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Abstract

Record and Deterministic Replay (RnR) of multithreaded

programs on relaxed-consistency multiprocessors has been a

long-standing problem. While there are designs that work for

Total Store Ordering (TSO), finding a general solution that is

able to record the access reordering allowed by any relaxed-

consistency model has proved challenging.

This paper presents the first complete solution for hard-

ware-assisted memory race recording that works for any

relaxed-consistency model of current processors. With the

scheme, called RelaxReplay, we can build an RnR system

for any relaxed-consistency model and coherence protocol.

RelaxReplay’s core innovation is a new way of capturing

memory access reordering. Each memory instruction goes

through a post-completion in-order counting step that detects

any reordering, and efficiently records it. We evaluate Re-

laxReplay with simulations of an 8-core release-consistent

multicore running SPLASH-2 programs. We observe that

RelaxReplay induces negligible overhead during recording.

In addition, the average size of the log produced is compa-

rable to the log sizes reported for existing solutions, and still

very small compared to the memory bandwidth of modern

machines. Finally, deterministic replay is efficient and needs

minimal hardware support.

Categories and Subject Descriptors C.1.2 [Processor Ar-

chitectures]: Multiple Data Stream Architectures (Multipro-

cessors) - MIMD Processors; D.1.3 [Programming Tech-

niques]: Concurrent Programming - Parallel Programming

Keywords Memory Race Recording, Record and Determin-

istic Replay, Relaxed Consistency

1. Introduction

Record and Deterministic Replay (RnR) of multithreaded

programs in multiprocessors is a concept that involves log-
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ging enough of a parallel execution to be able to replay it

later deterministically. RnR has broad uses in parallel pro-

gram debugging [1, 13, 29], security analysis [8, 11, 12],

and fault-tolerant, highly-available systems [5, 7]. RnR for

a program typically requires logging two sources of non-

determinism during execution, namely, external inputs to the

program (e.g., results of system calls) and the interleaving

of shared-memory accesses from different processors. The

latter consists of capturing the relative order of conflicting

memory accesses. Hence, it is called Memory Race Record-

ing (MRR).

While input recording is done by the Operating System

(OS), MRR typically requires special hardware. This is be-

cause inserting software instrumentation for MRR (e.g., [16,

22, 32]) results in significant execution slow down or in-

creases the number of processors required. In addition, all

these schemes distort the timing of execution, which can

be a drawback in concurrency debugging. Finally, they re-

quire modifying the binary of the program to be recorded.

For these reasons, there are several proposals for hardware-

assisted MRR (e.g., [3, 6, 9, 10, 15, 17–21, 23–25, 27, 33, 35,

36]). These schemes typically identify conflicting accesses

by leveraging cache coherence protocol transactions. Most

recent proposals record a processor’s execution as a series

of Chunks (or Blocks or Episodes) of instructions executed

between coherence actions with other processors. This ap-

proach results in low recording overhead and small logs.

The majority of current proposals for hardware-assisted

MRR require that the recorded execution obeys Sequential

Consistency (SC) [14]. Under SC, memory-access instruc-

tions execute in program order, which substantially simplifies

what events need to be logged and when. Unfortunately, com-

mercial machines almost universally use more relaxed mem-

ory consistency models, allowing loads and stores to reorder.

Recording such execution is especially challenging.

There have been a few proposals for MRR under non-SC

models. All but one of them require the Total Store Order-

ing (TSO) memory model [3, 6, 10, 17, 24, 25, 36], which

only allows loads to bypass stores. Such proposals either log

which stores are bypassed [24, 25], or log the values read

by the bypassing loads [3, 6, 10, 36], or use off-line analy-

sis to identify the actual order that occurred [17]. The other

proposal, called Rainbow [27], focuses on detecting SC vi-

olations as they happen, and recording enough information



to replay them. However, this scheme requires a coherence

protocol that is centralized and that needs substantial hard-

ware changes. Moreover, the operation of the scheme’s major

components is not clearly described in the paper. All these

schemes are discussed in detail in Section 6. Overall, the

long-standing problem of finding a general MRR solution

that works for any relaxed-consistency model (such as that

of ARM [2], Power [26] or Tile [30] processors) is still open.

This paper contributes with the first complete solution

for hardware-assisted MRR that works for any relaxed-

consistency model of current processors. With the scheme,

called RelaxReplay, we can build an RnR system that works

for any relaxed-consistency model and any cache coher-

ence protocol. RelaxReplay’s key innovation is a new ap-

proach to capture memory access reordering. Specifically,

each memory instruction goes through a post-completion

in-order counting step that detects any reordering, and ef-

ficiently records it in the log. We present two designs, called

RelaxReplay Base and RelaxReplay Opt, with different em-

phases on hardware requirements, log size, and replay speed.

Several salient characteristics of the RelaxReplay mecha-

nism to capture memory access reordering are:

• It only relies on the write atomicity property of coherence

protocols, and not on knowing the detailed specifications of

the particular relaxed-consistency model. Such specifications

are often high-level and hard to map to implementation is-

sues.

• It can be combined with the specific chunk-ordering algo-

rithm of any existing chunk-based MRR proposal. As a result,

that proposal, designed for a certain coherence protocol, can

now record relaxed-consistency executions.

• It has modest hardware requirements. Its hardware is local

to the processors and requires no change to the cache coher-

ence protocol.

• It produces a compact log representation of a relaxed-

consistency execution.

• The resulting log enables efficient deterministic replay with

minimal hardware support.

We evaluate RelaxReplay with simulations of an 8-core

Release-Consistent (RC) multicore running SPLASH-2 ap-

plications. The results show that RelaxReplay induces neg-

ligible overhead during recording. In addition, the average

size of the log produced is 1–4x the log sizes reported by

existing SC- or TSO-based MRR systems. Hence, the band-

width required to save this log is still a small fraction of the

bandwidth provided by current machines. Finally, determin-

istic replay using this log is efficient: the sequential replay of

these 8-processor executions with minimal hardware support

takes on average 6.7x as long as the parallel recording.

This paper is organized as follows: Section 2 provides a

background; Sections 3 and 4 presents RelaxReplay’s de-

sign and implementation, respectively; Section 5 evaluates

RelaxReplay and Section 6 discusses related work.

2. Background on Chunk-Based Recording

State-of-the-art proposals for hardware-assisted MRR record

each processor’s execution as a series of Chunks (also called

Blocks or Episodes) of instructions executed between com-

munications with other processors [3, 9, 10, 18, 19, 23–

25, 33]. The chunks of different processors are ordered in

a graph based on inter-processor data dependences. A typical

chunk-based recorder provides three main functionalities: (1)

establishes chunk boundaries such that each chunk’s execu-

tion appears atomic, (2) establishes a proper order between

chunks that captures all data dependences (to ensure correct

replay) and has no cycles (to avoid replay deadlocks), and (3)

represents chunks in the log in an efficient format.

Chunk boundaries are set at points where the executing

processor communicates with other processors. Chunk-based

recorders usually keep track of the read and write operations

performed by the instructions of the current chunk. Often, the

addresses of these operations are hashed in Bloom filters [4]

and stored as read and write signatures. At the same time, the

hardware checks for cache-coherence transactions that con-

flict with the read or write set of the current chunk. When one

does, we have detected an inter-processor data dependence.

