages," a producer
and consumer use a mailbox. The system supports NMAILBOX
of these mailboxes in a monitor named MAIL_BOX_MON.
Two operations are defined on a mailbox: READ-MSG, and
WRITE_MSG, each performing the obvious operation. Mail-
boxes are designed for communication of single messages. A
rendezvous facility is provided so that a producer may send a
message to a consumer, though the system does not maintain
a separate mailbox for each producer-consumer pair.
In order to acquire a mailbox, a producer calls the

ALLOCATE function of the REN_MON monitor with a rendez-
vous number. The monitor reserves a mailbox for that pro-
ducer and supplies the name of that mailbox as the value of

ates correctly in the synchronous mode.

508

the function. The producer may then call the WRITE-MSG

Authorized licensed use limited to: Yale University. Downloaded on February 23,2022 at 15:19:56 UTC from IEEE Xplore. Restrictions apply.

AKKOYUNLU et al.: CONDITIONS FOR EQUIVALENCE OF SYSTEMS

type ren_mon = monitor;
var rtbl : array [1 .. nmailbox] of record

inuse : boolean;
rid : integer

end;
no_in-use: 0 .. nmailbox;
notfull: condition { nmailbox > no inuse };

function entry allocate (rendezvous-id: integer integer;
var entryloc: integer;
begin

wait.notfull;
entryloc := 0;
repeat

entryloc := entryloc + 1
until not rtbl [entryloc I inuse;
rtbl [entryloc].inuse := true;
rtbl [entryloc].rid : rendezvous-id;
no_in_use := no_in_use + 1;
allocate := entryloc

end (* end of allocate *);

function entry reference (rendezvous_id: integer ; integer;
var entryloc: integer;

foundit: boolean;
begin

foundit : false;
entryloc 1;
repeat

if rtbl [entryloc] .inuse and(rtbl [entryloc] .rid = rendezvous_id)
then

begin
reference := entryloc;
foundit := true

end;
entryloc := entryloc + 1

until foundit or (entryloc > nmailbox);
if not foundit then reference := errorvalue

end (* end of reference *);
procedure entry deallocate (tblentry integer)

begin
rtbl [tblentry I .inuse : false;
noinuse := no_in_use - 1

end (* end of deallocate *);
begin

for no_in-use := 1 to nmailbox do
begin

rtbl [no_in_use].inuse := false;
rtbl [no_in_use].rid := 0

end;
nomin_use := 0

end (* end of ren_mon *);
Fig. 1. REN_MON.

procedure of MAIL_BOX_MON with this name and one mes-

sage as parameters. The message is deposited in the named
mailbox.
To retrieve a message from a mailbox, a consumer uses the

REFERENCE function of REN_MON with a rendezvous num-

ber. Presumably, this rendezvous number is the same value
that was used by the producer to obtain the mailbox in the
first place. An error code ("errorvalue") is returned by this
procedure if an attempt is made to reference a rendezvous
number that is not currently allocated. The REFERENCE

function retums the name of the mailbox that is associated
with that rendezvous number, and the consumer uses this
name in a call to the READ-MSG procedure of MAIL_BOX_
MON to obtain the contents of the mailbox. After reading the

message, the consumer calls the DEALLOCATE procedure of
REN_MON with the mailbox name as a parameter to free the
mailbox so that it can be used for other communications.
The protocol for message passing via mailboxes is then:

The producer:
1) Use REN_MON.ALLOCATE to obtain a mailbox.
2) Use MAIL_BOX_MON.WRITE_MSG to write a message.

The consumer:
1) Use REN_MON.REFERENCE to find correct mailbox name.
2) Use MAIL_BOX_MON.READ_MSG to read the message.
3) Use REN_MON.DEALLOCATE to free the mailbox.

Fig. 1 is an implementation of the REN_MON monitor, and
Fig. 2 is an implementation of MAIL_BOX_MON. The auto-
matic signal facility of Kessels [14] is assumed. The syntax

509

Authorized licensed use limited to: Yale University. Downloaded on February 23,2022 at 15:19:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

type mail_box_mon = monitor;
var mailboxes array [1 ... nmailboxI of mailbox;

i: integer;
function entry read_msg(mboxnme: integer): message;

begin
read_msg := mailboxes(mboxnme)

end ; (*read_msg*)
procedure entry write_msg(mboxnme: integer; msg: message);

begin
mailboxes(mboxnme) := msg

end ; (*write_msg*)
begin

for i := 1 to nmailbox do
mailboxes(i) := nuilmsg

end (*mail_box_mon*)

