
ELmD v2.0

Designers : Nilanjan Datta and Mridul Nandi

Submitters : Nilanjan Datta and Mridul Nandi

nilanjan isi jrf@yahoo.com

August 29, 2015

Chapter 1

Mode Specification

ELmD is a Encrypt-Linear mix-Decrypt block cipher mode, designed to provide
misuse resistant, fully parallelizable authenticated encryption, secured against
blockwise adaptive adversaries. In this section, we provide a complete defini-
tion of the ELmD family of authenticated ciphers, which include the complete
parameter space defining the family and include a list of all the recommended
parameter sets.

1.1 Notation

Assume, B = {0, 1}128, denotes the size of a complete block. Any string
B ∈ {0, 1}r, can be represented as (B[1], B[2], . . ., B[` − 1], B∗[`]), where
` = d r

128e. Here B[i] is the ith complete block of B and B∗[`] is the final block of
B which may or may not be complete. We call r := |B|, the no. of bits of B and
l := l(B), the block-length of B. (B[i])s denotes the most significant s bits of the
block B[i]. For 0 ≤ a ≤ b < ` we denote B[a..b] := (B[a], B[a + 1], . . . , B[b]),
B[..b] = B[1..b]. We use EK and E−1

K to denote block cipher encryption and
decryption respectively.

The underlying field for the construction is GF (2128). An element a ∈
GF (2128) can be representated in any of the following ways :

• An integer between 0 to 2128 − 1.

• A 128-bit string : a127 · · · a1a0 ∈ GF (2128) where ai ∈ {0, 1}, which is the
binary representation of the integer.

• A polynomial : a(x) = a127x
127 + · · ·+ a1x+ a0 where ai ∈ {0, 1}.

For example, we present the following table to show various representations of
some field elements 2, 3 and 7 :

The addition and multiplication of two elements α, β ∈ GF (2128) is denoted
by α⊕ β and α · β respectively.

1

Integer Representation 128-bit String Representation Polynomial Representation
2 012610 x
3 012611 x+ 1
7 0125111 x2 + x+ 1

Table 1.1: Various representations of some field elements

1.2 External Parameters :

In this subsection, we include a list of 5 external parameters and briefly describe
the values these parameters can take and the recommended choices.

1.2.1 External Parameter List

In this subsection, we define out external parameters :

1. rd: It denotes the number of AES rounds used in EK . It is required that,
rd ≥ 6.

2. t : It denotes the number of blocks after which intermediate tags are gen-
erated. Conventionally, t = 0 suggests that the construction doesn’t use
any intermediate tag. The values t can take, varies for different applica-
tions. When the application runs in a limited buffer t can take any integer
value from 0 to 127. Everywhere else, it can take any positive integer
value less than 232.

3. lt : Denotes the length of intermediate tag. It can take any value from 64
to 128.

4. f : It’s a boolean value to indicate whether the tag is fixed length or
not. f = 1 means that the tag size is 128 bit (fixed size) and f = 0 means
that the tag size is flexible and the range is from 128 bit to 255 bit to
make the tagged ciphertext multiple of 128 bits.

5. ltag : Denotes the tagsize. It can take any value from 1 to 128.

1.2.2 Recommended Parameter Set

The recommended external parameter values are : rd ∈ {10, 6}, t ∈ {0, 127},
lt = 128, f ∈ {0, 1}, ltag = 128. As the recommended choices varies for the
values of rd, t and f only, we have 8 recommended parameter sets and denote
these sets by ELmD(rd,t,f). The priority is given only for the parameter round
number rd as this has some security issues. So, priority wise, our primary recom-
mended parameter set is ELmD(10,t,f) and secondary recommended parameter
set is ELmD(6,t,f) where (t, f) ∈ {(0, 0), (127, 0), (0, 1), (127, 1)}. The choices of t
and f entirely depends on the environment. For low end devices, when we need
intermediate tags, we set t = 127. Otherwise we set t = 0. When the applica-
tion require minimal ciphertext expansion or fixed tag, we set f = 1. Otherwise

2

to reduce some clock-cycles during decryption, we set f = 0.

1.3 Input and Output Data

To encrypt a message with an associated data, one needs to provide the infor-
mations given below.

• An encryption key K ∈ {0, 1}128, suitable for the block cipher.

• Public message number pub ∈ {0, 1}64.

• The Parameter set param ∈ {0, 1}64. The most significant 8 bits of param
denote the number of AES rounds rd used. Next 16 bits represent the
intermediate tag interval t, next 7 bits denotes the intermediate tag length
lt, next bit represents f, to indicate whether we use fixed length tag or
flexible length tags are to be used. Next 8-bits denote the tag size ltag.
The last 24 bits are kept as optional for future use and currently assigned
to the fixed value 024.

• Associated data D ∈ {0, 1}∗, with the following restriction of associated
data size : 0 ≤ |D| ≤ 264.

• A message (or plaintext) M ∈ {0, 1}∗, where 1 ≤ |M | ≤ 264. The most
significant 64 bits of the first block of the message is priv, is the Private
message number.

ELmD authenticated encryption produces the following output data :

• Tagged ciphertext C ∈ {0, 1}|M |+ltag where ltag = 128 when f = 1 and
otherwise (i.e. f = 0) ltag takes the value in between 128 to 255 for which
128 divides |C|.

• Intermediate Tags T ∈ {0, 1}lth for t 6= 0, where h = b l−1
t c, denotes the

no. of intermediate tags generated and l = d M128e, denotes the no. of
blocks of M . Note that, if t = 0, no intermediate tag is generated i.e. T
is empty.

1.4 Mathematical Components

1.4.1 Block Cipher.

We use AESrd as our block-cipher where rd denotes the no. of rounds used during
the AES encryption or decryption. We usually use rd = 10 for AES encryption
and decryption but here we keep it as option, as we may not require that many
rounds always. EK is used in the specification to mean AESrd.

3

AESrd encryption is done as follows : First KeyExpansion is done where sep-
arate 128-bit round key blocks are requires for each of the rd rounds, derived
from the cipher key using Rijndael’s key schedule. The rd round of encryption is
performed, where each round of encryption consists of the following operations
: The 128-bit plaintext that is to be encrypted is represented in a 4 × 4 array
of bytes, called the state array, which gets modified in rd rounds of encryption
where each round consist of the following operations :

• AddRoundKey : In this stage, the state array is updated by xoring it with
the round subkey.

• SubBytes : It is a non-linear substitution step where each byte is replaced
with another according to a single fixed lookup table (called S-box).

• ShiftRows : In this phase, the bytes in ith row is cyclically shifted i − 1
places to the left for all i varies from 1 to 4.

• MixColumns : In this step, an invertible linear transformation is applied
to each column. It can be think of as a matrix multiplication over the
underlying field GF (28).

Note that, AESrd is the standard 10 round AES-encryption, where the mix col-
umn operation is skipped in the last round. But in general when rd < 10, for
AESrd, we will have the last round mix-column operation - hence have rd full
round encryption.

AESrd decryption is done as follows : Similarly the rd round of decryption is
performed, where each round of encryption consists of Inverse MixColumn, In-
verse ShiftRows, Inverse SubBytes and AddRoundKey. The detailed description
can be found in [4].

1.4.2 Field Operations.

Here we define the required field operations operations : addition and multipli-
cation. Note that, the underlying field is GF (2128).

Field Addition. As our operations are performed in binary field, field addi-
tion is equivalent to exclusive-or operation.

Field Multiplication. We will use field multiplication by 2, 3 and 7. We take
p(x) = x128 + x7 + x2 + x+ 1 [19] as the primitive polynomial.

