
Learning Recursive Prolog Programs with Local Variables from

Examples

M. R. K. Krishna Rao krishna@ccse.kfupm.edu.sa

Information and Computer Science Department King Fahd University of Petroleum and Minerals, Dhahran
31261, Saudi Arabia.

Abstract

Logic programs with elegant and simple
declarative semantics have become very com-
mon in many areas of artificial intelligence
such as knowledge acquisition, knowledge
representation and common sense and le-
gal reasoning. For example, in Human
GENOME project, logic programs are used
in the analysis of amino acid sequences,
protein structure and drug design etc. In
this paper, we investigate the problem of
learning logic (Prolog) programs from ex-
amples and present an inference algorithm
for a class of programs. This class of
programs (called one-recursive programs) is
based on the divide-and-conquer approach
and mode/type annotations. Our class
is very rich and includes many programs
from Sterling and Shapiro’s book [33] in-
cluding append, merge, split, delete,

insert, insertion-sort, preorder and
inorder traversal of binary trees, polyno-
mial recognition, derivatives, sum of a list
of natural numbers etc., whereas earlier re-
sults can only deal with very simple pro-
grams without local variables and at most
two clauses and one predicate [4].

1. Introduction

The theory of inductive inference attempts to under-
stand the all pervasive phenomena of learning from
examples and counterexamples. Starting from the in-
fluential works of Gold [12] and Blum and Blum [5],
a lot of effort has gone into the development of a rich
theory about inductive inference and the classes of
concepts which can be learned from both positive (ex-
amples) and negative data (counterexamples) and the
classes of concepts which can be learned from positive
data alone. The study of inferability from positive

data alone is important because negative examples are
hard to obtain in practice.

Logic programs with simple and elegant declara-
tive semantics can be used as representations of
the concepts to be learned. In fact, the problem
of learning logic programs from examples has at-
tracted a lot of attention (a.o. [3,4,7,8,10,11,13-16,18-
20,22-25,28,29,35]) starting with the seminal work of
Shapiro [30, 31] and many techniques and systems
for learning logic programs are developed and used
in many applications. See [24] for a recent survey.

The existing literature mainly concerns with either
nonrecursive programs or recursive programs without
local variables, usually with a further restriction that
programs contain a unit clause and at most one re-
cursive clause with just one atom in the body. It is a
well-known fact that local variables in logic programs
play an important role in sideways information pas-

sage. However, presence of local variables pose a few
difficulties in analyzing and learning programs. Mod-
ing annotations and linear inequalities have been suc-
cessfully applied in the literature (cf. [34, 27, 17, 2])
to tame these difficulties in analyzing logic programs
with local variables (in particular, termination and
occur-check aspects). In this paper, we demonstrate
that moding/typing annotations and linear inequali-
ties are useful in learning logic programs as well.

As established by many authors in the literature,
learning recursive logic programs, even with the above
restrictions, is a very difficult problem. We approach
this problem from a programming methodology angle
and propose an algorithm to learn a class of Prolog
programs, that use divide-and-conquer methodology.
Our endeavour is to develop an inference algorithm
that learns a very natural class of programs so that it
will be quite useful in practice. We measure the natu-
rality of a class of programs in terms of the number of
programs it covers from a standard Prolog book such
as [33]. We use the inference criterion proposed by An-

Learning Recursive Prolog Programs with Local Variables from Examples

gluin [1]: consistent and conservative identification in
the limit from positive data with polynomial time in
updating conjectures. That is, the program guessed
by the algorithm is always consistent with the exam-
ples read so far and changes its guess only when the
most recently read example is not consistent with the
current guess and it updates its guess in polynomial
time in the size of the current sample of examples read
so far.

2. Preliminaries

We assume that the reader is familiar with the ba-
sic terminology of logic programming and inductive
inference and use the standard terminology from
[21, 24, 12]. We are primarily interested in programs
operating on the following recursive types used in
Sterling and Shapiro [33].1

Nat ::= 0 | s(Nat)
List ::= [] | [item | List]
ListNat ::= [] | [Nat | ListNat]
Btree ::= void | tree(Btree, item, Btree)

Definition 1 A term t is a generic expression for
type T if for every s ∈ T disjoint with t the following
property holds: if s unifies with t then s is an instance
of t.