Fig. 2. MAIL_BOX_MON.

and semantics of this conditional wait facility is described in
Section III of this paper. Fig. 3 is an access graph [2] for the
mailbox subsystem. A directed arc from one module to
another indicates that the first may call the second during the
execution of a request.
The subsystem described above does not function correctly

under certain circumstances. The error that exists is time-
dependent and therefore not one that would be observed by
testing in a purely sequential fashion (i.e., every synchronous
experiment produces a correct result). It requires the interac-
tion of two requests in order to manifest itself. If requests
from a producer and consumer are interleaved during asyn-
chronous operation in such a way that the consumer completes
its calls to REFERENCE and READ-MSG after the producer has
completed its call to ALLOCATE, but prior to executing the
call to WRITE_MSG, the consumer will receive the wrong
message.

III. DISCUSSION OF THE RESULTS

Two major factors introduce time dependency in asynchro-
nous operation. The first is illustrated in Fig. 4. It depicts a
situation in which modules A and B, in processing results rA
and rB, can each make calls on monitors Ml and M2. The fol-
lowing sequence of events can occur:

rA calls A, executes in A;
rA calls Ml, executes in Ml and then returns to A;
rB calls B, executes in B;
rB calls MI, executes in MI and then returns to B;
rB calls M2, executes in M2 and then returns to B;
rB exits B;
rA calls M2, executes in M2 and then returns to A;
rA exits A.

In this case, rA sees the permanent variables of Ml prior to the
time rB accesses them, but sees the permanent variables of M2
after the time rB accesses them. This is exactly the situation
which occurs in the example in the previous section and one
that could not possibly be reproduced in a synchronous ex-
periment. It occurs when the execution of concurrent requests
is interleaved in a particular way and is therefore timing depen-
dent. It is to be hoped that the system designer has anticipated
this situation. (A similar, time-dependent situation arises if it
is possible for a request to enter the same monitor twice.)

PRODUCERS CONSUMERS

REN_MON MAIL_BOX_MON

Fig. 3. Mailbox subsystem access graph.

Fig. 4. Access graph which allows interleaving.

In order to avoid this type of interaction, we specify that a
request may not enter a monitor after it has exited from a
monitor (actually, a slightly different form of this restriction is
used in the proofs given in the Appendix). This eliminates the
interleaving described and it is shown in the Appendix that, as
a result, all monitors entered by a request lie along a single
path.
A second factor which introduces time dependencies during

asynchronous operation involves the use of the wait statement.
If a request can access the permanent variables of a monitor
both before and after waiting in the monitor, then the request
that waits and the request that causes the signal will be in a
situation analogous to ri and r2, as previously described. The
signaler sees the permanent variables after partial execution of
the waiter and the waiter sees them both before and after the
signaler has executed. Although the monitor invariant is de-
signed to guarantee that such a situation will always cause
acceptable results, if it is not specified properly, errors will
occur which cannot be reproduced in a synchronous experi-
ment. In order to guarantee that each asynchronous experi-
ment is equivalent to some synchronous experiment, a restric-
tion on the use of the wait facility must be specified.
Various formulations of the wait facility have been described

[13]. We specify the restriction in terms of the conditional
wait facility as proposed by Kessels [14]. A programmer may
declare one or more variables of type condition as part of the
global declarations in a monitor. The syntax of such a declara-
tion is

<condition name>: condition {<boolean expression>}.

Since the condition is declared global to the entire monitor
(as opposed to being local to a particular monitor procedure),
the boolean expression may only reference permanent monitor
variables. Variables declared local to monitor procedures, and
parameters to these procedures, may not appear in the boolean

510

Authorized licensed use limited to: Yale University. Downloaded on February 23,2022 at 15:19:56 UTC from IEEE Xplore. Restrictions apply.

AKKOYUNLU et al.: CONDITIONS FOR EQUIVALENCE OF SYSTEMS

expression. A wait statement has the following syntax:

wait . <condition name>.

When executed, this statement causes the evaluation of the
boolean expression referenced by <condition name>. If it is
found true, the executing process continues; otherwise, the
process is suspended on a queue associated with that condition.
A process is said to relinquish control of a monitor if it exits

the monitor, or is suspended by a wait statement within the
monitor. In the event that a process relinquishes control of a
monitor, the conditions of any processes suspended in the
monitor are evaluated, and, if one of these is true, that process
is given control of the monitor. If none are true, then a pro-
cess waiting outside the monitor may be given control. This
scheme is essentially an automatic signal-on-return mechanism
for synchronization. The order in which conditions are evalu-
ated is left unspecified, provided no suspended process can
wait on a true condition indefinitely. In addition, no primi-
tives are provided to ascertain the number, or identities, of
processes waiting on a condition.