• Multiplication by 2. It is computationally simple to multiply a ∈ {0, 1}128

by 2. Suppose a = a127 · · · a1a0. Multiplying it by 2 means computing
a(x) · x modulo p(x) which can be easily computed as :

a · 2 = a� 1, if a127 = 0

= (a� 1)⊕ 012010000111, else

4

st

x

st′

y

st

x

st′
ρ−1

y

ρ

Figure 1.4.1: Linear Mixing Function ρ and ρ−1

• Multiplication by 3. Multiplication by 3 (i.e by the polynomial x + 1) is
easily computed using the multiplication by 2 :

a · 3 = (a · 2)⊕ a

• Multiplication by 7. Multiplication by 7 (i.e. by the polynomial x2 +x+ 1)
is easily computed using the multiplication by 2 and 3 :

a · 7 = ((a · 2) · 3)⊕ a

1.4.3 Linear Mix Function ρ and ρ−1.

ρ is a linear function that takes two inputs x ∈ B and st ∈ B and gives y ∈ B
and st′ ∈ B in the following way :

y = x⊕ 3 · st
st′ = x⊕ 2 · st

Now, as y and st′ are linear functions of x and st, we can represent x and st′ as a
linear combination of y and st : x = y⊕3 ·st and st = (y⊕3 ·st)⊕2 ·st = y⊕st.
We call this linear function ρ−1. So, ρ−1 is a linear function that takes two
inputs y ∈ B and st ∈ B and gives x ∈ B and st′ ∈ B in the following way :

x = y ⊕ 3 · st
st′ = y ⊕ st

1.5 ELmD Authenticated Encryption Function

ELmD authenticated encryption takes an associated data D ∈ {0, 1}∗, a mes-
sages M ∈ {0, 1}∗, a non-negetive integer t and generates a tagged-ciphertext
(including the intermediate tags) (C, T) ∈ {0, 1}|M |+ltag ×{0, 1}lth in two steps,
as described below. We define L := EK(0) when EK = AES10 and L :=
EK(EK(0)) when EK = AES6. We use L to generate masks, during the tagged
ciphertext generation.

5

b b

EK

ρ

D[0] D[d] = D∗[d]

3L 2d−1 · 3L

W ′[d]

Z[0] Z[d]

0
W ′[1]

EK

ρ

D[1]

Z[1]

W ′[2]
b

2 · 3L
EK

ρ IV
b b

EK

ρ

D[0] D[d] = D∗[d]||10∗

3L 7 · 2d−2 · 3L

W ′[d]

Z[0] Z[d]

0
W ′[1]

EK

ρ

D[1]

Z[1]

W ′[2]
b

2 · 3L
EK

ρ IV

Figure 1.5.1: Processing of Associated data in ELmD Authenticated Encryption
: For complete final data block (in the left) and incomplete final data block (in
the right)

1.5.1 Initial Value Generation.

Suppose we have a public message number pub, the parameter set param and
an associated data D = (D[1], D[2], · · · , D[d − 1], D∗[d]). Before the main
processing, we first apply the following padding to make the nonce and the final
associated data block complete:

D[d] =

{
D∗[d] || 10∗ if |D∗[d]| 6= 128

D∗[d] else

We assign, W ′[0] = 0 and D[0] = pub || param. Now, the processing of the D[0],
called the initial block and D[..d] to generate the IV , is done as shown below.

DD[i] = D[i]⊕ 3 · 2i · L for i = 0 to d− 1

DD[d] =

{
D[d]⊕ 3 · 2d · L if |D∗[d]| = 128

D[d]⊕ 3 · 7 · 2d−1 · L else

Z[i] = EK(DD[i]) for i = 0 to d

(Y ′[i],W ′[i+ 1]) = ρ(Z[i],W ′[i]) for i = 0 to d

IV = W ′[d+ 1]

Note that, when associated data is empty, IV = EK(D[0]⊕ 3 · L).

1.5.2 Tagged Ciphertext Generation.

The tagged ciphertext is generated using the message M and the IV , generated
as described above using the nonce N and the associated data D. Suppose
M = (M [1], M [2], · · · , M [l − 1], M∗[l]). Depending on the completeness
of the last block, we first perform the following padding to make the last block

6

complete :

M [l] =

{
(⊕l−1

i=1M [i])⊕ (M∗[l] || 10∗) if 0 < |M∗[l]| < 128

(⊕l−1
i=1M [i])⊕M∗[l] else

Now, the tagged ciphertext C along with the intermediate tags T is generated
using the following equations :

W [0] = IV

M [l + 1] = M [l]

MM [i] = M [i]⊕ 2i−1 · L for i = 1 to (l − 1)

MM [l] =

{
M [l]⊕ 2l−1 · L if |M∗[l]| = 128

M [l]⊕ 7 · 2l−2 · L else

MM [l + 1] =

{
M [l + 1]⊕ 2l · L if |M∗[l]| = 128

M [l + 1]⊕ 7 · 2l−1 · L else

X[i] = EK(MM [i]) for i = 1 to (l + 1)

(Y [i],W [i]) = ρ(X[i],W [i− 1]) for i = 1 to (l + 1)

CC[i] = E−1
K (Y [i]) for i = 1 to l

C[i] = CC[i]⊕ 32 · 2i−1+b i−1
t c · L for i = 1 to l

TT [j] = E−1
K (W [j.t]) for j = 1 to h

T [j] = TT [j]⊕ 32 · 2jt+j−1 · L for j = 1 to h

CC[l + 1] = E−1
K (Y [l + 1]⊕ 1)

C[l + 1] = CC[l + 1]⊕ 32 · 2l+h · L

The algorithm returns tagged ciphertext and intermediate tags (C, T); where

C =

{
(C[1..l], (C[l + 1])|M∗[l]|) if f = 1

C[1..(l + 1)] else

T = ((T [1])lt , (T [2])lt , · · · , (T [h])lt) ∈ {0, 1}lt.h

When t = 0, the term b i−1
t c is defined to be 0. Hence, we have C[i] = CC[i]⊕

32 · 2i−1 · L, for t = 0.

1.6 ELmD Verified Decryption Function

ELmD verified decryption is the algorithm that takes the public message number
pub, parameter set param, an associated data D, a tagged-ciphertext C, inter-
mediate tags T ∈ {0, 1}lth, a bit b ∈ {0, 1} if f = 0 and returns a message M
or ⊥, depending on the verification. For flexible tag length i.e. the case when
f = 0, the additional bit b is required to determine whether the last block of the
message is complete (b = 1) or incomplete (b = 0). Let l + 1 = d C128e, denotes

7

EK

ρ

M [2]

2L

X [2]

Y [2]

W [1] W [2]

C[2]

322it+i−1L

b

EK

E−1
K

ρ

M [it]

X [it]

Y [it]

C[it]

W [it− 1]

2it−1L

W [it]

E−1
K

T [i]

322it+iL

C[1]

EK

ρ

M [l + 1]

2lL

W [l]

X [l + 1]

01271

E−1
K

C[l + 1]

322l+hL

b

EK

E−1
K

ρ

M [1]

L

X [1]

Y [1]

IV

32L 322L

E−1
K

bb b

EK

ρ

M [l]

2l−1L

W [l − 1]

X [l]

E−1
K

C[l]

322l+h−1L

b

Figure 1.5.2: Construction of ELmD Authenticated Encryption

the no. of blocks of the ciphertext.

The Decryption function is a three step process : First IV is generated using
pub, param and D, which is identical to the initial value generation during the
authenticated encryption. Then the decryption is performed using the tagged
ciphertext and then the verification is performed and if verified, corresponding
message is returned. The decryption and the verification procedure is dscribed
below.

1.6.1 Decryption.

It first process the associated data exactly similar to the encryption. Then using
the inverse online linear function ρ−1, the algorithm computes M .

W [0] = IV

CC[i] = C[i]⊕ 32 · 2i−1+b i−1
t c · L for i = 1 to l

Y [i] = EK(CC[i]) for i = 1 to l

(X[i],W [i]) = ρ−1(Y [i],W [i− 1]) for i = 1 to l

MM [i] = E−1
K (Y [i]) for i = 1 to l

M [i] = MM [i]⊕ 2i−1 · L for i = 1 to (l − 1)

M [l] =

{
MM [l]⊕ 2l−1 · L if |C∗[l + 1]| = 128 for f = 1 or b = 1 for f = 0

M [l]⊕ 7 · 2l−2 · L else

M∗[l] = ⊕li=1M [i]

M [l + 1] = M∗[l]

8

1.6.2 Verification.

The verification phase is done differently depending on whether the tag size is
fixed or flexible.