Then, in simple designs, the current chunk is terminated and

a new chunk starts. There are optimizations that allow chunks

to grow beyond the conflicts.

Chunk-based recorders must ensure that the chunk con-

taining the source of a dependence is ordered before the

chunk containing the destination of it. For this, some schemes

piggyback ordering information on coherence messages

(e.g., [10, 33]) or add new messages [23]. Specifically, when

an incoming coherence request conflicts with the local chunk,

the global order of the local chunk is sent to the requesting

processor (or broadcasted to all processors in [23]), so that

its chunk orders itself after the local one. Alternatively, other

schemes rely on a globally-consistent clock (e.g., [9, 24, 25])

that is available to all processors to establish chunk order-

ing. In both cases, by replaying the chunks according to their

global order, all data dependences will be enforced.

Chunk-based recorders log chunks in a very efficient for-

mat. Specifically, a chunk is represented as the number of

instructions (or memory operations) performed in the chunk,

together with the recorded global ordering of the chunk.

2.1 Advantages of Chunk-Based Recording

Chunk-based recorders have at least three advantages over

non chunked-based ones that have made them popular.

Firstly, their operation lends itself to a relatively simpler hard-

ware implementation in the cache hierarchy, while still gen-

erating small log sizes. Secondly, they support application-

level RnR especially well because their recording hardware

can be easily virtualized [9, 19, 25] and shared by multiple

independent applications.

A third advantage is that the resulting logs can be effi-

ciently replayed with minimal hardware support [9]. Specif-



ically, all that they need is a counter that counts the number

of instructions (or memory-access instructions) executed, and

then triggers a synchronous interrupt when the number of in-

structions in the chunk are exhausted. In this way, instructions

can be replayed natively by the hardware rather than being

simulated by an instruction simulator. At the same time, a

simple software module can enforce the recorded chunk or-

der [9]. This combined hardware/software solution enables

efficient native replay. Moreover, with the appropriate design,

the resulting logs can be replayed in parallel [3, 9], and de-

liver fast replay.

2.2 Main Limitation: Access Reordering

In its basic form, chunk-based recording (as well as non

chunk-based one) relies on the assumption that processors ex-

pose their memory operations to the coherence subsystem in

program order, providing a sequentially-consistent environ-

ment [14]. Hence, any execution that violates SC cannot be

captured by these recorders.

Unfortunately, commercial machines almost universally

use more relaxed memory models, allowing loads and stores

to perform out of program order. For example, to show how

aggressive modern processors are, Figure 1 shows the frac-

tion of memory-access instructions that are performed out of

program order — i.e., with some earlier memory instructions

still pending. The details of the experiment are discussed in

Section 5.1. Of all the memory instructions, on average, 59%

are out-of-order loads and 3% are out-of-order stores.
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Figure 1. Fraction of all the memory-access instructions that

are performed out of program order.

To begin to address this problem, there have been a few

proposals for MRR under non-SC models. As indicated in

Section 1 and discussed in Section 6, however, these pro-

posals address only a conservative memory model (TSO), or

are otherwise limited. To help popularize RnR, we need to

find a general solution for MRR that works for any of the

relaxed-consistency models used in current processors (such

as ARM [2], Power [26] or Tile [30]). The rest of this paper

presents a solution to this problem that is compatible with the

use of chunk-based recording.

3. RelaxReplay Design

3.1 Concept of Interval

To understand RelaxReplay, we define the concepts of per-

forming and counting a memory-access instruction, and the

notion of an Interval. A load instruction performs when the

data loaded returns from the memory system and is deposited

into a register. Later, the load retires when it reaches the head

of the Reorder Buffer (ROB) and has already performed. A

store instruction retires when it reaches the head of the ROB

and its address and data are available. At this point, the store

is deposited into the write buffer. Depending on the memory

consistency model, the store can be merged with the mem-

ory system right away, or has to wait to do so until all earlier

stores have been removed from the write buffer. Merging may

trigger a coherence transaction. When the coherence transac-

tion terminates (i.e., when all the necessary replies and ac-

knowledgments have been received), the store has performed.

Finally, in RelaxReplay, each retired load and each performed

store in the processor goes through an additional logical stage

in program order that we call Counting. Counting records the

completion of the instruction in program order. Hence, each

memory-access instruction has a Perform event and a Count-

ing event.

An Interval in the execution of a processor is the period

of time between two consecutive communications of the pro-

cessor with other processors. An interval has a Perform Set

and a Counting Set. These are the sets of perform and count-

ing events, respectively, that took place in the processor dur-

ing the interval. The set of perform events in an interval

may correspond to memory-access instructions that are not

contiguous in program order. This is because, in a relaxed-

consistency machine, accesses can perform out of order. This

is in contrast to the instructions of a chunk in a conven-

tional chunk-based recorder, which are required to be con-

tiguous. However, the set of counting events in the interval do

correspond to consecutive memory-access instructions, since

counting is done in program order.

3.2 Main Idea in RelaxReplay

In an RnR environment that supports general relaxed consis-

tency models, working with chunks of contiguous instruc-

tions, as in conventional chunk-based recorders, is incon-

venient. Instead, we propose to use the interval abstraction,

which directly corresponds to the work performed between

communications. To show the usability of intervals, we make

two observations.

Observation 1: In memory-consistency models that sup-

port write atomicity, the perform event of a given access

can only be placed in a single interval.

The property of write atomicity means that a write oper-

ation by a processor can be observed by another processor

only if it has been made visible to all other processors, and

that writes to the same location are serialized [28]. This prop-



erty, which is typically enforced by the coherence substrate,

is provided by all the popular multiprocessor systems in use

today. It implies that the execution of a memory access can be

thought of as atomic, and can only be placed in a single inter-

val, namely the one where the access performs. As a result,

we can record the execution of a processor as a sequence of

intervals, where each access is assigned to the interval where

it performs.

Unfortunately, representing an interval as a set of perform

events is inefficient. Indeed, since memory instructions are

performed out of program order, we would have to record

the complete list of such events. To reduce the state we need

to log, it is better to record the interval as a set of counting

events (which can be efficiently represented as a range of

consecutive in-order memory instructions) plus some reorder

information. A second observation allows us to keep this

additional reorder information that we need to record to a

minimum.

Observation 2: For the large majority of memory-access

instructions, we can logically move the perform event

forward in time to coincide with its counting event.

Given a memory-access instruction by a processor (P1),

we can logically move its perform event forward in time to

coincide with its counting event if no other processor (Pj)

has observed the access between the two points in time. Pj

observes the access if it issues a conflicting access to the same

(line) address that causes a coherence transaction that reaches

P1 between the two points. By “moving”, we mean that, as

far as the other processors are concerned, the instruction can

be assumed to have performed at the point of its counting.

Since the access has not yet been observed by any other

processor, this assumption will not affect any of the inter-

processor dependences and, therefore, is correct. Fortunately,

in practice, the large majority of accesses are not observed

between the two events.

As an example, Figure 2(a) shows a store (ST) and a load

instruction (LD) from a processor in program order, and their

perform (P) and counting (C) event times. It also shows the

time when an external communication occurs and, therefore,

the interval terminates. In the figure, the perform events are in

order. Figure 2(b) shows the case when the perform events are

out of order. In both cases, each perform event happens in the

same interval as its corresponding counting event and, thus,

can be trivially moved to its counting time. Therefore, in both

cases, we can concisely represent this interval as including

the two accesses in program order.