Fig. 5 illustrates the use of this synchronization mechanism
by implementing the single resource monitor found in [12].
The restriction we impose on the use of the wait statement

is that if a wait statement appears in a monitor procedure it
must be the first executable statement in that procedure. As a
result a request cannot determine whether or not it actually
suspended itself within a module and was awakened by another
request. This is a limitation, and an attempt to weaken it is
currently under study. This restriction can, however, be
checked at compile time. The example in Fig. 5 complies with
this restriction. Note also that due to the restriction the
boolean expressions associated with conditions need only be
tested when a process exits a monitor.
Using the two restrictions described in this section, it is pos-

sible to show (see the Appendix) that no request sees the per-
manent variables of any module in a state in which they have
been partially updated by other requests. As a result, it is
possible to show that there exists a partial order among the
requests of an asynchronous experiment which is determined
by the sequence with which they visit various modules, and it
follows from this that every asynchronous experiment is
equivalent to some synchronous experiment.

IV. EXAMPLE REVISITED

It has been shown that certain asynchronous behavior
(resulting in erroneous outputs) exhibited by the subsystem
described in Section II is not reproducible in synchronous
operation. Thus, although the system might function correctly
when it is used in synchronous mode, this does not guarantee
error-free behavior when it is run asynchronously. The source
of the problem is that a request enters a monitor after it exits
a monitor. As described in that section, REN_MON and
MAIL_BOX_MON are monitors and both are called, during the
execution of single requests, by the producer and consumer
modules. In this section we present a mailbox subsystem
which satisfies the restriction of previous sections. We are

type single resource = monitor;
var busy : boolean;
inuse: condition {not busy};
procedure entry acquire;

begin
wait. inuse;
busy := true

end;
procedure entry release;

begin
busy := false

end;
begin

busy false
end;

Fig. 5. Single resource monitor.

in synchronous operation, it will also function correctly
asynchronously.
The access graph for the modified mailbox subsystem is

shown in Fig. 6. Notice that producers (or consumers) no
longer need to call two monitors, REN_MON and MAIL_BOX_
MON, but rather call only one monitor, REN_MON, once. The
communications protocol is simplified so that it is no longer
necessary to explicitly allocate or deallocate a mailbox. A
producer calls the RWRITE_MSG procedure of REN_MON with
a rendezvous number and a message to be deposited. When
space is available, a mailbox name is assigned and REN_MON
calls MAIL_BOX_MON, using the assigned mailbox name. A
consumer calls the RREAD_MSG procedure of REN_MON with
a rendezvous number. If that rendezvous number is already in
use (meaning that a message is already awaiting the consumer),
then the correct mailbox name is determined by REN_MON,
and is employed in a call to MAIL_BOX_MON; otherwise, an
error value is returned. The modified implementation of
REN_MON is shown in Fig. 7. The implementation of MAIL_
BOX-MON remains as shown in Fig. 2, though it is now a class
rather than a monitor.
Notice that the implementation is now in compliance with

the restrictions, and thus equivalent operation in the synchro-
nous and asynchronous modes will be observed. Since the
error described in Section II was based on timing considera-
tions during asynchronous operation, it can no longer occur
in the modified subsystem.

V. CONCLUSION

In this paper a technique has been proposed for simplifying
the design and validation of operating systems. By imposing
certain restrictions on the language of implementation, it has
been possible to eliminate time-dependent errors. Some of the
restrictions can be checked at compile time; others by simple
run time checks. The major limitation of this approach is the
severity of the restrictions, and work is now in progress to
relax them. Certain extensions are obvious. For example,
since we have made no assumptions about the order in which
processes suspended on a condition queue are awakened, it is
possible to extend these results to include a priority wait
mechanism [12]. Such a mechanism is discussed in [1].
Relaxation of the restriction on the way monitors may be
called is being considered using managers [19]. The question
as to whether actual operating systems can be constructed

511

therefore guaranteed that, if the system functions correctly

Authorized licensed use limited to: Yale University. Downloaded on February 23,2022 at 15:19:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

IREN_MON

(MAIL_ BOX-_MON

Fig. 6. Access graph of revised mailbox subsystem.