For fixed sized tags (i.e. when f = 1), the verification is done as described
below. First the following computations are performed :

TT [j] = T [j]⊕ 32 · 2jt+j−1 · L for j = 1 to h

W ′[j.t] = EK(TT [j]) for j = 1 to h

X[l + 1] = EK(MM [l + 1])

(Y [l + 1],W [l + 1]) = ρ(X[l + 1],W [l])

CC[l + 1] = E−1
K (Y [l + 1]⊕ 1)

C ′[l + 1] = CC[l + 1]⊕ 32 · 2l+h · L

The verification succeeds if both of the following two conditions holds :

• Intermediate tags are Verified (if t > 0): ∀i ≤ h, W [i.t] = W ′[i.t]

• Tagged Ciphertext is Verified : If |C∗[l + 1]| = 128, then the tagged
ciphertext is verified if C∗[l + 1] = C ′[l + 1]. Otherwise, the ciphertext is
verified if C∗[l + 1] = (C ′[l + 1])|C∗[l+1]| and the last (128 − |C∗[l + 1]|)
bits of M∗[l] is 10∗.

On the otherhand, for flexible tag size (i.e. when f = 0), we first compute the
following :

TT [j] = T [j]⊕ 32 · 2jt+j−1 · L for j = 1 to h

W [j.t] = EK(TT [j]) for j = 1 to h

CC[l + 1] = C[l]⊕ 32 · 2l+h · L
Y [l + 1] = EK(CC[l + 1])⊕ 1

(X[l + 1],W [l + 1]) = ρ−1(Y [l],W [l − 1])

MM [l + 1] = E−1
K (X[l + 1])

M ′[l + 1] =

{
MM [l + 1]⊕ 2l · L if b = 1

MM [l + 1]⊕ 7 · 2l−1 · L else

Now the verification succeeds if both the following holds :

• Intermediate tags are Verified (if t > 0) : ∀i ≤ h, W [i.t] = W ′[i.t].

• Tagged Ciphertext is Verified : M ′[l + 1] = M∗[l + 1].

In both the cases, if ith intermediate tag verification is successful, we realease
plaintext M [..it]. If any of the verification is not successful, we return ⊥. If all

9

the intermediate tag verification succeeds, then the final tag is veryfied and M
is returned :

M =

{
(M [..(l − 1)], (M∗[l])r′) if b = 0 for f = 0 or |C∗[l + 1]| < 128 for f = 1

(M [..(l − 1)], M∗[l]) else

where r′ is defined such that, M∗[l] = (M∗[l])r′ ||10∗.

10

Chapter 2

Proposed Modification from
ELmD v1.0

ELmD v2.0 has following modifications from the version ELmD v1.0 :

• The definition of M [l] and M [l+1] is modified, while processing a message
M of length l.

• The secondary round parameter is considered to be (6, 6) instead of (5, 10).

• Definition of L is modified when AES6 is used as the block-cipher.

Here, we discuss details of the these modifications with proper justification.

2.1 Modification in the Specification.

We propose a small modification in padding in the specification. We define M [l]
and M [l + 1] as :

M [l] =

{
(M∗[l] || 10∗)⊕ (⊕l−1

i=1M [i]) if |M∗[l]| 6= 128

M∗[l]⊕ (⊕l−1
i=1M [i]) else

M [l + 1] = M [l]

Brief Explanation of the Modification. Our previous analysis did not take
care processing of incomplete blocks properly. Consider the case of an adversary,
makes some encryption queries and tries to forge for an incomplete final block
message. Suppose the last ciphertext block has i bits. Now, in order to construst
a valid forging, it must satisfy the two consitions: (i) The last i bit ciphertext
matches and (ii) The last (128−i) bit of the last plaintext block is 10∗. As only i
bit ciphertext matching (this i-bit ciphertext depends on the checksum) is done
and the last plaintext block doesn’t depend on the checksum (in particular it
doesn’t depend on any previous message blocks), the entropy of the checksum is

11

reduced to i bits instead of 128 bit. This entropy loss may cause some problems
for security analysis. Now, to gain entropy, we define this new padding rule
such that the last padded plaintext block depends on all the message blocks.

2.2 Modification in Round Parameter.

We use only one AES-round parameter rd which denotes the number of rounds
used in AES encryption, as well as in AES decryption. We chose rd = 10 and
rd = 6 as the primary and secondary recommended parameters respectively. For
rd = 6 versions, we compute L as L := AES6(AES6(0)).

Brief Explanation of the Modification. Having equal no. AES rounds
in upper as well as lower layer, will ensure full pipelined implementation imply-
ing better performance. Moreover having equal no. of rounds will make similar
structure for both encryption and decryption. This helps us in minimizing the
combined hardware implementation. Details of this will be discussed later in
chapter 6. We use 6 round as the recommended parameter set, as 6 round
AES in the upper layer provides a good collision resistant hash and the total of
12 (= 6 + 6) round AES in the combined upper-lower layer provides the desired
randomness. The detailed argument that 6 round AES is supposed to give the
desired security, is discussed in chapter 4.

12

Chapter 3

Security Goals

ELmd10,t,f uses full round AES encryption-decryption, and hence promises to
provide the online privacy whenever the legitimate key holder can use same
nonce to encrypt two different (plaintext, associated data) pairs and full pri-
vacy if nonce can be ensured distinct for each invocation. The concatanation
of the public message number and private message number is used as nonce.
The no. of bits of security for confidentiality is 62.8, as mentioned in the ta-
ble, when we consider the distinguishing attack. That means, the expected
number of queries an adversary needs to distinguish our construction from an
online function chosen uniformly at random, is 262.8. Note that, one can not
use this distinguishing attack to mount a plaintext or key recovery
attack and we believe that our construction provides 128 bits of secu-
rity, against plaintext or key recovery attack.

The integrity goal of a forger is to make some forward queries and then at-
tempt to forge against the construction for several times. When intermediate
tags are used i.e. t 6= 0, if the forger can compute a valid intermediate tag such
that the ciphertext upto that is not identical to any of previous ciphertexts then
forger succeeds. We claim that 262.4 and 262.3 are the expected number of online
forgery attempts for a successful forgery for t = 0 and t = 127 respectively. The
explation of the desired number of bits of security is given in the next chapter.

On the other hand, for ELmD6,t,f recommended choices, as 6 rounds of AES
encryption-decryption is being used, although we believe that the desired se-
curity given in the table is achievable, but it may contain some weakness, as
full round AES has not been used. We discuss this issue in details, in the next
section.

13

Goal ELmDrd,0,f ELmDrd,127,f

confidentiality for 62.8 62.8
the plaintext
integrity for 62.4 62.3
the plaintext

integrity for the 62.4 62.3
associated data
integrity for the 62.4 62.3

public message number
confidentiality for the 62.8 62.8

private message number
integrity for the 62.4 62.3

private message number

Table 3.1: Table quantifying, for each of the recommended parameter sets, the
intended number of bits of security : Here (rd, f) ∈ {(10, 0), (10, 1), (6, 0), (6, 1)}.
For confidentiality we consider distinguishing advantage and for in-
tegrity we consider the forging advantage.

14

Chapter 4

Security Analysis

4.1 Confidentiality and Integrity of the recom-
mended choices.

In this section, we provide the security bounds of all the recommended param-
eter sets. Note that, the parameter f is used for implementation issues and
doesn’t have any effect from functional point of view. So, the security bounds
doesn’t depend on the value of f. Let n = 128 represents the blocksize.