For example, a variable is a generic expression for
every type T , and [], [X], [H|T], [X, Y|Z], · · · are generic
expressions for the type List. Note that a generic
expression for type T need not be a member of T —
e.g., term f(X) is a generic expression for the type
List.

Notation:

1. We call the terms 0, [] and void the constants of
their respective types, and call the subterms T1
and T2 recursive subterms of term (or generic-
expression) of the form tree(T1, X, T2) of type
Btree. Similarly, L is the recursive subterm of
term (or generic-expression) of the form [H|L] of
type List.

2. The generic-expression 0 (resp. [] and void)
is called the first generic-expression of type Nat

(resp. List and Btree). The generic-expression
s(X) (resp. [H|L] and tree(T1, X, T2)), which gen-
eralizes all the other terms of type Nat (resp.
List and Btree) is called the second generic-
expression of type Nat (resp. List and Btree).

1Though we only consider Nat, List, ListNat and
Btree in the following, any other recursive type can be
handled appropriately.

Remark: Note that the first and second generic-
expressions of a given recursive type are unique upto
variable renaming.

Definition 2 For a term t, the parametric size [t] of
t is defined recursively as follows:

• if t is a variable X then [t] is a linear expression
X,

• if t is the empty list [] or the natural number
0 or the empty tree void then [t] is zero,

• if t = f(t1, . . . , tn) and f ∈ Σ−{0, [], void} then
[t] is a linear expression 1 + [t1] + · · ·+ [tn].

The parametric size of a sequence t of terms t1, · · · , tn
is the sum [t1] + · · ·+ [tn].

The size of a term t, denoted by |t|, is defined as [t]θ,
where θ substitutes 1 for each variable. The size of
an atom p(t1, · · · , tn) is the sum of the sizes of terms
t1, · · · , tn.

Example 1 The parametric sizes of terms [], [X], [a]
and [a, b, c] are 0, X + 1, 2, and 6 respectively. Their
sizes are 0, 2, 2, and 6 respectively.

Remark: In general, the size of a list (or binary tree)
with n elements is 2n. This is similar to the measures
used in the termination analysis of logic programs by
Plümer [27] in the sense that size of a term is propor-
tional to its contents.

3. Linearly-moded programs

Using moding annotations and linear predicate in-
equalities, Krishna Rao [18] introduced the following
class of programs and proved a theoretical result that
this class is inferable from positive examples alone.

Definition 3 A mode m of an n-ary predicate p is
a function from {1, · · · , n} to the set {in, out}. The
sets in(p) = {j | m(j) = in} and out(p) = {j | m(j) =
out} are the sets of input and output positions of p

respectively.

A moded program is a logic program with each pred-
icate having a unique mode associated with it. In the
following, p(s; t) denotes an atom with input terms s

and output terms t.

Definition 4 Let P be a moded program and I be a
mapping from the set of predicates occurring in P to
sets of input positions satisfying I(p) ⊆ in(p) for each
predicate p in P . For an atom A = p(s; t), the linear
inequality ∑

i∈I(p)

[si] ≥
∑

j∈out(p)

[tj] (1)

is denoted by LI(A, I).

Learning Recursive Prolog Programs with Local Variables from Examples

Definition 5 A moded program P is linearly-moded
w.r.t. a mapping I such that I(p) ⊆ in(p) for each
predicate p in P , if each clause

p0(s0; t0)← p1(s1; t1), · · · , pk(sk; tk)

k ≥ 0, in P satisfies the following:

1. LI(A1, I), . . . , LI(Aj−1, I) together imply [s0] ≥
[sj] for each j ≥ 1, and

2. LI(A1, I), . . . , LI(Ak, I) together imply
LI(A0, I),

where Aj is the atom pj(sj; tj) for each j ≥ 0.
A program P is linearly-moded if it is linearly-moded
w.r.t. some mapping I.