type ren_mon = monitor;
var rtbl: array [1 .. nmailbox of record

inuse: boolean;
rid :integer

end;
no_in-use 0.. nmailbox;
notfull: condition { nmailbox > no_in_use };

procedure entry rwrite_msg (rendezvous-id integer, msg message);
var entryloc: integer;
begin

wait.notfull;
entryloc := 0;
repeat

entryloc := entryloc + 1
until not rtbl [entryloc 1. inuse;
rtbl [entryloc J. inuse true;
rtbl [entryloc]. rid rendezvous-id;
no_in_use := no_in_use + 1;
mail_box_mon.writemsg (entryloc, msg)

end (* end of rwrite msg *);
function entry rread_msg (rendezvous_ id: integer) message;

var entryloc : integer;
foundit : boolean;

begin
foundit := false;
entryloc :1;
repeat

if rtbl [entryloc].inuse and(rtbl [entryloc] .rid = rendezvous_id)
then

begin
rread-msg := mail_box_mon.read_msg (entryloc);
rtbl [entryloc I.inuse := false;
no_in_use := noin-use - 1;
foundit := true

end
entryloc := entryloc + 1

until foundit or (entryloc > nmailbox);
if not foundit then rread-msg := errormessage;

end (* end of rread msg *);

begin
for no-in, use 1 to nmailbox do

begin
rtbl [no_in_use].inuse : false;
rtbl [no_in_use].rid : 0

end;
no_in_use := 0

end (* end of ren_mon *);

Fig. 7. Revised implementation of REN_MON.

within these restrictions is currently being studied by the systems are modeled by acycic graphs. An example of a sys-
authors. tem graph is shown in Fig. 8. Note that the processes which

initiate requests are not included. It is assumed that when a
APPENDIX request is initiated, the process is blocked until the request

A directed graph G is associated with each system. The terminates and control is retumed. In what follows, the term
nodes of the graph correspond to system modules, and an edge path is used in the usual graph theoretic sense, and node-
from module Vi to module Vj indicates that Vi can call Vj. disjoint paths mean two paths having only their final node in
Hierarchical systems are the only ones considered, and such common.

512

Authorized licensed use limited to: Yale University. Downloaded on February 23,2022 at 15:19:56 UTC from IEEE Xplore. Restrictions apply.

AKKOYUNLU et al.: CONDITIONS FOR EQUIVALENCE OF SYSTEMS

< m 9 ~~~~~~~~~I={(a,b,c}I
P = {eJ,ij,k, I}

C- {p,m,n}

Fig. 8. A directed graph model of a system.

The nodes of G can be partitioned into four disjoint subsets:

1) I Nodes (interface): those nodes of in-degree 0.
2) S Nodes (shared): nodes reachable by at least two

node-disjoint paths originating from
two distinct I-nodes.

3) P Nodes (path): any node, except an S-node, which lies
on a path from an I-node to an S-node.

4) C Nodes (common): the remaining nodes.

The various subsets for the system graph of Fig. 8 are also
shown in the figure. I-nodes correspond to system modules
which are the interface to process modules. Although it is
possible that two process modules may call the same I-node,
it is convenient to assume that every process is associated with
a unique I-node (which may be functionally vacuous). S-nodes
will be monitors and will therefore have a mutual exclusion
mechanism which controls entry to them.
A request is initiated by a call from a process module to an

I-node. Attention will be confined to requests obeying the
following restrictions.
Restriction 1: A request involves no parallel processing

(e.g., no cobegin, etc.).
Restriction 2: The system modules interact only through a

call-retum mechanism (i.e., no coroutine-type control is
allowed).
Restriction 3: No module, on behalf of a request, may call

more than one module of type S or P, and may only call such
a module once.

The restriction "no request may call an S-node after it has
returned from an S-node" is somewhat weaker than restriction
3 and can be used to derive the results presented here. Since
the added flexibility is minimal and the proofs become more

complicated, the stronger restriction is used. It should be
noted that Eswaran et al. [9] derived a result for consistency
in a multiaccess relational data base using this weaker form of
the restriction. The result presented in this paper is similar to
theirs in that it is concerned with maintaining the consistency
of a data base-in the present case, the union of the data bases
maintained by the monitors and classes in the system. How-
ever, language restrictions to guarantee this consistency are of
concern here, and the operating system constructs that do not
appear in a data base must be dealt with. The conditional wait
statement is one such example.
The subgraph induced by a request is defined as that subgraph

of G that contains all the nodes visited by the request and all
the arcs traversed to visit these nodes.