In Figure 2(c), the load has its perform and counting

events in two different intervals. In this paper, we present

two version of RelaxReplay, depending on how we deal with

this case. In a base design with simpler hardware, called Re-

laxReplay Base, the perform event is never moved across

intervals to its counting event; in an optimized design with

more hardware, called RelaxReplay Opt, the perform event

is still moved across intervals to its counting event if none of

Figure 2. Examples of a two-instruction pattern with differ-

ent timings for their perform (P) and counting (C) events.

the coherence transactions received between the two events

conflicts with the (line) address of the access.

If RelaxReplay is able to move all the perform events to

their counting events, each interval is concisely logged as

comprising a certain number of accesses in program order

— irrespective of the actual access reordering that occurred

during recording due to the relaxed consistency model. Oth-

erwise, the log entry for an interval also includes additional

information on what accesses were counted in the interval but

were out of order. We will discuss the exact representation

later. Since, for the large majority of accesses, RelaxReplay

is able to move the perform events to the counting events, the

RnR log of intervals is both stored and replayed efficiently.

Overall, RelaxReplay is able to record an execution un-

der any memory consistency model with write atomicity, and

store it in a log for efficient deterministic replay. RelaxRe-

play relies on hardware that tracks the perform and count-

ing events of each memory access and, while watching for

conflicting accesses from other processors, tries to combine

them before storing a compact representation of intervals in

the log.

Note that RelaxReplay’s goal is to record intervals. For a

full MRR solution, we also need a mechanism to establish

a proper order between intervals of different processors. For

this, we can use any of the existing chunk-based recording

schemes. Such schemes now use coherence messages and

read/write signatures to establish a proper order between

intervals rather than chunks.

Next, we describe the architecture that processes perform

and counting events, how it handles store-to-load forwarding,

and how we replay a RelaxReplay log.

3.3 Tracking Instruction Events in RelaxReplay

Intuitively, the RelaxReplay architecture requires a longer

ROB that keeps each memory-access instruction in the pro-

cessor beyond retirement, and until it is ready to be counted.

At that point, if the instruction’s perform event can be moved

to its counting event, the instruction is included in the cur-

rent interval as an in-order access, and logged as such. Oth-

erwise, the instruction is included in the current interval as a

reordered access, with enough state added to the log so that it

can be correctly replayed.

In practice, rather than enlarging the ROB, RelaxReplay

adds a hardware structure to the processor that works in

parallel with the ROB for memory-access instructions. The

structure is a circular FIFO called Tracking Queue (TRAQ)



(Figure 3). As a memory-access instruction is inserted in

the ROB, it is also inserted in the TRAQ. A memory-access

instruction is removed from the TRAQ when it is at the head

of the TRAQ and is ready to be counted — i.e., for a load,

it is performed and retired, and for a store, it is retired and

performed. At that point, the instruction is counted and added

to the log record for the interval. Note that the TRAQ can

contain both non-retired and retired accesses. The ROB-like

structure of the TRAQ enables RelaxReplay to handle the

squashing of speculative instructions easily, as we explain in

Section 4.

Figure 3. High-level architecture of RelaxReplay.

RelaxReplay keeps in a register the ID of the interval that

is currently being processed at the head of the TRAQ. This

ID is a counter called Current Interval Sequence Number

(CISN) (Figure 3). Every time the processor communicates

with another processor, the current interval is terminated,

its information is stored in the memory log, the CISN is

incremented, and a new interval starts.

The fundamental operation of the RelaxReplay hardware

is simple. When a memory-access instruction is performed,

the current value of the CISN is copied to the instruction’s

TRAQ entry. It is stored in a field called Performance Interval

Sequence Number (PISN). When the instruction reaches the

TRAQ head and is counted, its PISN is compared to the

CISN. At this point, there are several possible outcomes.

First, if the two values are the same, the interval has not

changed since the perform event. Hence, RelaxReplay log-

ically assumes that the memory-access instruction performs

at the point of counting. In this case, RelaxReplay simply

increments the count of consecutive memory-access instruc-

tions that have executed in this interval. Such count will be

included in the log record for the interval that will be stored

to memory when the interval terminates. An example of this

case is shown in Figure 4(a), which depicts a load that per-

forms and is counted in interval 10, and whose perform point

is logically moved by RelaxReplay to its counting point.

Second, if the PISN and CISN are different, the inter-

val has changed because the processor has communicated

between the perform and counting events. In RelaxRe-

play Base, we process the access as reordered, as we will

see later. In RelaxReplay Opt, the hardware checks if the ac-

cess is indeed reordered by comparing its (line) address to the

(line) addresses of all the coherence transactions that the pro-

cessor received since the PISN interval. Such addresses are

collected in hardware in a structure called Snoop Table (Fig-

ure 3). This structure is only present in RelaxReplay Opt,

and is described in detail in Section 4.2.

If the comparison shows that no transaction conflicting

with that address has been received, then RelaxReplay logi-

cally assumes that the memory-access instruction performs at

this point, as in the first case. As before, RelaxReplay incre-

ments the count of consecutive memory-access instructions

that have executed in this interval. An example is shown in

Figure 4(b), which depicts a load that performs in interval

10 and is counted in 12. Since the processor has received no

transaction that conflicts with this address in the meantime,

the perform point is logically moved.

However, if the comparison finds that a conflicting trans-

action has been received, or the machine only supports Re-

laxReplay Base, then the hardware records a reordered ac-

cess. The following sections describe the cases of a reordered

load and a reordered store separately.

3.3.1 Reordered Loads

To be able to record reordered loads, RelaxReplay needs to

retain the values that loads obtain as they perform, until the

loads’ counting time. Such values are stored in the corre-

sponding TRAQ entries, as part of what Figure 3 refers to

as Other.

When RelaxReplay counts a load and finds that it is

reordered, it does not increment the count of consecutive

memory-access instructions executed in this interval. Instead,

it adds a special type of entry in the log record for the inter-

val. The entry contains the value that was returned by the

load as it performed (and was retained in the TRAQ). Later,

when the execution is deterministically replayed, the value

is read from the log and supplied to the destination register

of the load. In this way, the replay of the load in program

order can correctly reproduce what happened in the recorded

execution out of program order. If, instead, during the replay,

the load tried to access the memory system as it replayed, it

might read an incorrect value. Note that any consumers of the

load, as they are replayed in program order, will obtain the

correct value. Xu et al. [36] used this approach of recording

the values returned by out-of-order loads in the log for TSO

machines.

An example is shown in Figure 4(c). A load performs in

interval 10, and the processor later receives a coherence event

that conflicts with the loaded address. The load is counted in

interval 12. RelaxReplay then takes the value read by the load

and stores it in the log record for interval 12.

3.3.2 Reordered Stores

To be able to record reordered stores, RelaxReplay needs to

retain the values they write and the addresses they write to,

until the writes’ counting time. Such values are saved in the

TRAQ entries as part of the Other fields.



Figure 4. Examples of RelaxReplay operation with perform (P) and counting (C) events.