Now applying the following mentioned theorems and using standard hybrid
technique, we obtain the following results :

• Theorem 3.1 : Advopriv
ELmD10,0,f

(A) ≤ η(σpriv) +
5σ2

priv

2n .

• Theorem 3.2 : Advopriv
ELmD10,127,f

(A) ≤ η(σpriv) + 91
18

σ2
priv

2n

• Theorem 3.3 : Advauth
ELmD10,0,f

(A) ≤ η(σauth) +
9σ2

auth

2n .

• Theorem 3.4 : Advauth
ELmD10,127,f

(A) ≤ η(σauth) + 81
8
σ2

auth

2n

Here η(i) denotes the maximum AES advantage over all adversaries, making at
most i queries. As full rounds of AES is used, we can assume η(i) to be negligible.

Now, the above argument doesn’t work if we use 6 as the round parameter
because for 6 round AES, the maximum AES advantage over all adversaries is
high. So, we have to argue in a different way. From the structure of construc-
tion, we observe that we need to resist collision in the upper layer encryption
and want high randomness in the combined two layer encryption. We use 6
round AES in the upper layer, as 6 round AES is a good collision resistant hash
and the total of 12 (= 6 + 6) rounds of AES in the combined upper-lower layer
provides the desired randomness. In this context, note that AES-6 has many

15

key-recovery attacks [2, 5, 6] but all those attacks uses the property that the
chosen plaintexts has certain differential characteristic. Here these attacks are
not applicable due to the upper layer masking and the randomness of L.

With these arguments in hand, we have the following conjecture: ELmD6,t,f

has 62.8 bit security for confidentiality for the plaintext and private message
number. ELmD6,0,f has 62.4 bit security for integrity for the plaintext, associ-
ated data, public message number, private message number. ELmD6,127,f has
62.3 bit security for integrity for the plaintext, associated data, public message
number, private message number.

4.2 Confidentiality of ELmD

We give a particularly strong definition of confidentiality or privacy, one assert-
ing indistinguishability from random strings. Consider an adversary A who has
access of one of two types of oracles: a “real” encryption oracle or an “ideal”
authenticated encryption oracle. A real authenticated encryption oracle, FK ,
takes as input (D,M) and returns (C, T) = FK(D,M). Whereas an ideal au-
thenticated encryption oracle $ returns a random string R with |R| = |M | + 1
for every fresh pair (D,M). Given an adversary A (w.o.l.g. we assume a de-
terministic adversary) and an authenticated encryption scheme F , we define
the (full) privacy-advantage of A by the distinguishing advantage of A dis-
tinguishing F from $. More formally,

Advpriv
F (A) := Adv$

F (A) = PrK [AFK = 1]− Pr$[A$ = 1].

Similarly, we define online privacy for which the the ideal online authenti-
cated encryption oracle $ol responses random string keeping the online prop-
erty. The online privacy advantage of an adversary A against F is defined as
Advopriv

F (A) := Adv$ol
F (A). In this section, we’ll prove online privacy of our

construction, which extends to provide full privacy in nonce respecting scenario.

We use the notation ELmDΠ denotes our algorithm ELmD, when the blockci-
pher encryption is replaced by random permutation Π.

4.2.1 Confidentiality of ELmDΠ when t = 0

Theorem 4.1 Let A be an adversary which can make q queries at an aggregrate
of total σ associated data and message blocks to distinguish ELmDΠ with t = 0,
from an online cipher chosen uniformly at random. Let σpriv = σ + q. The
online privacy advantage of the adversary A is given by,

Advopriv
ELmDΠ

(A) ≤
5σ2

priv

2n
.

Proof. The main idea is as follows : Suppose an adversary A tries to dis-
tinguish our construction from a PRP, making q queries M1, · · · ,Mq and get

16

responces C1, · · · , Cq. (C1, · · · , Cq) is called a view of the adversary with re-
spect to (M1, · · · ,Mq). We call some of these views as good views and show
that for those views, our construction has high interpolation probability i.e. A
can not distinguish our construction from a PRP for those views with more than
negligeable probability. Moreover we show that the probability of having a view
to be good is overwhelming. Hence applying patarin’s coefficient H technique,
we obtain the result. More formally, the proof follows directly from Patarin’s
coefficient H technique [17] and following the two Lemmas 4.2.1 and 4.2.4.

More formally, let us fix q associate data with initial block, plaintext pairs
P1 = (D1,M1), . . . , Pq = (Dq,Mq) with |Di| = di, |Mi| = li, σ =

∑
i di + li,

σpriv = σ + q. This q is added to incorporate the checksum blocks. We denote
(P1, . . . , Pq) by τin. We assume that all Pi’s are distinct. A tagged ciphertext
tuple τout = (C1, . . . , Cq) (also the complete view τ = (τin, τout)) is called good
online view (belongs to τgood) w.r.t. τin if (τin, τout) is an online view (i.e.
(Mi[1..j] = Mi′ [1..j])⇒ (Ci[j] = Ci′ [j])) and the following conditions hold:

1. Ci[j] = Ci′ [j
′] implies that j = j′, (Di,Mi[..j]) = (Di′ ,Mi′ [..j])

2. ∀ (i, li + 1) 6= (i′, j′), Ci[li + 1] 6= Ci′ [j
′].

The conditions says that a view is good if we can have collision of ciphertext
blocks or intermediate tags in a position only if they are ciphertexts of two
messages with same prefixes up to that block and all the final tags are fresh.
We can easily show that the bad online views (views those are not good) has
negligible probability :

Lemma 4.2.1 (Obtaining a Good view has high probability)

Pr[τ(A$ol) /∈ τgood] ≤ ε1

where ε1 =
σ2

priv

2n

Proof. The probability of having each such bad case is 1
2n . As at most

(
σpriv

2

)
pairs are there for the 1st and qσpriv pairs for 2nd case, the result follows.

We now fix a good view τ = (τin, τout) as mentioned above. In the following
result, we’ll prove that the interpolation probability, i.e. Pr[τ(AELmD) = τ] is

high for τ . 1 Note that Pr[τ(A$ol) = τ] = 2−nP where P denotes the number
of non-empty prefixes of (Di,Mi), 1 ≤ i ≤ q as for every different prefixes, $ol

assigns an independent and uniform ciphertext blocks.

Lemma 4.2.2 (High interpolation probability of ELmD) ∀τ ∈ τgood,

1Note that, if we define L from EK then we need to revise the proof of the Lemma 4.2.4 to
obtain a modified value of ε2. The revision is mainly by defining more internal bad events that
some of the Π inputs is 0 (the inputs are used to generate L-values). As this adds notational
complexity and does not increase the order of advantage (except a very small constant factor
will increase) we skip it.

17

Pr[τ(AELmDΠ) = τ] ≥ (1− ε2)× Pr[τ(A$ol) = τ].

where ε2 =
4σ2

priv

2n .

Proof. As adversary is deterministic, we restrict to those good views which
can be obtained by A. Hence the probability Pr[τ(AELmD) = τ] is same as

Pr[ELmDΠ(Di,Mi) = Ci, 1 ≤ i ≤ q].

Before computing interpolation probability we denote all intermediate variables
while computing ELmDΠ(Di,Mi) = Ci. Let for all i and j whenever defined

1. DDi[j] = 3 · L · 2j−1 +Di[j], MMi[j] = L · 2j−1 +Mi[j]

2. Π(DDi[j]) = Zi[j], Π(MMi[j]) = Xi[j],

3. mix(Zi, Xi) = Yi and

4. CCi[j] = 32 · L · 2j−1 + Ci[j]

Here mix is the linear mixing layer (defined through the ρ functions) that takes
Zi and Xi to define Yi. Observe that CC has been defined through tagged-
ciphertext and L instead of applying Π on Y blocks. We denote the q-tuple
(DD1, . . . , DDq) as DD. We define MM, Z,X,Y and CC similarly. We have
mix(Z,X) = Y with the extended definition of mix which applies mix function
for each (Zi, Xi).