In order to prove the equivalence of synchronous and asyn-
chronous operation, one must proceed as follows. First, it is
shown that under the restrictions all of the common modules
visited by any two requests are all visited first by one request
and then by the other (i.e., it is not the case that some com-
mon modules are visited first by one request while the remain-
der are visited first by the other request). Then it is shown that
there exists a partial ordering on the requests so that there is at
least one "last" request. This last request has the property
that the execution of no request depends upon its outcome.
The result then follows by induction on the number of
requests.
To show that the common modules visited by two requests

are visited in the same order by these requests one must take
advantage of the mutual exclusion property of monitors. In
the next lemma it is shown that the monitors visited by a
request all lie on a single path. Then, in the bottleneck lemma,
this result is used to establish that for every pair of requests
that have nodes in common, there exists a unique common
node, called the bottleneck node, through which both requests
must pass prior to entering any other common module.
Clearly, whichever request executes in the bottleneck node
first will execute in all common modules first.

Lemma 1 (Unique-Path Lemma)
Let ri be a request originating at interface node n and let Gi

be the subgraph induced by ri. Then Gi contains a path 7r
which includes every S-node visited by ri. Furthermore, if a
and b are a pair of such S-nodes with a occurring before b on
ir, then every path from n to b in Gi contains a.
Proof: It is shown that if a and b are S-nodes visited by ri,

it is impossible to have two paths

Ira: n .. a, b 1Ta
7rb: n ..b, a lgb-

To show this, one must note that, since a and b are S-nodes,
all predecessor nodes in wa and rb must be S- or P-nodes. But
lTa and lrb are diverging paths which both originate at n. The
node at which the two paths diverge would have to call two
S- or P-nodes and this violates restriction 3. U

Lemma 2 (Bottleneck Lemma)
Let Gi be the subgraph induced by a request ri originating at

the interface node ni, and let Gj be the subgraph induced by
request rj originating at nj, with ni : nj. Also, let Cij denote
the set of nodes common to ri and rj. If Cij 0 0, then there
exists a unique node vij E Cij such that vij is an S-node, and
for all v E Cij:

1) every path from ni to v in Gi includes vij;
2) every path from nj to v in Gj includes vij.
Proof: Since Cij A 0, there is in Gi a path

7ri : niv v-2 . .* Vk-IVk k > 1

such that vk E Cij, and for all h < k, vh o Cij.
First it is noted that vk is an S-node. This follows from the

fact that Vk E Ci,, there is in Gj a path irj from nj to Vk, and
iri and irj are node-disjoint.
Next it is shown that Vk is the unique node which satisfies

513

Authorized licensed use limited to: Yale University. Downloaded on February 23,2022 at 15:19:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

the requirements for vij stated in the lemma. Assume that for
some node v E Cij there is a path ;Ti from ni to v in Gi which
does not contain Vk. Let v' be the first node in ;j such that
v' E Cij. By the same argument, v' must be an S-node. But
this contradicts Lemma 1 since Gi has two S-nodes.

1) v' reachable from ni through a path which does not con-
tain Vk;

2) vk reachable from ni through a path which does not con-
tain v'.

Thus, one can conclude that v' = Vk.
It has been established that in Gi all paths from ni to any

node v E Cij contain the unique entry node Vk and that Vk is
an S-node. Similarly, there is a unique S-node v' which is the
entry node of all paths from nj to v E Cij in Gi. It can now be
shown that Vk and v' must be the same node. Assume Vk and
kIare distinct. There must be a path from Vk to Vk in Gi since

vk E Cij. Similarly, there must be a path from vk to Vk in Gj
since Vk E Cij. This means that the overall graph G has a cycle.
Thus

Vk = Vk .

Two additional restrictions required in order to prove the
equivalence of synchronous and asynchronous experiments
can now be stated.
Restriction 4: All wait statements are done via conditions.
Restriction 5: Any wait statement must be the first exe-

cutable statement in a monitor procedure.
Restriction 5 partitions the execution of a request in a moni-

tor procedure into two parts; the wait statement, and the state-
changing part. A request will be said to have entered a module
if it has executed statements other than a wait statement in
the module. The actual execution of a particular request
depends on the values of the permanent variables in each
module entered. These values are affected by the previous
requests, which have entered the module. For this reason the
precedes relation, <, is defined. It will be said that ri <rj
(ri precedes rj) if ri enters a module that rj calls before rj enters
that module. (Note that, if rj is forever blocked by the mutual
exclusion code for that module, we shall still say ri < rj.) If
ri < rj or rj < ri, one can say that rip rj, which means that ri
and rj enter one or more common modules, or one enters a
module and the other calls that module. The complement of
this relation will be denoted by p'.