Example 2 Consider the following reverse program.

moding: app(in,in, out) and rev(in, out).

app([], Ys, Ys)←
app([X|Xs], Ys, [X|Zs])← app(Xs, Ys, Zs)

rev([], [])←
rev([X|Xs], Zs)← rev(Xs, Ys), app(Ys, [X], Zs)

This program is linearly-moded w.r.t. the mapping
I(app) = in(app); I(rev) = in(rev). For lack of space,
we only prove this for the last clause. LI(rev(Xs, Ys), I)
is

Xs ≥ Y s, (2)

LI(app(Ys, [X], Zs), I) is

Y s + 1 + X ≥ Zs (3)

and LI(rev([X|Xs], Zs), I) is

1 + X + Xs ≥ Zs. (4)

It is easy to see that inequalities 2 and 3 together imply in-
equality 4 satisfying the requirement 2 of Definition 5. The
requirement 1 of Definition 5 holds for atoms rev(Xs, Ys)
and app(Ys, [X], Zs) as follows: 1 + X + Xs ≥ Xs triv-
ially holds for atom rev(Xs, Ys). For atom app(Ys, [X], Zs),
inequality 2 implies 1 + X + Xs ≥ Y s + 1 + X.

The class of linearly-moded programs is very
rich and contains many standard programs such
as split, merge, quick-sort, merge-sort,

insertion-sort and various tree traversal programs.

4. One-Recursive Programs

To facilitate efficient learning of programs, we restrict
our attention to a subclass of the class of linearly-
moded programs. In particular, we consider well-
typed programs [6]. The divide-and-conquer approach
and recursive subterms are the two central themes of
our class of programs. The predicates defined by these

programs are recursive on the leftmost argument. The
leftmost argument of each recursive call invoked by a
caller is a recursive subterm of the arguments of the
caller. In the following, builtins is a (possibly empty)
sequence of atoms with built-in predicates having no
output positions.

Definition 6 (One-recursive programs)
A linearly-moded well-typed Prolog program without
mutual recursion is one-recursive if each clause in it
is of the form

p(s0; t0)← builtins, p(s1; t1), · · · , p(sk; tk)

or

p(s0; t0)← builtins, p(s1; t1), · · · , p(sk; tk), q(s; t)

such that (a) si is same as s0 except that the leftmost
term in si is a recursive subterm of the leftmost term
in s0 for each 1 ≤ i ≤ k, (b) the terms in s0 are
variables or one of the first two generic-expressions of
the asserted types and |s0| ≥ |t0| and (c) the terms in
ti, i ≥ 1 are distinct variables not occuring in s0.

It is easy to see that all the above conditions can be
checked in linear time by scanning the program once.

Theorem 1 Whether a well-typed program P is one-
recursive or not can be checked in polynomial (over
the size of the program) time.

The following example illustrates the divide-and-
conquer nature of one-recursive programs.

Example 3 Consider the following program for preorder
traversal of binary trees.

mode/type: preorder(in:Btree,out:List) and
app (in:List, in:List, out:List)

app([], Ys, Ys)←
app([X|Xs], Ys, [X|Zs])← app(Xs, Ys, Zs)

preorder(void, [])←
preorder(tree(T1, X, T2), [X|L])←

preorder(T1, L1), preorder(T2, L2),
app(L1, L2, L)

It is easy to see that this program is well-typed, linearly-
moded and one-recursive.

A typical one-recursive clause
p(s0; t0)← builtins, p(s1; t1), · · · , p(sk; tk), q(s; t)
satisfies (1) |sσ| ≥ |tσ| for every substitution σ such
that p(s0; t0)σ, p(s1; t1)σ, · · · , p(sk; tk)σ, q(s; t)σ are
atoms in the minimal Herbrand model and (2) [t0] ≤
[s0, t1, · · · , tn, t]. These properties form the basis for
Step Aux in the inference algorithm given below.