Collision Relation. Now we define a collision relation of a vector (x1, . . . , xt)
by the equivalence relation coll(x) for which i is related to j if and only if xi = xj .

The irreducible polynomial f(x) = x128 + x7 + x2 + x + 1 ensures distinct
values (none equal to 1) of 2α3β7γ for α ∈ [−2108, 2108] and β, γ ∈ [−27, 27][19].
This property ensures that the masking values corresponding to Di,Mi and Ci’s
(of the form 3.2i.L, 2i.L and 32.2i.L respectively) are distinct. Moreover the
masking value Si[j] will be equal to the masking value of Si′ [j

′] if and only if
j = j′ where S ∈ {D,M,C}.
L is called valid if it computes (DD,MM,CC) for which only equality among
the blocks occurs in SSi[j] = SSi′ [j] where Si[j] = Si′ [j]. Now, the primitivity
of 2 and uniform independent choice of L ensures that each equality violating
has probability 2−n and there are at most

(
2σpriv

2

)
equality the result follows.

So, using union bound applied to all the cases which violates that L is valid, we
have

Pr[L is valid] ≥ (1− ε′2) where ε′2 =
2σ2

priv

2n .

Now we establish two collision relations γ1 and γ2 which are consistent with
the linear mix function. These relations are defined based on a good view τ .
Let γ1 be the collision relation defined on the set {(i, j,M) : i ≤ q, j ≤ li +
1}⋃{(i, j,D) : i ≤ q, j ≤ di}. A pair ((i, j, S), (i′, j′, S′)) is related if S = S′,

18

j = j′ and Si[j] = Si′ [j]. All other pairs are unrelated. Let γ2 be the a
collision relation defined on the set {(i, j, C) : i ≤ q, j ≤ li + 1} for which
only pairs ((i, j, C), (i′, j′, C)) if j = j′ and Ci[j] = Ci′ [j]. Let the no. of
equivalence class of γi be si, i = 1, 2. Note that s2 = P , the number of prefixes
of (Di,Mi) containing at least one message block. Now, Let Y = (Y1 :=
mix(Z1, X1), . . . , Yq := mix(Zq.Xq)). Since the view is good, Ci[j] = Ci′ [j] can
happen if Di = Di′ and Mi[..j] = Mi′ [..j]. For these cases, clearly, Yi[j] = Yi′ [j].
Now for any other pair ((i, j), (i′, j′)), it is easy to see that mix function leads
to a non-trivial equation mixj(X

γ1

i) = mixj′(X
γ1

i′). Hence,

(γ1, γ2) is consistent with mix.

Now, applying the consistent collision relations for linear functions (see Lemma
3.2.5), we have :

#{(Z,X) : coll(Z,X) = γ1, coll(Y) = γ2} ≥ 2ns1(1− ε′′2) where ε′′2 =
2σ2

priv

2n

Now, for a fixed valid L, the conditional interpolation probability is∑
(Z,X)

#Π : Π(MM) = X,Π(DD) = Z,Π(CC) = Y

#Π
≥ (1− ε′′2)× 2−nP .

So by multiplying the probability for validness of L the proof of the lemma
completes.

4.2.2 Confidentiality for ELmDΠ when t > 0

Theorem 4.2 Let A be an adversary which can make q queries at an aggregrate
of total σ associated data and message blocks. Let σpriv = σ + q. The online
privacy advantage of the adversary A is given by,

Advopriv
ELmD(A) ≤

5σ2
priv

2n
+

7σ2
priv

t.2n
.

Proof. The previous proof can be extended to deal with intermediate tags.
Here, also we fix q associated data, plaintext pairs - P1 = (D1,M1), · · · , Pq =
(Dq,Mq) and denote (P1, · · · , Pq) as τin. A tagged ciphertext tuple with inter-
mediate tags is denoted by τout = ((C1, T1), · · · , (Cq, Tq)). Now, we call a online
view good if the previous two conditions hold and moreover we make sure that
all the ciphertexts along with the final tag are fresh from all the intermediate
tags and two intermediate tags are same only if associated data, plaintext pair
upto that is same. It is straightforward to see that :

Lemma 4.2.3 (Obtaining a Good view has high probability)

Pr[τ(A$ol) /∈ τgood] ≤ ε1

where ε1 =
σ2

priv

2n+1 +
q(σpriv+

σpriv
t)

2n +
σ2

priv

t.2n +
σ2

priv

t2.2n1 ≤ σ2
priv

2n +
2σ2

priv

t.2n

19

Now, we fix a good view τ = (τin, τout) and will prove the following lemma :

Lemma 4.2.4 (High interpolation probability of ELmD) ∀τ ∈ τgood,

Pr[τ(AELmDΠ,L) = τ] ≥ (1− ε2)× Pr[τ(A$ol) = τ].

where ε2 =
4σ2

priv

2n +
5σ2

priv

t.2n .

To prove this, we define DD,MM,Z,X,Y as earlier. We modify the definition
of CC and define TT and incorporate H as follows :

1. mix(Zi, Xi) = (Yi, Hi),

2. CCi[j] = 32 · 2j−1+b j−1
t c · L+ Ci[j]

3. TTi[j] = 32 · 2jt+j−1 · L+ Ti[j]

We call L valid if it computes (DD,MM,CC,TT) such that equally occurs
only when SSi[j] = SSi′ [j] where Si[j] = Si′ [j

′]. It is easy to check that,

Pr[L is valid] ≥ (1− ε′2) where ε′2 =
2σ2

priv

2n +
3σ2

priv

t.2n .

Now, we define the collision relation γ1 and γ2. The definition of γ1 remains
same as earlier. γ2 is modified and defined on the set {(i, j, C) : i ≤ q, j ≤
li + 1}⋃{(i, j, T) : i ≤ q, j ≤ hi}. A pair (i, j, S), (i′, j′, S′) is related if S = S′,
j = j′ and Si[j] = Si′ [j]. It is easy to check that the modified relation (γ1, γ2)
is consistent with mix. So, applying the consistent collision relations for linear
functions (see Lemma 3.2.5), we have :

#{(Z,X) : coll(Z,X) = γ1, coll(Y) = γ2} ≥ 2ns1(1− ε′′2)

where ε′′2 =
2σ2

priv

2n +
2σ2

priv

t2n

Now, for a fixed valid L, the conditional interpolation probability is∑
(Z,X)

#Π : Π(MM) = X,Π(DD) = Z,Π(CC) = Y,Π(TT) = H

#Π
≥ (1−ε′′2)×2−nP .

So by multiplying the probability for validness of L the proof of the proposition
completes.

4.2.3 Consistent collision relations for a linear function

Suppose X = X[..r1] is a r1-tuple of variables of B and L : Br1 → Br2 be a
linear function. We denote Y = L(X) which is a r2-tuple of variables from B.
We can have an equivalent represent through matrix notation: Y = L.X where
L is a matrix. We denote the ith row of the matrix L by Li. Let γ1 and γ2

be two equivalence relations defined on the sets respectively [1..r1] and [1..r2].
Suppose Xγ1 denotes the tuple of variables which satisfies the collision relation

20

γ1 by replacing identical variables by the variable which occurred with minimum
index. (γ1, γ2) is said to be consistent with L if Li(Xγ1) ≡ Lj(Xγ1) if and
only if i and j are related in γ2. Clearly, given any γ1 and L there is exactly
one γ2 for which (γ1, γ2) is consistent with L. We write γ1 ⇒L γ2.

Example. If γ1 = {{1, 3}, {2}, {4, 6}, {5}} for r1 = 6, then we write Xγ1 = (X1,
X2, X1, X4, X5, X4). Let L map into three variables (i.e., r2 = 3 such that
L1 = X1 + X2 + X3 + X6, L2 = X4 + X5 + X6 and L3 = X2 + X4 then
L1(Xγ1) = L3(Xγ1) = X2 + X4 and L2(Xγ1) = X5 (we work it here in binary
field). So γ1 ⇒L γ2 where γ2 = {{1, 3}, {2}}. Note, that here + denotes modulo
2 addition.