When RelaxReplay counts a store and declares it re-

ordered, it does not increment the count of consecutive in-

structions executed in this interval. Instead, it adds another

special type of entry in the log record for the interval. The

entry contains the address written to, the value written, and

the difference between CISN and the value of PISN in the

store’s TRAQ entry. We call this difference Offset; it denotes

how many intervals ago the store performed.

Before this log can be used for deterministic replay, this

entry needs to be extracted from this interval’s record and

inserted in the record of an earlier interval — specifically, at

the end of the interval that is Offset positions earlier, which is

the interval when the store performed. In the interval where

the store is counted, we leave a dummy entry so that the store

is not re-executed there. This “patching” step can be done as

an off-line pass or on the fly as the log is read for replay.

After this change is made, the log is ready for replay. The

store entry is found in the interval when it was performed, and

the log contains the value to store and the address to store to.

The store is thus executed, exactly reproducing the conditions

in the recorded execution. In the interval where the store was

counted, the store instruction is skipped (as indicated by the

dummy entry mentioned above).

Figure 4(d) shows an example of a store that performs at

interval 10, and the processor later receives a conflicting co-

herence event. The store is counted in interval 12. RelaxRe-

play then takes the value and address from the TRAQ and,

together with an offset of 2, stores them in the log record for

interval 12.

3.3.3 Example

To understand the format of the log record for an interval,

Figure 4(e) shows the more extensive example of an interval

that counts 8 memory-access instructions. Of these, i1, i2, i4,

i5, i7, and i8 both perform and are counted in interval 15.

However there is a load (LD) and a store (ST) that perform in

interval 10 and are counted in interval 15. Assume that none

of the communications between intervals 10 and 15 conflict

with the addresses accessed by LD or ST.

If we use RelaxReplay Base, the hardware does not know

that there is no conflict and assumes that LD and ST are

reordered. Hence, as shown in Figure 4(e), as it counts LD, it

reads the value that LD loaded and saves it in the log record.

As it counts ST, it reads the value that ST stored and the

address it stored to, computes the offset of 5, and saves the

three values in the log record.

Figure 4(f) shows the resulting log record for interval 15.

It contains several entries, which are inserted in order as

instructions are counted in order. As i1 and i2 are counted,

they increment the counter of consecutive instructions that

have executed in this interval. As RelaxReplay reaches LD

and finds it reordered, it saves the counter in an entry of type

InorderBlock, and resets the counter. This means that there is

a group of 2 in-order instructions executed. Then, it records

an entry of type ReorderedLoad with the value of the load.

This means that the next instruction in program order is a

reordered load. Then, for instructions i3 and i4, RelaxReplay

records another entry of type InorderBlock with size 2. Then,

RelaxReplay records an entry of type ReorderedStore for ST,

with its address, value, and offset. This entry signifies that the

next instruction in program order is a reordered store. Finally,

RelaxReplay stores another entry of type InorderBlock with

size 2 for i7 and i8. This information is enough for the

deterministic replay of these instructions. As will be seen

later, this log format enables efficient replay.

Figure 4(g) shows the log for the same interval using Re-

laxReplay Opt. Since RelaxReplay Opt discovers that none

of the intervening coherence transactions conflicts with the

addresses of LD or ST, it records LD and ST as in-order ac-

cesses. In general, since the number of truly reordered ac-

cesses is very small, this log format is often very compact.



More details of the hardware and logging are presented

in Section 4. In particular, the InorderBlock entries count the

number of total instructions in order, not just memory-access

instructions. This design eases replay.

3.4 Handling Store-to-Load Forwarding

Modern superscalar processors typically allow store-to-load

forwarding, whereby a load gets its value from an older store

of the same processor that is pending in the write buffer. Such

a load is not serviced off the coherent memory; it obtains its

value from the non-coherent write buffer. In this section we

show that RelaxReplay correctly records such loads.

Figure 5 shows the timing of a forwarding instance, where

a load (LD) obtains its value from an older store (ST). Fol-

lowing RelaxReplay’s operation, LD performs as soon as it

gets the forwarded data, before ST merges with the memory

system and performs. Later, ST is counted and LD is counted.

Figure 5. Timing of store-to-load forwarding.

RelaxReplay seamlessly supports this case. Since LD gets

its value from ST, we can assume it logically performs at the

same time as ST. Thus, in order to correctly record LD, we

only need to monitor conflicting accesses between ST’s per-

form event and LD’s counting event (Period 1 in Figure 5).

However, this period is properly contained between LD’s per-

form and counting events (Period 2 in Figure 5). Thus, if there

is a change of interval (in RelaxReplay Base) or reception of

a conflicting coherence transaction (in RelaxReplay Opt) in

Period 2, we conservatively assume that it happened in Pe-

riod 1. In this case, the hardware saves in the log the value

obtained by LD at its perform point, and the replay system

later uses it at the counting point. Otherwise, the hardware

correctly moves LD’s perform point to its counting point. No

change to RelaxReplay is needed.

3.5 Replaying a RelaxReplay Log

The log generated by RelaxReplay is very compact and en-

ables efficient replay using only minimal hardware support.

To replay an execution, we use a module in the OS as in the

Cyrus system [9]. Specifically, during replay, the OS reads

the log of intervals and enforces the order of the intervals.

As the OS reads the record for an interval, before launch-

ing its execution, it waits until all intervals ordered before

this interval finish executing. This can be accomplished us-

ing software synchronization through condition variables or

semaphores. In addition, the OS also injects the application

inputs that were recorded in the original execution.

The log record for an interval can have three types of rel-

evant entries: InorderBlock, ReorderedLoad, and Reordered-

Store. If an InorderBlock entry is found, the OS configures a

hardware counter to generate an interrupt when the number

of executed instructions equals the size of the block. This ap-

proach, proposed in the Cyrus system, requires a synchronous

interrupt from the counter — i.e., the interrupt should be trig-

gered upon (and before) executing the first instruction after

the block. When the block is complete, the interrupt transfers

the control back to the OS. This instruction counting mecha-

nism is similar to performance counters available in modern

commercial microprocessors. It is the only hardware support

needed to replay RelaxReplay logs.

If a ReorderedLoad entry is found, the OS reads the value

from the log. It then saves it in the destination register of the

load that is part of the architectural context of the application

saved in the OS. Recall that the application context was saved

upon entering the OS and will be restored before exiting the

OS. The OS also advances the program counter, which is also

stored as part of the architectural context.

If a ReorderedStore entry is found, the OS reads the ad-

dress and value from the log and performs the memory up-

date. Recall that we are now in the interval where this store

performed, not where the store was counted. This is because

this entry was processed earlier by a “patching step” (Sec-

tion 3.3.2), which moved it from the store’s counting interval

to its perform interval. Hence, in the current interval, there

is no corresponding store instruction. Therefore, the OS does

not advance the program counter. Later, when the OS reaches

the interval where the store was counted, the OS will find the

corresponding dummy entry. At that point, the OS will take

no action beyond advancing the program counter by one.

When all the entries of the interval are processed, the OS

uses software synchronization to signal the completion of this

interval to its successors. Then, it reads the next interval from

the log. Note that the replay process is oblivious to whether

the log comes from RelaxReplay Base or RelaxReplay Opt;

both use the same log format.