Learning Recursive Prolog Programs with Local Variables from Examples

Remark: The class of one-recursive programs is dif-
ferent from the class of linear-recursive programs stud-
ied in Cohen [7, 8]. Linear-recursive programs allow
at most one recursive atom in the body of a clause,
whereas one-recursive programs allow more than one
recursive atoms in the body of a clause.

5. Algorithm for generating

one-recursive programs

In this section, we give an inference algorithm to
derive one-recursive programs from positive presen-
tations. We only consider programs satisfying the
following conditions: (1) programs are deterministic
such that the least Herbrand model of a program do
not contain two different atoms p(s; t1) and p(s; t2)
with the same input terms, (2) heads of no two clauses
are same (even after renaming) and (3) non-recursive
clauses have only builtin atoms in the body. These
conditions are obeyed by almost all the programs
given in Sterling and Shapiro [33].

We need the following concepts in describing our al-
gorithm. An atom A is a most specific generalization
(or msg) of a set S of atoms if (a) each atom is in S is
an instance of A and (b) A is an instance of any other
atom B satisfying condition (a). It is well known that
msg of S can be computed in polynomial time in the
total size of atoms in S [26]. In view of the restrictions
placed on the atoms in one-recursive programs, it is
some times desirable to have more than one atoms (in
a particular form) to cover a set S of atoms.

In the following, we assume that the type of the
leftmost argument of the target predicate p has n re-
cursive subterms and our recursive clauses are of the
form p(s, · · ·) ← builtins, p(s1, · · ·), · · · , p(sn, · · ·) or
p(s, · · ·) ← builtins, p(s1, · · ·), · · · , p(sn, · · ·), q(· · ·),
where s1, · · · , sn are the recursive subterms of s. Two
atoms Pat1 ≡ p(u1,u) and Pat2 ≡ p(u2,u) are called
the first two patterns of the target predicate p if (a)
u1 and u2 are the first two generic-expressions of the
asserted type of the leftmost argument of p and (b)
u is a sequence of distinct variables.

Procedure Infer-one-recursive;
begin P := φ; S := φ;
Read examples into S until it contains an atom whose leftmost ar-
gument has instances of the second generic-expression as recursive
subterms, and all the atoms with recursive subterms of this argu-
ment as leftmost arguments. That is, if the asserted type
of the leftmost position of the target predicate is List, read the
examples into S until S contains an atom with a list L of at least
two elements in the first argument and all the atoms which have
sublists of L as first argument.
If an example p(s; t) with |s| < |t| is encountered, exit with error
message no linearly-moded program.
repeat

Read example A ≡ p(s; t) into S;
if |s| < |t| then exit with error(no LM program);

if A is inconsistent with P then P := Generate(S);
if P = false then exit with error(no LM program)

forever

end;

We say a ground atom p(s; t) is incompatible with
a clause p(u;v) ← builtins if there is a substitution
σ such that (1) builtins hold for substitution σ, (2)
s ≡ uσ and (3) t 6≡ vσ.

Function Generate(S);

begin P := φ;

S1 := {B ∈ S | B is an instance of Pat1};

S2 := {B ∈ S | B is an instance of Pat2};

Step 1: P := P∪Non-rec(S1);

Step 2: P := P∪Non-rec(S2);

Step 3: % Recursive clauses. %

Let S3 be the set of atoms in S2 which are not covered by the

clauses added in Step 2;

if S3 6= φ then

begin

Let builtin3 be the sequence of builtin-atoms complementing

the builtin-atoms of the clauses added in Step 2;

Compute the msg p(s0; t0) of S3;

Consider the following one-recursive clause:

p(s0; t0)← builtin3, p(s1; t1), · · · , p(sn; tn);

Let T be the set of tuples {〈s0σ, t1σ, · · · , tnσ, t0σ〉 such that

p(s0; t0)σ ∈ S3 and p(si; ti)σ ∈ S for each 1 ≤ i ≤ n};