Lemma 4.2.5 [Number of Solutions for Consistent relations] Let (γ1, γ2) be
consistent with L : Br1 → Br2 then

|{X : Coll(X) = γ1, Coll(L(X)) = γ2}| ≥ 2ns1 × (1− s2

2n+1
)

where s1 and s2 denote the number of equivalence classes of γ1 and γ2 respec-
tively and s = s1 + s2.

Let Y = L(X). Because of consistency, for all related i, j in γ2, Yi = Yj .
There may be additional equality which must be avoided. For all unrelated pair
(i, j) in γ2 we must choose X in a manner such that Yi 6= Yj and similarly for
all unrelated pair (i, j) in γ1 we have Xi 6= Xj . Due to consistency, any one can
happen for at most 2n(s1−1) many X’s as Li(Xγ1) = Lj(Xγ1) gives a non-trivial
equation. So the result follows as we have at most

(
s
2

)
such equalities.

4.3 Integrity of ELmDΠ

We say that an adversary A forges an authenticated encryption F if A outputs
(D,C) where FK(D,C) 6= ⊥ (i.e. it accepts and returns a plaintext), and A
made no earlier query (D,M) for which the F -response is C. It can make s
attempts to forge after making q queries. We define that A forges if it makes at
least one forges in all s attempts and the authenticity-advantage of A by

Advauth
F (A) = PrK [AFK forges].

Suppose for any valid tuple of associate data and tagged ciphertext (D,C),
with |C| = l + 1, the tag C[l + 1] can be computed from (D,C[..l]). We write
C[l + 1] = TK(D,C[..l]). So (D,C) is a valid tagged ciphertext if and only
if TK(D,C[..l]) = C[l + 1]. Almost all known authenticated encryptions F
(including those following encrypt-then-mac paradigm) have this property for a
suitably defined ciphertext C and tag function T . We know that PRF implies
MAC. We use similar concept to bound authenticity. More formally, for any
forgery B, there is a distinguisher A such that

Advauth
F (B) ≤ AdvO,$(F,T)(A) +

s

2n
(4.1)

21

4.3.1 Integrity of ELmDΠ when t = 0

Theorem 4.3 Let A be an adversary which can make q forward queries and
tries to forge s many times at an overall aggregrate of total σ associated data
and message blocks. Let σauth = σ + q. Then the forging advantage of the
adversary is given by,

Advauth
ELmDΠ

(A) ≤ 9σ2
auth

2n
+

s

2n

Proof. The proof is done using the coefficient H technique and following lemma
3.3.1 and 3.3.2 and then using equation 3.1. For notational simplicity, we write
ELmDΠ,L by F . As we have observed in Eq 3.1, we only need to show indistin-
guishability for which we apply the coefficient H technique again. For this, we
need to identify set of good views for which we have high interpolation proba-
bility.

A (F, T)-view of a distinguisher A is the pair v = (τF , τT) where τF = (Di,Mi,
Ci)1≤i≤q is an q-tuple of F -online view and τT = (Dj , Cj)q<j≤q+s is an s-tuple
non-trivial T -view. It is called good online forge view, if τF is good online
view (as defined in the privacy prove) and for all q < j ≤ q + s, Cj [lj + 1]’s are
fresh - distinct and different from all other Ci[j]’s. Suppose, |Di| = di, |Mi| = li
and |Ci| = li + 1. Let σ =

∑q+s
i=1 (di + li) and σauth = σ + q (the total number

of tagged ciphertext blocks). The forging advantage of ELmD is given by: Since
F is online function we consider pair of independent oracles ($ol, $) where $ol
denotes the random online function and $ is simply a random function.

Lemma 4.3.1 (Realizing Good Forge View has high probability) For all
adversary A,

Pr[τ(A$ol,$) /∈ τgood] ≤
(q +

∑q
i=1(di + li))

2

2n+1
+
s(q + s+

∑q+s
i=1 (di + li))

2n
≤ ε1.

where ε1 =
2σ2
auth

2n

As in Lemma 4.2.1, we can similarly prove the above. The first summand takes
care the collisions in Ci[j]’s (i.e., the bad view for τF as in Proposition 4.2.1) and
the second summand takes care the collision between Ci[li + 1]’s (q < i ≤ q+ s)
and all other Ci[j]’s. Now we fix a good view τ = (τF , τT) as defined above (fol-
lowing same notations). Now it is easy to see that obtaining τ interacting with
($ol, $) has probability 2−nP ×2−ns = 2−n(P+s) where P denotes the number of
non-empty prefixes of Ci, 1 ≤ i ≤ q+ s (at those blocks random online function
returns randomly).

Lemma 4.3.2 (Good Forge View has high interpolation probability) For
any good (F, T)-view τ , we have

Pr[F (Di,Mi) = Ci,∀i ≤ q, T (Dj , Cj [..lj]) = Cj [lj+1], q < j ≤ q+s] ≥ (1− ε2)

2n(P+s)

22

where ε2 = 7σ2
auth/2

n.

Proof. We choose X1, . . . , Xq and then Yq+1, . . . , Ys+q which fix all internal
X and Y values except the last block for the s many T -queries. We explicitly
provide counting steps by steps. We choose valid L which fixes MM ’s for the
first q messages and, CC’s and DD’s for all s+ q queries. We can then choose
MM for these s queries so that checksums are all fresh and for all these fresh
checksums we can ensure last Y blocks fresh by choosing X blocks appropriately.
Now we make these choices one by one more formally.

Choices of Valid L.

We first define valid L-triples as defined in privacy. L is called valid w.r.t.
the fixed good (F, T)-view τ if the computed MM , DD, CC values satisfy
the collision relations described below and whenever Cj , j > q, is a strictly
prefix of Ci, i ≤ q and Di = Dj then MMi[li] 6= MMj [lj], i.e., equivalently
Mi[lj+1]+ . . .Mi[li]+L(2lj + · · ·+2li) 6= 0. To define the collision (equivalence)
relation, we mention those places where equivalence occurs. In all other places
these are not related. SSi[j] ≡ SSi′ [j] if Si[j] = Si′ [j] where S represents any
one of the four symbols M,D, and C. So they can be identical only if their
positions as well as symbols (or types of the input) match. The simple counting
argument with union bound applied to all individual bad events proves the
following result.

Pr[L is valid] ≥ (1− ε′1).

where ε′1 =
2σ2

auth

2n

Choices of valid Z,X, Y except the last blocks for the last s queries.

As in the privacy proof, τF induces consistent collision relations of (Z,X) :=
(Z1, . . ., Zq,X1, . . . ,Xq) and Y := (Y1, . . . ,Yq). Now we extend this collision
relation to (Zq+1,Yq+1, . . . ,Zq+s, Yq+s) as follows for j < i ≤ q + s:

1. Zi[j] ≡ Zi′ [j
′] if j = j′ and Di[j] ≡ Di′ [j].

2. Yi[j] ≡ Yi′ [j
′] if j = j′ and Ci[j] ≡ Ci′ [j].

The collision relation on (Z,Y) induces a collision relation on Xf := (Xq+1, . . .,
Xq+s) through the linear mix−1 function. That is, (Z,Y)⇒mix−1 Xf . Let γ′1 be
the extended collision relation on (Z,X) and γ′2 be that of Y. We denote the
number of equivalence classes by s′1 and s′2. By using the counting on consistency
relations (see Lemma 4.2.5) the number of (Z,X, Y) with mix(Z,X) = Y and
coll(Z,X) = γ′1, coll(Y) = γ′2 is at least

2n(s1+s3)(1− (s′1 + s′2)2

2n+1
) ≥ 2n(s1+s3)(1− ε′2)

23

where ε′2 =
2σ2

auth

2n and s3 denotes the number of additional equivalence classes
in Yf which are not present in (Y1, . . . ,Yq).