3.6 Discussion

RelaxReplay can be used to convert any of the existing

chunk-based MRR schemes [3, 9, 10, 23–25, 33] to an

MRR solution for relaxed-consistency models. In this case,

as shown in Figure 7, RelaxReplay uses the chunk-ordering

mechanism of the specific MRR scheme to form and order

intervals and, then, uses the techniques outlined in this paper

to capture instruction reordering. In doing so, RelaxReplay

retains the basic properties of the original chunk-based MRR

scheme. For example, if the original scheme admits paral-

lel replay of chunks [3, 9], then the resulting interval-based

solution will admit parallel replay of intervals.

We designed RelaxReplay in a way that does not rely on

knowing the detailed requirements of a particular relaxed-

consistency memory model. RelaxReplay works for any

relaxed-consistency model as long as the coherence substrate

supports write atomicity. This is a well-established property

of current memory subsystems that is likely to hold in future

generations of processors. We chose this approach because



Figure 6. RelaxReplay architecture in detail: per-processor Memory Race Recorder (MRR) (a), TRAQ entry (b), and format of

the different entry types in an interval’s log record (c). The dashed boxes indicate the components specific to RelaxReplay Opt.

Figure 7. RelaxReplay can be paired with any chunk-based

MRR scheme.

the memory models of most commercial processors are ill

defined. In addition, new generations of processors may add

new instructions to their ISAs that use different memory

models than the older instructions. Finally, memory mod-

els are often defined in abstract, usually declarative, terms

that do not provide much intuition about the implementation

techniques used to support them.

4. Detailed Implementation Issues

4.1 Memory Race Recorder

Following previous RnR designs, we place the hardware for

recording memory races in a per-processor Memory Race

Recorder (MRR) module. This module is shown in the top

right part of Figure 6(a). It comprises two parts. On the

left side, there is the mechanism for creating and ordering

intervals, which can reuse any of the designs proposed by

existing chunk-based recorders. On the right side, there is

the mechanism to track events within intervals, which is

the proper RelaxReplay hardware. The inputs to the MRR

module are processor signals (instruction dispatch into the

ROB, instruction retirement, memory operation performed,

and pipeline squash), and memory system signals (coherence

transactions).

For the mechanism to create and order intervals, we show

a design that follows the QuickRec [25] approach. This ap-

proach records a total order of intervals based on a globally-

consistent scalar timestamp. The timestamp associated with

each interval is the cycle count of a global clock when the in-

terval was terminated. Intervals are ordered according to their

timestamps. The scheme uses a snoopy coherence protocol.

As shown in the figure, the hardware needed is a pair

of Bloom filters [4] as the read and write signatures of the

current interval, a Global Timestamp counter that counts the

number of cycles of a global clock, and a Log Buffer that au-

tomatically saves the log records. When memory operations

are performed, their line addresses are inserted into the sig-

natures. Snooped coherence transactions are checked against

the signatures; if a conflict is detected, the current interval is

terminated.

The proper RelaxReplay hardware is on the right side, and

records the events within an interval. It comprises the TRAQ,

the Current Interval Sequence Number (CISN), the Current

InorderBlock Size count, and the Snoop Table. The latter

is only needed in RelaxReplay Opt and will be discussed

later. The Current InorderBlock Size count is the number of

in-order instructions that have so far been counted for the

current block; this count is saved in the next InorderBlock

entry logged.

Memory-access instructions are inserted into the TRAQ

in program order when they are dispatched to the ROB. If the

TRAQ is full, instruction dispatch stalls. The TRAQ also re-

ceives pipeline flush information from the processor, in order

to keep its state consistent with the ROB’s. Specifically, if the

ROB is flushed, then the TRAQ is also flushed accordingly.

This occurs, e.g., on a branch misprediction. If an individual

instruction in the ROB is squashed and replayed, the TRAQ

takes no action, since its entry in the TRAQ will be correctly

overwritten upon the re-execution of the instruction. This oc-

curs, e.g., when a speculative load is squashed and replayed

due to memory consistency requirements.

Figure 6(b) shows a TRAQ entry. Each memory-access

instruction allocates a TRAQ entry and stores the address ac-

cessed, the value read or written, and the PISN. The other two

fields in a TRAQ entry are the Snoop Count and the Non-

Memory Instruction (NMI) field. The former is only needed

in RelaxReplay Opt and will be discussed later. The NMI

field enables RelaxReplay to log block sizes (in InorderBlock



entries) in number of instructions rather than in number of

memory-access instructions. This support may ease replay

because processors are more likely to provide interrupt sup-

port for number of instructions executed than for number of

memory-access instructions executed.

The NMI field works as follows. When a memory-access

instruction (M) is dispatched and obtains a TRAQ entry, its

NMI field is set to the number of instructions dispatched

since the most recent memory-access instruction. Then, when

M reaches the TRAQ’s head and is counted, the Current

InorderBlock Size count is incremented by the value in the

NMI field (plus one if M is not reordered).

The NMI field has a limited number of bits, which is

4 in our implementation. It is possible that more than 15

instructions appear between two consecutive memory-access

instructions. In this case, RelaxReplay allocates a TRAQ

entry for each group of 15 such instructions. These TRAQ

entries do not correspond to any memory-access instruction,

and their NMI field is set to 15.

Figure 6(c) shows the format of the different types of en-

tries in the log record of an interval. An InorderBlock en-

try is recorded for a group of consecutive instructions to

be replayed in order. It includes the value of the Current

InorderBlock Size count. A ReorderedLoad and Reordered-

Store entry is recorded for each reordered load and store, re-

spectively; their fields have been discussed before. An inter-

val may log multiple instances of each of these three entry

types. Finally, when an interval ends, an IntervalFrame en-

try is logged, with the value of CISN to identify the interval.

In addition, an IntervalFrame must also contain some order-

ing information to establish its order among all the recorded

intervals. The information required depends on the particu-

lar interval-ordering mechanism used. In our case, since we

use the QuickRec interval ordering, it suffices to record the

current value of the Global Timestamp.

4.2 Extension for RelaxReplay Opt

RelaxReplay Opt tracks the coherence transactions that a

processor observes between the perform and counting events

of a memory-access instruction. If the address of any of

them conflicts with the address accessed by the instruction,

the latter is declared reordered at counting time. To track

transactions, RelaxReplay Opt adds the Snoop Table in the

MRR (Figure 6(a)) and the Snoop Count in each TRAQ entry

(Figure 6(b)).

The Snoop Table consists of two arrays of counters (Fig-

ure 8). When the processor observes a coherence transac-

tion, the transaction’s line address is hashed, using a different

function for each array, and the resulting two counters in the

arrays are incremented. We use two arrays to reduce false

positives caused by aliasing. When a memory-access instruc-

tion performs, its line address is hashed, and the correspond-

ing two counters in the Snoop Table are read. The current

values of these two counters are then stored in the Snoop

Count field of the TRAQ entry. Later, when the instruction

is counted, if its PISN is not equal to CISN, the two counters

are read again from the Snoop Table. Their current values

are compared to the values saved in the Snoop Count field. If

none of the counters has changed or only one has (this case

is due to aliasing), the instruction is declared in order; oth-

erwise, it is declared reordered. If it is in order, since we are

moving the perform event of the instruction to the current in-

terval, we insert the address accessed by the instruction in the

read or write signature (for a load or store, respectively), to

ensure proper ordering of intervals.