Get a set T2 of msg’s of the form 〈s0, t1, · · · , tn, t0θ〉 covering

all the tuples in T such that

(a) [t0θ] ≤ [s0, t1, · · · , tn] and

(b) |s0| ≥ |t0θ|;

if T2 is a singleton set then P := P ∪ {C} where C is

p(s0; t0θ)← builtin3, p(s1; t1), · · · , p(sn; tn)}

elsif |T2| = m > 1 then form m clauses with additional built-in

atoms and add them to P

elsif T2 = φ then

begin

Step Aux: % Add auxiliary predicate. %

Let T3 be the set of atoms of the form q(u;v) such that

(1) |uσ| ≥ |vσ| for each σ such that p(s0; t0)σ ∈ S3

and p(si; ti)σ ∈ S for each 1 ≤ i ≤ n,

(2) LI(A1, I), . . . , LI(An, I) together imply [s0] ≥ [u]

where Ai ≡ p(si; ti) and

(3) there is a θ such that [t0θ] ≤ [s0, t1, · · · , tn, v] and

|s0| ≥ |t0θ|;

Flag := false;

while not Flag and T3 6= φ do

begin

Pick an atom A ≡ q(u;v) ∈ T3;

T3 := T3− {q(u;v)};

Let T4 the set of atoms {Aσ such that p(s0; t0)σ ∈ S3 and

p(si; ti)σ ∈ S for each 1 ≤ i ≤ n};

AuxP := Generate(T4);

if AuxP 6= false then Flag := true

Learning Recursive Prolog Programs with Local Variables from Examples

end;

if Flag = false then Return(false)

else P := P ∪ AuxP ∪ {C1} where C1 is

p(s0; t0θ)← builtin3, p(s1; t1), · · · , p(sn; tn), q(u;v)

end;

end;

Return(P)

end Generate;

Function Non-rec(S);

begin P := φ;

Get a set of msg’s of the form p(s; t) for S such that [t] ≤ [s].

for each msg p(s; t) do

if no atom in S is incompatible with unit clause p(s; t)←

then P := P ∪ {p(s; t)←}

else try to get a clause p(s; t)← builtin atoms without any

incompatible atom in S (if possible) and add it to P ;

Return(P)

end Non-rec;

It may be noted that the clauses returned by Non-rec

for input S1 cover all the examples in S1 for the fol-
lowing reasons: (1) as the leftmost argument of Pat1
has no recursive arguments, no recursive clauses can
be considered, (2) all the atoms in S1 are covered by
the clauses of the form p(s; t)← builtins and (3) since
S1 is a part of the positive presentation of a linearly-
moded program, [t] ≤ [s] holds.
However, the clauses returned by Non-rec for input
S2 need not cover all the examples in S2 as shown
by the following example. In fact, this is expected, as
Non-rec only generates unit clauses or clauses with
just built-in atoms in the body, while most of the
problems need recursive clauses.

Example 4 Let us consider inference of a program del
for deleting all the occurrence of a given element from a
list. The relevant mode/type annotation is del(in:List,
in:Item; out:List). The patterns to consider are:
del([], Y; Zs) and del([X|Xs], Y; Zs).

Consider the invocation of Generate with exam-
ples: del([], 1; []), del([], 2; []),
del([1], 1; []), del([2], 1; [2]),
del([2,1], 1;, [2]), del([1,2], 1; [2]),
del([1,2,3], 1; [2,3]), del([1,2,1], 1; [2]).
From the first pattern and examples del([], 1;
[]), del([], 2; []), we get a unit clause

del([], Y; [])←.

Consider step 2 now. Only msg’s to be consid-
ered by Non-rec(S2) are del([X|Xs], X; Xs), del([X|Xs], X;
[X|Xs]), del([X|Xs], Y; Xs) and del([X|Xs], Y; [Y|Xs]).
There are incompatible examples with each of the unit
clauses suggested by these msg’s and no sequence of built-
in atoms help. Hence step 2 does not generate any clause
and S3 = S2.

Consider step 3 now. Unlike step 2, step 3 consid-
ers the unique msg of S3 without any restriction.