It will now be shown that the preceeds relation defines a
partial ordering over the requests processed in a given experi-
ment. This ordering is then employed to derive the synchro-
nous experiment equivalent to the asynchronous experiment
that induced the ordering.

Lemma 3 (Well-Ordering)
If riprj, then either ri < rj in all common modules, or else

rj < ri in all common modules.
Proof By Lemma 2, if riprj, then there exits a bottleneck

node, vij, which is the first node that both ri and rj attempt to
enter. Since vij is an S-node, it is a monitor. Let Cij be the set
of nodes entered by both ri and rj. It follows that if ri enters
vij before rj, then rj cannot enter any node in Cij until after ri

returns (if it ever does) from vij. Note that after ri returns
from vij, it may not call any node in Cij as a result of Restric-
tion 3. Thus ri < rj in all common modules. Similarly, if rj
enters vij before ri, then rj < ri.
Lemma 4 (Sequencing Lemma)
Let rx be an arbitrary request.
a) If rx terminates, then for any pair, a, b of S-nodes visited

by rx, the event [rx exits b] occurs after the event [rx
enters a] .
b) If rx does not terminate, then for any request ry such

that rx < ry, ry does not terminate. Further, ry is suspended
at the bottleneck node of rx and ry.
Proof: Lemma 1 states that all S-nodes visited by a request

are situated along a unique path. Let ml, m2 be two such
nodes with ml occurring before m2. It follows from Restric-
tion 3 that there is no more than one call each to m1 and m2
in rx. From the nested nature of calls, one has the sequence

[rx enters ml] ... [rx enters M2]

***[rr exits m2] * * * [rx exits ml].
Thus part a follows. To prove part b of the lemma, it is noted
that in order for rx not to terminate it must be blocked at
some S-node, Vblocked. Also, rx < ry implies that there exists
a bottleneck node (which is an S-node), Vxy, which rx has
entered. This, in tum, implies that rx is not blocked in Vxy
and, therefore, Vxy * Vblocked

It can be concluded that rx entered Vxy before calling
Vblocked. If Vxy is substituted for ml and Vblocked for m2 in
this sequence, then the events [rx enters Vblocked], [rx exits
Vblocked], and [rx exits V,y] never occur. Since rx < ry, ry
called Vxy but is blocked due to mutual exclusion.

Lemma S (Consistency Lemma)
For arbitrary requests r1, r2, r3, , rn, it is never the case

that

ri <r2 Ar2 <r3 A r-r l<rnArrn <rl.
Proof: Assume we have r1 < r2, r2 < r3,** rn < rl. Then

there exist bottleneck nodes v12, v23, ,vn1. From the
definition of< it is known

r1 enters v12
r2 enters v23

rn enters vnI.
By part b of the Sequencing Lemma, if any one of these
requests is suspended they are all suspended. Thus there are
two cases to consider.
Case 1: rl, r2,-* * , rn are all suspended. Using Part b of the

Sequencing Lemma, it can be stated that

rI enters v12 and r2 calls but does not enter v12
r2 enters v23 and r3 calls but does not enter v23

rn enters v1 and rI calls but does not enter vnI .

514

Authorized licensed use limited to: Yale University. Downloaded on February 23,2022 at 15:19:56 UTC from IEEE Xplore. Restrictions apply.

AKKOYUNLU et al.: CONDITIONS FOR EQUIVALENCE OF SYSTEMS

Also, since r1 enters v12 and is blocked at vnl, one can con-
clude the following:

1) V12 and vnl are distinct;
2) there is a path (vl2 to Vn1)

Similarly, there exists paths (vnI to Vn n-l), * - , (V23 to v12).
Since this implies that the graph contains a cycle, this case
cannot occur.
Case 2: rI, r2, r3, * * *, rn all terminate. The following can

be written:

assertion
[r1 enters vnil after [rn exits vn1]
[rn exits vnI] after [rn enters vn -i n]

[r3 enters v23] after [r2 exits v23]
(r2 exitsv231 after [r2 entersv121
[r2 enters v12] after [r 1 exits v12]
[ri exits v12] after [ri enters Vnl]

justification
since rn < r1
by Lemma 4

since r2 < r3
by Lemma 4
since rI < r2
by Lemma 4.