Figure 8. Snoop Table structure in RelaxReplay Opt.

The counters are allowed to wrap around. Moreover, no

action is taken when a line is evicted from the cache: there

is no danger of missing a coherence transaction because, in a

snoopy protocol, all caches see all the transactions.

Overall, although conservative, this design correctly de-

tects all of the true conflicts. The only problem would be if

the counter size was so small that between the perform and

counting points, a counter could wrap around and reach ex-

actly the same value. To prevent this case, we use sizable

structures: two 64-entry arrays of 16-bit counters. This means

that the overall Snoop Table size is 256 bytes. In addition,

the Snoop Count field in each TRAQ entry is 4 bytes. For the

176-entry TRAQ that we evaluate, the combined size of all

the Snoop Count fields is 704 bytes. These are minor costs for

RelaxReplay Opt’s large reduction in log size and increase in

replay speed (Section 5).

4.3 RelaxReplay for Directory Coherence

RelaxReplay’s mechanism to track events within intervals

remains unchanged for directory-based coherence, whether

centralized or distributed, as long as write atomicity is

guaranteed. The mechanism to order intervals may need to

change, and we can use any of the proposed chunk-based

MRR schemes that work for directories.

One issue that appears in directory-based protocols is that,

after a dirty line is evicted from a cache, the cache is no longer

able to observe coherence transactions on the line. In this

case, the Snoop Table proposed in Section 4.2 for RelaxRe-

play Opt would lose its ability to observe conflicting transac-

tions. To solve this problem, when a dirty line is evicted, its

address is hashed and the two corresponding counters in the

Snoop Table are incremented. This ensures that any memory-

access instruction that performed an access to that address

but has not been counted yet, is conservatively declared re-

ordered. Hence correctness is preserved.



4.4 Modest Hardware Complexity

RelaxReplay’s hardware tracks events within intervals. Such

hardware is local to the processors, rather than being dis-

tributed system-wide. Even within a processor, it leverages

the well-understood general structure of the ROB. It does

not require any changes to the cache coherence protocol

of the machine. Moreover, its operation is independent of

the scheme used to order intervals. Consequently, when Re-

laxReplay is paired with an interval ordering scheme that it-

self does not require modifications to the coherence protocol,

such as QuickRec [25] or Cyrus [9], RelaxReplay provides

a general MRR solution that works without coherence proto-

col modifications. This fact substantially lowers its hardware

complexity. Finally, the resulting log can be replayed using

minimal hardware support, which is very similar to existing

performance counters.

5. Evaluation

5.1 Experimental Setup

We evaluate RelaxReplay with a cycle-level execution-driven

simulator. We model a multicore with 4, 8 (default), or 16

cores. The cores are 4-issue out-of-order superscalars that use

the RC memory model. Cores have a private L1 cache and a

shared L2. The interconnection network is a ring that uses

a MESI snoopy cache-coherence protocol. Table 1 shows

the architectural parameters, including those of RelaxReplay.

From the table, we can compute the overall size of the per-

processor RelaxReplay structures. Specifically, for RelaxRe-

play Base, the overall MRR module of Figure 6(a) is 2.3KB,

of which the TRAQ uses 1.8KB; for RelaxReplay Opt, the

MRR is 3.3KB, of which the TRAQ uses 2.5KB. Since the

processor has 2 Ld/St units, we design the TRAQ to be writ-

ten twice (at perform events) and read twice (at counting

events) per cycle. We design the Snoop Table to be read twice

(typically at perform events) and written once (on a snoop)

per cycle. We run SPLASH-2 codes [34].

The effectiveness of RelaxReplay’s instruction tracking

mechanism depends on the average size of the intervals. To

a large extent, this size is determined by the maximum inter-

val size chosen by the chunk-based recorder paired with Re-

laxReplay. Some recorders, such as Karma [3] and Cyrus [9]

set the maximum interval size to a small value, in order

to increase replay parallelism. Other schemes, such as Cor-

eRacer [24] and QuickRec [25], use a very large maximum

interval size because they replay sequentially, and large in-

tervals have lower overheads. Thus, to assess the sensitivity

of RelaxReplay to the maximum interval size, we evaluate

RelaxReplay with two different maximum interval sizes: 4K

instructions and infinitely large (INF).

To estimate replay performance, we have written a soft-

ware module to control the replay according to the algorithm

outlined in Section 3.5. In a real system, this module would

be part of the OS. However, our execution-driven simulation

setup does not run OS code. Thus, to measure the overhead

Processor and Memory System Parameters

Multicore
Ring-based with MESI snoopy protocol

4, 8 (default), or 16 cores

Core

4-way out-of-order superscalar @ 2GHz

176-entry ROB, 2 Ld/St units

128-entry Ld/St queue

L1 Cache
Private, 64KB, 4-way assoc, 64-entry MSHR

32B line, write-back, 2-cycle round-trip

L2 Cache

Shared, 512KB per core, 16-way assoc

64-entry MSHR

32B line, write-back, 12-cycle avg. round-trip

Ring 32B wide, 1-cycle hop delay

Memory 32B bus, 150-cycle round-trip from L2

RelaxReplay Parameters

Read & Write Sigs. Each: 4 × 256-bit Bloom filters with H3 hash

Glob time, Curr bl sz 64bits, 32bits

CISN, Log buffer 16bits, 8 cache lines

TRAQ 176 entries, each is 14.5B (RelaxReplay Opt)

Snoop Table 2 arrays, 64 entries each, 16-bit entry

Table 1. Architectural parameters.

of this control software, we link its code with the code of the

application. With this setup, we can measure its performance

cost. This control software uses the recorded total order of in-

tervals to enforce interval ordering. For this, it uses condition

variables. Then, for each interval, it follows the algorithm ex-

plained in Section 3.5: it executes the interval’s InorderBlock

blocks on the hardware, and emulates the execution of the

reordered instructions.

In the following, we first characterize the logs. Then, we

evaluate the recording and replay performance. Finally, we

analyze RelaxReplay’s scalability with the processor count.

5.2 Log Characterization

We start by analyzing how many memory-access instructions

are found by RelaxReplay to be reordered. Figure 9 shows

the number of such instructions as a fraction of all memory-

access instructions, for 4K maximum intervals (Chart (a)) and

INF maximum intervals (Chart (b)). Each chart shows bars

for all the applications and the average. In each case, we have

bars for RelaxReplay Base and RelaxReplay Opt.

On average, RelaxReplay Base logs 1.7% and 0.17% of

memory instructions as reordered for 4K and INF intervals,

respectively. This number is much smaller than the 60% of

memory-access instructions that are performed out of pro-

gram order, as shown in Figure 1. This shows that most of the

reorders are invisible to other processors. In fact, RelaxRe-

play Opt reduces this fraction even more — to a minuscule

0.03% for both 4K and INF intervals. As we will see, this

large reduction has a significant impact on the size of the gen-

erated logs and the replay speed.

In all cases, loads dominate the reordered instructions.