Now, the remaining last s blocks can be chosen freely which determines all
other blocks. Before that, we state an important property of these collision
relations γ′1 and γ′2 :

(∃ j > q, ∀k ≤ `j , Xj [k] ≡ Xrk [k], rk ≤ q) ⇒ (∃i ≤ q ∀k ≤ `j , Xj [k] ≡ Xi[k]).

This means the message corresponding to a forged ciphertext is the prefix of
some other messages, queried previously by the adversary.

Proof. Let us fix j = q + 1 (for all other j, the argument is similar) and
denote lj by l. Now we have the following identities: Xq+1[k] ≡ Xrk [k] for all
k. This can happen only if Yq+1[j] ≡ Ytj [j] for some tj ≤ q, otherwise Xq+1[j]
would get completely new variable which is not present in all first q queries.
Now if we write Xq+1[j] in terms of these Xtj ’s variable one can obtain the
desired result.

Choices of MM for forging s queries.

Given the choices of valid L and those of X,Y, Z as described above we can now
choose remainingMM values satisfying same collision relation as (Xq+1, . . . , Xq+s).
More precisely, we can choose all those MM values for which Xj [i]’s are fresh.
Let s4 denote the number of additional distinct blocks in (Xq+1, . . . , Xq+s)
which are not present in (X1, . . . , Xq). The number of these s4 blocks MM dif-
ferent from all other defined MM , DD and CC blocks such the all last blocks

of MMj ’s (j > q) are fresh is at least 2ns4(1− ε′3), where ε′3 =
2σ2

auth

2n . Note that
MMi[li + 1] = MMi′ [li′ + 1] induces a restriction on choices of MM .

Choices of last block of X for these s queries.

For any such previous choices, we now choose the blocks of Xj [lj + 1], j > q so
that the last block of Yj ’s are fresh. This can be chosen in 2ns(1 − ε′4) ways,

where ε′4 =
σ2

auth

2n .

Armed with all these counting, the interpolation probability is at least

(1− ε2)× 2−n(P+s).

where ε2 = ε′1 + ε′2 + ε′3 + ε′4 =
7σ2

auth

2n

4.3.2 Integrity of ELmDΠ when 0 ≤ t ≤ 127

We say that an adversary A forges the intermediate tag in an authenticated
encryption F if A outputs (D,C[..τk], T [..k]) where FK(D,C[..τk], T [..k]) 6= ⊥
(i.e. it accepts and returns a plaintext). We assume, A made no earlier query

24

(D,M) for which (C[..τk], T [..k]) is the F -response. Moreover, we assume that
A has made some queries (D,M) for which (C[..τ(k−1)], T [..(k−1)]) is a prefix
of F ’s response. We need this condition, because we are looking for first position
where the intermediate tag forging occurs.

Theorem 4.4 Let A be an adversary which can make q forward queries and
tries to forge (the final tag and/or intermediate tag) s many times at an overall
aggregrate of total σ associated data and message blocks. Let σauth = σ + q.
Then the forging advantage of the adversary is given by,

Advauth
ELmDΠ

(A) ≤ 10σ2
auth

2n
+

16σ2
auth

t 2n
+

s

2n

Proof. The proof is done again using the coefficient H technique and following
lemma 3.3.1 and 3.3.2 and then using equation 3.1. the details is given below :

A (F, T)-view of a distinguisher A is the pair v = (τF , τT) where τF =
(Di,Mi, Ci, Ti)1≤i≤q is an q-tuple of F -online view and τT = (Dj , Cj , Tj)q<j≤q+s
is an s-tuple non-trivial T -view. Note, there are two types of forging queries -
some with intermediate tag forging and others that forges the final tag (in case
forging query’s length is less than t or the length is long but upto last generated
intermediate tag, the ciphertext is a prefix of some previous queried message).
Let qt and qit denotes the no. of attempted forging queries against the final tag
and intermediate tag respectively. Clearly q = qt + qit. W.l.o.g assume that, all
the forging queries against final tags are performed first and then the queries
against the intermediate tag forgings are done. It is called good online interme-
diate tag forge view, if τF is Good Online view (as defined in the privacy prove)
and for all q < j ≤ q + qt, Cj [lj + 1]’s are fresh and for all q + qt < j < q + s,
Tj [lj]’s are fresh - distinct and different from all other Ci[j]’s and Ti[j]’s. Sup-

pose, ∀i ≤ q + s, |Di| = di |Ci| = li. Let σauth =
∑q+s
i=1 (di + li) + q. Since

F is online function we consider pair of independent oracles ($ol, $) where $ol
denotes the random online function and $ is simply a random function. It is
easy to see from the previous proof that,

Lemma 4.3.3 (Realizing Good Forge View has high probability) For all
adversary A,

Pr[τ(A$ol,$) /∈ τgood] ≤ ε1

where ε1 =
2σ2
auth

2n +
3σ2
auth

t 2n . Now we fix a good view τ = (τF , τT) as defined
above (following same notations). Now it is easy to see that obtaining τ inter-
acting with ($ol, $) has probability 2−nP × 2−ns = 2−n(P+s) where P denotes
the number of non-empty prefixes of Ci, 1 ≤ i ≤ q + s (at those blocks random
online function returns randomly).

Lemma 4.3.4 (Good Forge View has high interpolation probability) For
any good (F, T)-view τ , we have,

25

Pr[F (Di,Mi) = Ci ∀i ≤ q, T (Dj , Cj [..lj]) = Cj [Lj + 1] ∀q < j ≤ q + qt,

T (Dj , Cj [..lj]) = Tj [lj] ∀q + qt < j ≤ q + s] ≥ (1−ε2)
2n(P+s)

where ε2 =
8σ2

auth

2n +
13σ2

auth

t 2n .

Proof. We choose (Z1, . . . , Zq+s), (X1, . . . , Xq) for the first q queries and then
(Yq+1, . . . , Ys+q), which fix all internal Z, X, Y and W values. We first choose
valid L which fixes MM ’s for the first q messages and CC’s, TT ’s and DD’s for
all s+q queries. Now, for the first qt queries, like the previous proof, we can then
choose MM ’s so that checksums are all fresh and for all these fresh checksums
we can ensure last Y blocks fresh by choosing X blocks appropriately. Now
we make these choices one by one more formally. For the next qit queries, we
choose X such that last W values for them are fresh.

Choices of Valid L.

We first define valid L-triples as defined in privacy. L is called valid w.r.t. the
fixed good (F, T)-view τ if the computed MM , DD, CC, TT values satisfy
the collision relations as described earlier. The simple counting argument with
union bound applied to all individual bad events proves the following result.

Pr[L is valid] ≥ (1− ε′1)

where ε′1 =
2σ2

auth

2n +
3σ2

auth

t 2n .

Choices of valid Z,X, Y,H except the last X blocks of the qt queries

As in the previous proof, τF induces consistent collision relations of (Z,X) :=
(Z1, . . ., Zq,X1, . . . ,Xq). Now we extend this collision relation to (Zq+1,Yq+1,Hq+1

. . . ,Zq+s, Yq+s,Hq+s) as follows for j < i ≤ q + s:

1. Zi[j] ≡ Zi′ [j
′] if j = j′ and Di[j] ≡ Di′ [j].

2. Yi[j] ≡ Yi′ [j
′] if j = j′ and Ci[j] ≡ Ci′ [j].

The extended collision relation on (Z,Y) induces a collision relation on Xf :=
(Xq+1, . . ., Xq+s) through the linear mix−1 function. That is, (Z,Y) ⇒mix−1

Xf . Let γ′1 be the extended collision relation on (Z,X) and γ′2 be that of
Y. We denote the number of equivalence classes by s′1 and s′2. By using the
counting on consistency relations (see Lemma 4.2.5) the number of (Z,X, Y)
with mix(Z,X) = Y and coll(Z,X) = γ′1, coll(Y) = γ′2 is at least

2n(s1+s3)(1− (s′1 + s′2)2

2n+1
) ≥ 2n(s1+s3)(1− ε′2)

where ε′2 =
2σ2

auth

2n +
3σ2

auth

t 2n and s3 denotes the number of additional equivalence
classes in Yf which are not present in (Y1, . . . ,Yq).