The following contradiction has therefore been generated:

[rl enters vnil after [r1 enters vnl]

and the lemma is proved. U
It is now shown that the execution of no request depends

upon rmax' the last request in the partial ordering. Thus rmax
can be run last in an equivalent synchronous experiment.

Lemma 6 (Deletion)
Let rma. be a request in an asynchronous experiment such

that if ri is any other request in that experiment, then (ri <
rmax V rip'rmax). Then the state of each module entered by
rmax at the time rmax enters that module, is the same as what
it would be if rmax were not initiated until all other requests
had either terminated or could progress no further.
Proof Let rmax and ri be as stated in the lemma and con-

sider each ri in the experiment. If rip'rmax, then ri and rmax
do not both enter any common module. Thus running ri to
completion before initiating rma will not affect the state of
any modules that rmax enters.

If ri < rmax, then by Lemma 3, rma can enter a module in
Ciman only after ri has exited all modules in Cimax for the
last time. Furthermore, Restriction 5 ensures that prior to
entering a module, a request can neither alter nor record in
local variables the values of the permanent variables in that
module. Thus, the state of all variables seen by rmax upon
entering a module reflects the complete execution of ri. U
Requests, in addition to modifying variables in system mod-

ules, may make changes to the address space of the user mod-
ule from which the request was initiated or cause some other
action which is externally discernable (e.g., write a line to a
terminal). Because such actions must be taken into account in
deciding whether two experiments produce the same results,
a process pseudoprinter to record them is defined. Associated
with each process will be a pseudoprinter on which a line will
be printed any time the system modifies the process address
space or causes some other externally discernable action. The

message written on the pseudoprinter will include all the par-
ticulars of the action (e.g., address changed and its new con-
tents; line typed at terminal, etc.). The system state is defined
as the values of all permanent variables in the system and the
pseudoprinter output for all processes.
Two experiments are said to be equivalent if they involve the

same requests, start from the same quiescent state, produce
the same system state, and leave the same requests suspended.
Notice that the present notion of equivalence concerns that
which is visible to the program. The ordering, or contents of
system queues, for example, is not included in system state,
because this information is not available to a process. One can
denote a particular synchronous experiment involving the
successive initiation of requests rl, r2, , rn as rl1r2j ... jr

Theorem

Any asynchronous experiment is equivalent to at least one
synchronous experiment.
Proof: The proof is by induction on the number of requests

in the experiment.
Base Case: Assume the experiment consists of two requests

ri and rj (an experiment must contain two or more requests to
be asynchronous). Without loss of generality, two situations
must be considered, riptrj and ri < rj. Using Lemma 6 one can
conclude that in either case the state of each module entered
by rj, at the time rj enters that module, is the same as what it
would be after ri had either terminated or could progress no
further. Since the action taken by rj is completely dependent
on this state, it follows that the synchronous experiment ri;
rj produces the same system state as the original asynchronous
experiment.
Induction Case: Assume for each asynchronous experiment

involving K or fewer requests there exists a synchronous
experiment which produces the same system state.
Now consider an asynchronous experiment X which contains

K + 1 requests. Let rmax be a request satisfying

(Vri) [ri < rmax V rip'rmax]I (1)

Such an rmax exists due to Lemmas 3 and 5. Let X' be the
asynchronous experiment obtained from X by deleting rma,
By the induction hypothesis there exists X' which is a synchro-
nous experiment equivalent to X'. Let X be the experiment
obtained by running the synchronous experiment X', followed
by rmac. (Thus X=X; rmax.) Recall that a synchronous
experiment is a sequence of requests where no request is sub-
mitted unless the preceding request terminated or could pro-
gress no further. Since X' is synchronous, X is synchronous
because (1) guarantees that rmax cannot cause any previous
request to awaken.
Let Y be the asynchronous experiment obtained by execut-

ing rmax after the completion of X'. Note that, due to
Lemma 6 and the fact that the effect of rmax is determined
solely by the system state it sees, Y must be equivalent to X.
Since X' and X' are equivalent, rmax sees the same state if it

runs following X' or X'. Thus it can be concluded that the
experiment X'; rman is equivalent to Y; X is therefore a syn-
chronous experiment equivalent to X. U

515

Authorized licensed use limited to: Yale University. Downloaded on February 23,2022 at 15:19:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-4, NO. 6, NOVEMBER 1978

ACKNOWLEDGMENT
The authors wish to thank B. Ensor for his assistance in the

development of the example in this paper.