Comparing the 4K and INF results, we see that larger in-

tervals help RelaxReplay Base reduce the fraction of re-

ordered instructions. However, RelaxReplay Opt’s effective-

ness is independent of the interval size. This is because Re-

laxReplay Opt relies on the Snoop Table to detect reordered
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Figure 9. Fraction of memory-access instructions found by RelaxReplay to be reordered for 4K (a) and INF (b) intervals.
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Figure 10. Number of InorderBlock entries (IBs), normalized to RelaxReplay Base, for 4K (a) and INF (b) intervals.

instructions, rather than on whether perform and counting

events are in the same interval.

The number of reordered instructions affects the number

and size of the InorderBlock entries in the logs. Recall that

an InorderBlock entry corresponds to a set of consecutive in-

order instructions. An InorderBlock is terminated by either

a reordered access or an interval termination. Hence, if an

optimization such as RelaxReplay Opt reduces the number

of reordered accesses, the InorderBlock size increases and the

number of InorderBlock entries goes down.

Figure 10 shows the number of InorderBlock entries in the

logs for 4K (Chart (a)) and INF (Chart (b)) intervals. The fig-

ure is organized as the previous one except that, in each appli-

cation, the bars are normalized to RelaxReplay Base. The fig-

ure shows that RelaxReplay Opt’s ability to reduce the num-

ber of reordered access results in many fewer InorderBlocks.

On average, it only logs 13% and 48% as many InorderBlocks

as RelaxReplay Base for 4K and INF intervals, respectively.

Finally, Figure 11 shows the uncompressed log size for

the two designs, in bits per 1K instructions for 4K (Chart (a))

and INF (Chart (b)) intervals. We see that RelaxReplay Opt

reduces the log size over RelaxReplay Base substantially —

the result of its ability to reduce the number of reordered

instructions. For 4K intervals, the average log size per 1K

instructions goes down from 360 bits in RelaxReplay Base to

22 bits in RelaxReplay Opt; for INF intervals, it goes down

from 42 bits to 12 bits. These are substantial reductions in

logging needs.

The resulting RelaxReplay Opt log sizes are 1–4x the log

sizes reported for previous chunk-based recorders [6, 9, 10,

18, 23, 24] and are, therefore, comparable to them. This is

despite the fact that the previous schemes required the strict

SC or TSO models, while RelaxReplay Opt handles the re-

laxed RC model. In fact, RelaxReplay Opt’s logs are quite

small compared to the several GB/s of memory bandwidth

available in modern machines. Indeed, in our experiments,

RelaxReplay Opt generates on average only 48 MB/s and 25

MB/s of logging state for 4K and INF intervals, respectively,

which is a small rate. On the other hand, RelaxReplay Base

generates on average 840 MB/s and 90 MB/s. Although we

consider the former excessive, the latter is small and shows

that the simpler RelaxReplay Base design is a viable solution

if large intervals are acceptable — i.e., when replay paral-

lelism is not required.

5.3 Characterization of Recording Performance

It can be shown that the execution overhead of recording un-

der RelaxReplay Opt, or under RelaxReplay Base with INF

intervals is negligible. This is consistent with past propos-

als for hardware-assisted RnR. To understand why recording

overhead is negligible in these cases, consider the two main

sources of overhead: memory bus contention as the log is

being saved, and stalls due to lack of TRAQ entries. From

the previous section, we deduce that the induced memory

bus contention is negligible for RelaxReplay Opt and for Re-

laxReplay Base with INF intervals.
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Figure 11. Uncompressed log size in bits per 1K instructions for 4K (a) and INF (b) intervals.
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Figure 12. TRAQ utilization: average (a) and histograms for four representative applications (b).
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Figure 13. Replay time with Opt or Base logs, normalized to recording time, for 4K (a) and INF (b) intervals.

To assess the TRAQ stall, Figure 12 shows the TRAQ uti-

lization. The figure applies to both RelaxReplay Opt and Re-

laxReplay Base. In Chart (a), we show the average number

of TRAQ entries utilized by each application. We see that, in

all cases, this number is less than 64. This is a small number

compared to the TRAQ’s 176 entries. In Chart (b), we show

distributions of number of used TRAQ entries for four rep-

resentative applications. In the figure, each bar corresponds

to the fraction of samples where a certain number of en-

tries (grouped in bins of 10) were used. As can be seen, al-

though different applications have different overall shapes, in

all cases, most of the time around 80 or fewer entries are used.

Hence, TRAQ-induced stall is very rare. It can be shown that

it accounts for less than 0.3% of the execution time for Re-

laxReplay Opt and for RelaxReplay Base with INF intervals.

5.4 Characterization of Replay Performance

Figure 13 shows the time it takes to replay the applications

with RelaxReplay Opt logs or RelaxReplay Base logs, for

4K (Chart (a)) and INF (Chart (b)) intervals. For each appli-

cation, the times are normalized to the time it takes to record

the application, shown as the leftmost bar of each group. Note

that, while recording was done in parallel with 8 proces-

sors, replay in these experiments is performed sequentially

— because the interval-ordering mechanism records a total

order of intervals. Moreover, the replay time is broken down



into execution of the application (User Cycles) and execu-

tion of our control module that emulates the OS (OS Cycles).

The latter orders intervals, reads log entries, and emulates re-

ordered instructions.

From the figure, we see that replaying with the RelaxRe-

play Opt log is fast. Although the replay is performed se-

quentially, it takes on average only 8.5x and 6.7x as long as

the parallel recording for the 4K and INF intervals, respec-

tively. OS time is about a third to a sixth of the replay time.

Replay with the RelaxReplay Base log is a bit slower

for INF intervals and substantially slower for 4K intervals.

Specifically, sequential replay takes on average 8.6x and

26.2x as long as the parallel recording for the INF and 4K

intervals, respectively. The slowdown is due to the larger

fraction of reordered instructions. There is a substantial frac-

tion of OS cycles, as the OS deals with reordered instruc-

tions. User cycles are sometimes higher than in the RelaxRe-

play Opt bars because there are more pipeline flushes, as end-

of-block interrupts transfer execution to the control module.

Overall, using the RelaxReplay Opt log or the RelaxRe-

play Base log with INF intervals ensures efficient replay. If

we combine them with interval ordering schemes that admit

parallel replay [3, 9], we expect substantially faster replay.

5.5 Scalability Analysis

To analyze RelaxReplay’s scalability with the number of

processors, we repeat the experiments with 4- and 16-core

machine configurations. Figure 14 shows how the fraction

of memory-access instructions that RelaxReplay perceives as

reordered (Chart (a)) and the log generation rate (Chart (b))

change with 4, 8, and 16 processors (P4, P8, and P16) for

RelaxReplay Base and RelaxReplay Opt. In each figure, the

left- and right-hand sides present the results for the 4K and

INF configurations, respectively. Each bar is the average of

all the applications.
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Figure 14. The effect of processor count on recording.

The figures show that both the fraction of reordered in-

structions and the log size increase with the number of pro-

cessors. Leaving aside the case of RelaxReplay Base with 4K

intervals, we see that both instruction reordering and log size

are still small for up to 16 processors but increase noticeably,

although not exponentially.

The reason for the increase is that, with more cores, we

have more traffic and, in particular, more coherence traf-

fic. Moreover, in our ring-based snoopy protocol, all proces-

sors observe all the traffic. As a result, there is more chance

for false positives in the signatures and in the Snoop Table.