That msg is del([X|Xs], Y; Zs) and the considered re-
cursive clause is del([X|Xs], Y; Zs) ← del(Xs, Y; Z1s).
The set of tuples T is {〈[1], 1, [], []〉, 〈[2], 1, [], [2]〉,
〈[2, 1], 1, [], [2]〉, 〈[1, 2], 1, [2], [2])〉, 〈[1, 2, 3], 1, [2, 3], [2, 3]〉,
〈[1, 2, 1], 1, [2], [2]〉}. Now, T2 contains 2 msg’s
〈[X|Xs], X, Z1s, Z1s〉 and 〈[X|Xs], Y, Z1s, [X|Z1s]〉
and we get the following two recursive clauses after
adding apprpriate built-in atoms.

del([X|Xs], X; Z1s)← del(Xs, X; Z1s)
del([X|Xs], Y; [X|Z1s])← X 6= Y, del(Xs, Y; Z1s)

and inference algorithm does not invoke Generate
hereafter as this program is consistent with each example
in any positive presentation of del.

The following example illustrates the addition of an
auxiliary predicate by Generate.

Example 5 Let us consider inference of a program for
reverse with mode/type annotations rev(in : List; out :
List). The two patterns to consider are rev([]; Ys) and
rev([X|Xs]; Ys).

Consider the invocation of Generate with exam-
ples: rev([]; []), rev([a]; [a]), rev([b]; [b]), rev([a, a];
[a, a]), rev([a, b]; [b, a]). Step 1 generates the unit clause
rev([]; []) ← from the first example and step 2 does not
add any clauses as in the above Example.

Step 3 computes the msg, rev([X|Xs]; [Y|Ys]) of S3
and considers the following one-recursive clause:
rev([X|Xs]; [Y|Ys]) ← p(Xs; Zs). The set of tuples T is
{〈[a], [], [a]〉, 〈[b], [], [b]〉, 〈[a, a], [a], [a, a]〉, 〈[a, b], [b], [b, a]〉}.
There is no set T2 of msg’s covering all the tuples in T
to relate the output terms [Y|Ys] and Zs and hence Step
Aux is executed.

Conditions 1, 2 and 3 force us to consider q(Zs, [X]; [Y|Ys]).
In particular, condition 1 forces us to use [X] rather than
X. Now the examples for Auxiliary predicate q are T4 =
{q([], [a]; [a]), q([], [b]; [b]), q([a], [a]; [a, a]), q([b], [a]; [b, a])}.
From these examples, Generate(T4) generates the
clauses:

q([], Ys; Ys)←
q([X|Xs], Ys; [X|Zs])← q(Xs, Ys; Zs)

which are nothing but the clauses of append. The
recursive clause added for rev is

rev([X|Xs]; [Y|Ys])← rev(Xs; Zs), q(Zs, [X]; [Y|Ys]).
In the post processing, this clause will be rewritten to

rev([X|Xs]; Z)← rev(Xs; Zs), q(Zs, [X]; Z)
replacing the term [Y|Ys] by Z in both the head and body.

The following example is to illustrate that the algo-
rithm learns predicates without any output position
as well.

Example 6 The algorithm considers two patterns
list([]) and list([H|L]) and generates the following two
clauses

list([])←
list([H|L])← list(L)

in learning a predicate list which checks whether a given
term is a list or not.

The following theorem establishes correctness of our
algorithm.

Learning Recursive Prolog Programs with Local Variables from Examples

Theorem 2 The above procedure Infer-one-

recursive

1. only generates one-recursive programs which are
consistent with the examples read so far (consis-
tent),

2. changes its guess only when the most recently read
example is not consistent with the current guess
(conservative) and

3. updates its guess in polynomial time in the size of
the current sample of examples read so far (poly-
nomial time updates).