REFERENCES

[1] E. A. Akkoyunlu, A. J. Bernstein, and F. B. Schneider, "Medium
term scheduling and equivalence of synchronous and asynchro-
nous operation," Dep. Comput. Sci., SUNY at Stony Brook,
Tech. Rep. 72, June 1977.

[2] P. Brinch Hansen, "The programming language Concurrent
Pascal," IEEE Trans. Software Eng., vol. SE-1, pp. 199-206,
June 1975.

[31 -, Operating System Principles. Englewood Cliffs, NJ:
Prentice-Hall, 1973.

[4] -, "The solo operating system: A Concurrent Pascal program,"
Software, Practice Experience, vol. 6, pp. 141-149.

[5] 0. J. Dahl, B. Myhrhaung, and K. Nygaard, The Simula 67
Common Base Language. Oslo, Norway: Norwegian Computing
Center, 1968.

[6] E. W. Dijkstra, "The structure of THE multiprogramming sys-
tem," Commun. Ass. Comput. Mach., vol. 11, pp. 341-346, May
1968.

[7] -, "Co-operating sequential processes" in Programming Lan-
guages, F. Genuys, Ed. New York: Academic, pp. 43-112.

[8] -, "Notes structured programming," in Structured Program-
ming, 0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Ed. New
York: Academic, 1972.

[9] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, "The
notions of consistency and predicate locks in a database system,"
Commun. Ass. Comput. Mach., voL 19, pp. 624-633, Nov. 1976.

[10] R. W. Floyd, "Assigning meanings to programs," in Proc. Symp.
Applied Math (vol. 19, American Mathematical Society, Provi-
dence, RI 1967), pp. 19-32.

[11] C. A. R. Hoare, "An axiomatic basis for computer programming,"
Commun. Ass. Comput. Mach., vol. 12, pp. 576-687, Oct. 1969.

[12] -, "Monitors: An operating system structuring concept," Com-
mun. Ass. Comput. Mach., vol. 17, pp.549-557, Oct. 1974.

[13] J. H. Howard, "Signaling in monitors," in Proc. 2nd Annu. Conf.
Software Engineering (October 1976), pp. 47-52.

[14] J. L. W. Kessels, "An alternative to event queues for synchroniza-
tion in monitors," Commun. Ass. Comput. Mach., vol. 20, pp.
500-503, July 1977.

[15] B. Liskov and S. Zilles, "An approach to abstraction," in Proc.
Symp. Very High Level Languages (SIGPLAN Notices, vol. 9,
Apr. 1974).

[16] D. L. Parnas, "On the criteria to be used in decomposing systems
into modules," Commun. Ass. Comput. Mach., vol. 15, pp. 1053-
1058, Dec. 1972.

[17] A. Silberschatz, "Correctness and modularity in asynchronous
systems," Ph.D. dissertation, SUNY at Stony Brook, Aug. 1976.

[18] A. Silberschatz and A. J. Bernstein, "Correctness in modular
operating systems," Dep. Comput. Sci., SUNY at Stony Brook,
Tech. Rep. 56, Nov. 1976.

[19] A. Silberschatz, R. B. Kieburtz, and A. J. Bernstein, "Extending
Concurrent Pascal to allow dynamic resource management,"
IEEE Trans. Software Eng., vol. SE-3, pp. 210-217, May 1977.

Eralp A. Akkoyunlu,
time of publication.

photograph and biography not available at the

Arthur J. Bernstein (S'56-M'63-SM'78) re-
ceived the Ph.D. degree from Columbia Univer-
sity, New York.

He has taught at Princeton University, and
4 was a Research Scientist at the General Electric

Research and Development Center in Schenec-
tady, NY. He is now a Professor of Computer
Science at the State University of New York at
Stony Brook, specializing in the field of operat-
ing systems. His current interest is in concur-
rent programming and techniques for improving

the reliability of asynchronous systems.

Fred B. Schneider (S'77-GM'78) received the
B.S. degree from Cornell University, Ithaca, NY,
and the M.S. and Ph.D. degrees from the State
University of New York at Stony Brook.
He is currently an Assistant Professor of Com-

puter Science at Cornell University, Ithaca, NY.
His current research interests are in operating
systems and programming languages, particu-
larly concerning concurrency.

Abraham Silberschatz, for a photograph and biography, see this issue,
p. 477.

516

Authorized licensed use limited to: Yale University. Downloaded on February 23,2022 at 15:19:56 UTC from IEEE Xplore. Restrictions apply.