The former causes additional terminations of intervals, which

results in bigger logs and, in RelaxReplay Base, more re-

ordering; the latter causes RelaxReplay Opt to count more

reordered instructions. As a result, we see fast increases in

both parameters. With directory coherence, we expect lower

growth rates, as each core only sees coherence messages for

the cache lines it accessed.

The case of RelaxReplay Base with 4K intervals is less

sensitive to the number of cores. The reason is that its behav-

ior is largely determined by the small maximum interval size.

Adding more coherence transactions only has a marginal im-

pact in further reducing the interval sizes.

6. Related Work

Some of the proposals for RnR of multithreaded programs

on multiprocessors do not require any special hardware and,

instead, rely on the OS, compiler and/or runtime libraries for

RnR (e.g., [16, 22, 32]). MRR with these techniques has a

relatively-high performance overhead, perturbs the timing of

parallel execution, and typically requires modified binaries.

Due to space constraints, we do not discuss them.

Hardware-assisted MRR techniques use special hardware

support for recording memory-access interleaving. FDR [35]

and RTR [36] record dependences between pairs of commu-

nicating instructions. This can result in large log sizes or re-

quires expensive hardware data structures to reduce the log

size. Also, the resulting fine-grain ordering constraints can

hurt replay efficiency. While FDR only supports SC, RTR

supports TSO by recording the value of loads that may vio-

late SC. Similar to our approach, it records a load’s value if

there is a conflicting access to its memory location between

the time the load performs and all of its predecessors perform.

To remedy the large log size and fine-grain ordering con-

straints of earlier designs, chunk-based schemes were pro-

posed. DeLorean [18] and Capo [19] use the speculative mul-

tithreading hardware of Bulk [31]. The underlying hardware

enforces SC while allowing aggressive out-of-order execu-

tion of instructions. The execution is recorded by logging the

order in which processors commit their chunks.

Rerun [10] and Karma [3] are chunk-based techniques for

conventional multiprocessors with directory coherence. The

papers also include proposals to integrate RTR’s solution for

TSO recording with their chunk-based schemes. As such,

they can be considered as chunk-based recorders for TSO.

However, they only provide high-level discussions about how

the integration could be done without providing detailed de-

signs or results. Timetraveler [33] builds on Rerun and re-

duces its log size. While Rerun terminates a chunk upon the

first conflicting coherence transaction, Timetraveler allows



the chunk to grow beyond that, to reduce the chunk count

and, thus, the log size.

Intel MRR [23], Cyrus [9] and CoreRacer [24] are chunk-

based recorders for snoopy protocols. While the first two as-

sume SC, CoreRacer supports TSO by recording the num-

ber of stores pending in the processor’s write buffer when

a chunk terminates. CoreRacer can then correctly account

for reordered and forwarded loads by simulating the write

buffer’s content during replay. However, replay efficiency

may suffer because it requires write buffer simulation. Also,

recording the pending stores for a chunk is often unnecessary,

since the resulting reordering is rarely visible to other proces-

sors. QuickRec [25] is an FPGA implementation of a similar

approach.

Some schemes have described parallel replay, such as De-

Lorean [18] and Capo [19] (both through speculative execu-

tion), Karma [3] and Cyrus [9].

LReplay [6] does not monitor coherence transactions; it

includes a non-trivial centralized module that directly tracks

the memory accesses performed by all cores. It relies on

this module to detect inter-processor dependences. It supports

TSO using RTR’s approach. Due to its recording technique,

its replay algorithm needs to simulate all instructions.

Strata [21] is designed for SC machines and records a stra-

tum (i.e., one chunk for each processor in the system) when

a dependence occurs between any two processors. A stratum

is recorded only if the source and destination instructions are

not already separated by a stratum. By replaying one stratum

at a time, all data dependences can be enforced.

Lee et al. [15, 17] use off-line search to infer inter-thread

dependences for SC [15] and TSO [17] executions. They

do not record dependences. Instead, they log data fetched

on a cache miss (when it is accessed for the first time).

This allows independent replay of each thread. They also

periodically record some Strata hints to speed-up the off-

line search. Using the per-thread replays and the hints, inter-

thread data dependences are determined off-line.

Rainbow [27] builds on the sequentially-consistent Strata

and improves it in two ways. Firstly, it uses a centralized

hardware structure, called Spectrum History, to reduce the

number of recorded strata, and thus, improve the log size and

replay speed. Secondly, it shows that the same data structure

can aid in detecting potential SC violations in order to record

non-SC executions. The idea is to record some information

about delayed and pending instructions that allows it to re-

play the situation correctly when an SC violation happens.

Although the paper discusses the hardware structures and al-

gorithms required to implement the first improvement fairly

extensively, the second part is only explained vaguely and at

a very high level. In particular, detailed record and replay al-

gorithms are only presented for the first contribution; the pa-

per does not explain the mechanisms or hardware structures

required to track and communicate the pending and delayed

instructions that are central to its second contribution.

It is difficult to provide a detailed comparison between

Rainbow and RelaxReplay, especially in terms of the hard-

ware data structures, given Rainbow’s lack of details and

the complexity of its proposed SC-violation handling mech-

anism. However, it is clear that, similar to RelaxReplay,

Rainbow requires write atomicity, since each instruction can

only be recorded in a single spectrum. Unlike RelaxReplay,

however, Rainbow cannot accommodate distributed direc-

tory protocols due to its centralized Spectrum History design.

Also, unlike RelaxReplay, it needs to augment the coherence

protocol messages and/or add new ones (if write-after-read

dependences are to be explicitly recorded). In addition, it is

unclear how the Spectrum History can be virtualized in order

to accommodate application-level RnR (i.e., recording single

applications instead of whole machines). Moreover, unlike

RelaxReplay that can be applied to any chunk-based MRR

scheme, the SC-violation handling mechanism of Rainbow is

particular to its Strata-like design and cannot be directly used

in conjunction with other MRR schemes.

7. Concluding Remarks

This paper proposed RelaxReplay, the first complete solu-

tion for hardware-assisted MRR that works for any relaxed-

consistency model with write atomicity. With RelaxReplay,

we can build an RnR system for any coherence protocol —

whether snoopy, centralized directory or distributed direc-

tory. RelaxReplay’s insight is a new way to capture memory-

access reordering. Each memory instruction goes through a

post-completion in-order counting step that detects any re-

ordering, and efficiently records it. We presented two designs

with different hardware needs, log sizes, and replay speeds.

RelaxReplay’s mechanism to capture memory-access re-

ordering does not rely on consistency model specifications. It

can be combined with the chunk-ordering algorithm of any

existing chunk-based MRR proposal — enabling that pro-

posal to record relaxed-consistency executions. Its hardware

is local to the cores and does not change the cache coher-

ence protocol. Finally, it produces a log that is compact and

efficient to use for replay with minimal hardware support.

We evaluated RelaxReplay with simulations of an 8-

processor RC multicore running SPLASH-2 applications.

The results showed that RelaxReplay induces negligible over-

head during recording. In addition, the average size of its log

was 1–4x the log sizes reported for existing SC- or TSO-

based MRR systems, and still a small fraction of the band-

width of current processors. Finally, deterministic replay is

efficient, since the sequential replay of these 8 processors

with minimal hardware support took on average only 6.7x as

long as the parallel recording.
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