In view of the notorious difficulty in learning recursive
clauses mentioned often in the literature, we explain
the main reasons for polynomial time complexity of
our algorithm. After reading each example, the algo-
rithm checks whether this new example is consistent
with the current program. This consistency check can
be done in polynomial time as (1) the leftmost argu-
ment of a recursive call is a proper subterm of the
leftmost argument of the caller, (2) the sum of the
sizes of the leftmost arguments of all the recursive
calls (in the body of the clause) is at most the size
of the leftmost argument of the caller (head of the
clause) and (3) the sum of the sizes of input terms of
the auxiliary predicate is bounded by the sum of the
sizes of input terms of the head. In fact, the sum of the
sizes of input terms of atoms in any SLD-derivation
of a linear-moded program-query pair is bounded by
the sum of the sizes of input terms of the query. Fur-
ther, by enforcing the discipline that the leftmost ar-
guments of all the recursive atoms in the body are re-
cursive subterms of the leftmost argument of the body
and the terms in the clauses are either variables, con-
stants or the first two generic-expressions of the an-
notated types, we drastically reduce the search space
for recursive clauses. This is in sharp contrast to the
fact that most of the learning algorithms in the liter-
ature spend a lot of time in searching for a suitable
recursive clause. The above discipline is encouraged
in the programming methodologies advocated by Dev-
ille [9] and Sterling and Shapiro [33]. Only notable
exception is the even program for checking whether
a given natural number is even or not, which has a
clause even(s(s(X)) ← even(X) with a term s(s(X))
that is not among the first two generic-expressions of
the type Nat. We can relax our restriction to cover
this program by allowing terms of depth more than 2,
but then the algorithm will become a bit inefficient.
These decisions should be postponed to the implemen-
tation time.

6. Conclusion

In this paper, we approach the problem of learn-
ing logic programs from a programming methodology
point of view and propose an algorithm to learn a
class of Prolog programs, that use divide-and-conquer
methodology. This class of programs is very natural
and rich and contains many programs from chapter
3 (on recursive programs) of Sterling and Shapiro’s
standard book on Prolog [33]. This indicates that our
algorithm will be successful in practical situations as
the underlying class of programs is very natural.

We believe that our results can be extended in the
following two directions: (1) to consider predicates
that have more than one recursive arguments (we call
such programs, k-recursive programs) and (2) to cover
the programs which uses divide-and-conquer approach
but splits the input using a specific (to that data type)
splitting algorithm rather than the splitting suggested
by the recursive structure of the data type. For ex-
ample, splitting a list into two lists of almost equal
length. This can be done when we are looking for
learning algorithms that work on a particular (fixed)
data type. Further investigations are needed in these
directions.

References

[1] D. Angluin (1980), Inductive inference of formal lan-
guages from positive data, Information and Control
45, pp. 117-135.

[2] K.R. Apt and A. Pellegrini (1992), Why the occur-
check is not a problem, Proc. of PLILP’92, LNCS
681, pp. 69-86.

[3] H. Arimura and T. Shinohara (1994), Inductive infer-
ence of Prolog programs with linear data dependency
from positive data, Proc. Information Modelling and
Knowledge Bases V, pp. 365-375, IOS press.

[4] H. Arimura, H. Ishizaka and T. Shinohara (1992),
Polynomial time inference of a subclass of context-
free transformations, Proc. Computational Learning
Theory, COLT’92, pp. 136-143.

[5] L. Blum and M. Blum (1975), Towards a mathemat-
ical theory of inductive inference, Information and
Control 28, pp. 125-155.

[6] F. Bronsard, T.K. Lakshman and U.S. Reddy
(1992), A framework of directionality for proving ter-
mination of logic programs, Proc. Joint Intl. Conf.
and Symp. on Logic Prog., JICSLP’92, pp. 321-335

[7] W.W. Cohen (1995a), Pac-learning recursive logic
programs: efficient algorithms, Journal of Artificial
Intelligence Research 2, pp. 501-539.

[8] W.W. Cohen (1995b), Pac-learning recursive logic
programs: negative results, Journal of Artificial In-
telligence Research 2, pp. 541-573.

Learning Recursive Prolog Programs with Local Variables from Examples

[9] Y. Deville (1990), Logic Programming: Systematic
Program Development, Addison Wesley.

[10] S. Dzeroski, S. Muggleton and S. Russel (1992), PAC-
learnability of determinate logic programs, Proc. of
COLT’92, pp. 128-135.

[11] M. Frazier and C.D. Page (1993), Learnability in in-
ductive logic programming: some results and tech-
niques, Proc. of AAAI’93, pp. 93-98.

[12] E.M. Gold (1967), Language identification in the
limit, Information and Control 10, pp. 447-474.

[13] P. Idestam-Almquist (1993), Generalization under
Implication by Recursive Anti-unification, Proc. of
ICML’93.

[14] P. Idestam-Almquist (1996), Efficient induction of re-
cursive definitions by structural analysis of satura-
tions, pp. 192-205 in L. De Raedt (ed.), Advances
in inductive logic programming, IOS Press.

[15] J.-U. Kietz (1993), A Comparative Study of Struc-
tural Most Specific Generalizations Used in Machine
Learning, Proc. Workshop on Inductive Logic Pro-
gramming, ILP’93, pp. 149-164.

[16] J.-U. Kietz and S Dzeroski (1994), Inductive logic pro-
gramming and learnability, SIGART Bull. 5, pp. 22-
32.

[17] M.R.K. Krishna Rao, D. Kapur and R.K. Shyama-
sundar (1997), A Transformational methodology for
proving termination of logic programs, The Journal
of Logic Programming 34, pp. 1-41.

[18] M.R.K. Krishna Rao (2001), Some classes of Pro-
log programs inferable from positive data, Theoretical
Computer Science 241, pp. 211-234.

[19] S. Lapointe and S. Matwin (1992), Sub-unification:
a tool for efficient induction of recursive programs,
Proc. of ICML’92, pp. 273-281.

[20] N. Lavrac, S. Dzeroski and M. Grobelnik (1991),
Learning nonrecursive definitions of relations with LI-
NUS, Proc. European working session on learning,
pp. 265-81, Springer-Verlag.

[21] J. W. Lloyd (1987), Foundations of Logic Program-
ming, Springer-Verlag.

[22] S. Miyano, A. Shinohara and T. Shinohara (1991),
Which classes of elementary formal systems are
polynomial-time learnable?, Proc. of ALT’91, pp. 139-
150.

[23] S. Miyano, A. Shinohara and T. Shinohara (1993),
Learning elementary formal systems and an appli-
cation to discovering motifs in proteins, Tech. Rep.
RIFIS-TR-CS-37, Kyushu University.

[24] S. Muggleton and L. De Raedt (1994), Inductive logic
programming: theory and methods, J. Logic Prog.
19/20, pp. 629-679.

[25] S. Muggleton (1995), Inverting entailment and Pro-
gol, in Machine Intelligence 14, pp. 133-188.

[26] G. Plotkin (1970), A note on inductive generalization,
in Meltzer and Mitchie, Machine Intelligence 5, pp.
153-163.

[27] L. Plümer (1990), Termination proofs for logic pro-
grams, Ph. D. thesis, University of Dortmund, Also
appears as Lecture Notes in Computer Science 446,
Springer-Verlag.

[28] J.R. Quinlan and R.M. Cameron-Jones (1995), In-
duction of logic programs: foil and related systems,
New Generation Computing 13, pp. 287-312.

[29] Y. Sakakibara (1990), Inductive inference of logic pro-
grams based on algebraic semantics, New Generation
Computing 7, pp. 365-380.

[30] E. Shapiro (1981), Inductive inference of theories
from facts, Tech. Rep., Yale Univ.

[31] E. Shapiro (1983), Algorithmic Program Debugging,
MIT Press.

[32] T. Shinohara (1991), Inductive inference of mono-
tonic formal systems from positive data, New Gen-
eration Computing 8, pp. 371-384.

[33] L. Sterling and E. Shapiro (1994), The Art of Prolog,
MIT Press.

[34] J.D. Ullman and A. van Gelder (1988), Efficient tests
for top-Down termination of logical rules, JACM 35,
pp. 345-373.

[35] A. Yamamoto (1993), Generalized unification as back-
ground knowledge in learning logic programs, Proc. of
ALT’93, LNCS 744, pp. 111-122.