26

Now, for the qt queries, it is easy to check, we have the property that the mes-
sage corresponding to a forged ciphertext is the prefix of some other messages,
queried previously by the adversary. The argument is similar to that used in
the previous integrity proof.

Choices of X for the first qt forging queries.

Given the choices of valid L and those of X,Y, Z as described above we can now
choose remainingMM values satisfying same collision relation as (Xq+1, . . . , Xq+qt).
More precisely, we can choose all those MM values for which Xj [i]’s are fresh.
Let s4 denote the number of additional distinct blocks in (Xq+1, . . . , Xq+qt)
which are not present in (X1, . . . , Xq). The number of these s4 blocks MM dif-
ferent from all other defined MM , DD and CC blocks such the all last blocks

of MMj ’s (j > q) are fresh is at least 2ns4(1− ε′3), where ε′3 =
2σ2

auth

2n +
3σ2

auth

t 2n

Choices of last block of X for these qt queries.

For any such previous choices, we now choose the blocks of Xj [lj+1], q < j ≤ qt
so that the last block of Yj ’s are fresh. This can be chosen in 2ns(1− ε′4) ways,

where ε′4 =
σ2

auth

2n +
2σ2

auth

t 2n .

Now we claim that, last blocks of Tj ’s for the qit queries are fresh. The claim
is proved in Lemma 3.3.5. Using the result, now we have to choose the X’s such
that the last block of Hj ’s are fresh.

Choices of X for the last qit queries.

For the last qit queries, we choose the blocks of Xj ’s so that the last block of

Wj ’s are fresh. This can be done 2ns(1− ε′5) ways where ε′5 =
σ2

auth

2n +
2σ2

auth

t 2n .

Armed with all these counting, the interpolation probability is at least

(1− ε2)× 2−n(P+s).

where ε2 = ε′1 + ε′2 + ε′3 + ε′4 + ε′5 =
8σ2

auth

2n +
13σ2

auth

t 2n

Lemma 4.3.5 A forged ciphertext upto cth intermediate tag is valid, if it is a
prefix of a ciphertext produced by some previous forward query.

Proof. First we consider the case where c = 1. Then will generalize for any c.
One can check that, if any of the blocks in the forged ciphertext is not identical
to a previous response, then Ti[1] will not be valid due to the randomness of Y
value corresponding to that block. Similarly taking Ti[1] as some final tag output
will give some non-trivial equations. Hence, assume the forged Ciphertext be
(Ci1 [1] Ci2 [2] · · ·Cit [t] Ti[1]), where Cij [j] is the jth block of the ciphertext of
(Dij ,Mij) and Ti[1] is the first intermediate tag block of message (Di,Mi). If

27

the forged intermediate tag Ti[1] is valid, then we have the following set of
equalities in the X blocks : ∀j ≤ t,

2t−jXi[j] ≡ 3 · 2t−j−1Xit [j] + 3 · 2t−j−2Xit−1 [j] + · · ·+ 3Xij+1 [j] +Xij [j]

For t ≤ 127, this equation is trivial only if ∀j ≤ t, Xit [j] ≡ · · · ≡ Xij [j] ≡ Xi[j],
otherwise we have an polynomial of 2 with degree ≤ t− j < 128, whose value is
0, which contradicts the primitivity of 2 in GF (2128). Now, we have to consider
the equalities in the Z blocks. Let dz denotes the no. of associated data blocks
in the message Mz. There are two cases :

• di1 = · · · = dit = di = df : In this case, we has the following equalities in
the Z blocks : ∀j ≤ di,

2tZi[j] ≡ 3 · 2t−1Zit [j] + 3 · 2t−2Zit−1 [j] + · · ·+ 3Zi1 [j] + Zf [j]

For t ≤ 127, this equation is trivial only if ∀j ≤ k, Zit [j] ≡ · · · ≡ Zij [j] ≡
Zf [j], otherwise again we have an polynomial of 2 with degree ≤ t − j
< 128, whose value would be 0. Hence, the forged ciphertext is a prefix
of the ciphertext corresponding to the ith message. Note that, assigning
t > 127, vialotes this claim.

• Otherwise, Let dmax = max{di1 , · · · , dit , di, df}. For Ti[1] to be valid, the
equality in the block Z[dmax], violates the primitivity of 2. Note, that as
for some message, there is no contribution to this block, assigning same
value in this block for the remaining messages also gives a polynomial of
2, with degree less than 128, whose value is 0. So, this case doesn’t occur.

This makes ∀j ≤ k, Xit [j] ≡ Xi[j] meaning that the forged ciphertext block
Cf [1..t] = Ci[1..t], i

th ciphertext response.

Now we prove this for general c using induction. Suppose, our claim is true
for c intermediate tag blocks. We have to show it for ciphertexts upto (c+ 1)th

block. Consider the forged Ciphertext is (Zi, Ci[1] · · ·Ci[ct] Ti[c] Cict+1
[ct +

1] Cict+2
[ct + 2] · · ·Ti′ [c + 1]). If the ciphertext is valid, we have the following

set of equalities for all ct < j ≤ (c+ 1)t,

2ct+t−jXi[j] ≡ 3 · 2ct+t−1−jXi(c+1)t
[j] + · · ·+ 3 · 2ct−jXict+1

[j] + 2ct−jXi[j]

which is again violating the primitivity of 2 unless ∀ct < j ≤ c(t+1), Xi(c+1)t
[j] ≡

· · · ≡ Xij [j] ≡ Xi[j]. Hence the forge ciphertext is identical with the ciphertext
of ith query.

28

Chapter 5

Features

5.1 Main Features of the Cipher

5.1.1 Efficient and Nonce Misuse Resistant

Most of the nonce based authenticated encryption [18] schemes like AES-GCM [15],
OCB3 [13], required the nonce to be distinct in every invocation. Failure to
do so, leads easy attacks on the privacy of the scheme. Usually, one applies
a counter or we choose it randomly (then repetition can happen with negli-
gible probability) to ensure that distinct nonces are used during the tagged-
encryption. But in practice, it is challenging to ensure that a nonce is never
reused. For example, in lightweight applications, it is quite challenging to gen-
erate distinct nonce as it either needs to store a non-tamperable state or require
some hardware source of randomness. Apart from that, there are various issues
like flawed implementations or bad management by the user, for example where
users with same key uses the same nonce. Nonce Misuse Resistance is an im-
portant criteria in the design of AE schemes.

Our construction ELmD is a nonce misuse resistant AE. Recall that, the con-
catanation of public message number pub and private message number priv is
used as nonce. We proved that our scheme provides online privacy under the
repeatation of nonce and full privacy in nonce-respecting scenario.

Various Nonce Misuse Resistant AE Schemes (for example, the deterministic
AE Schemes like SIV [20], BTM [11], HBS [10]) doesn’t use any nonce. Instead
it uses a derived IV using the message and the associated data, which ensures
that IV is distinct for each different associated data-message tuples. A limitation
of such constructions is that these constructions are two pass, meaning they have
to process message twice - once for the authentication and again for encryption
making it less efficient. Having Encrypt mix Encrypt type layered design and
using lightweight linear mixing (instead of non-linear mixing used in EME),
makes our construction single pass and hence efficient.

29

5.1.2 Online and Fully Pipeline Implementable

The cipher is online, allowing encryption to produce ciphertext blocks before
subsequent plaintext blocks (or the plaintext length) are known, and decryption
to produce plaintext blocks before subsequent ciphertext blocks (or the cipher-
text length) are known. Some of the online authenticated constructions like
McOE-D [7] uses TC3 [21] type of structure whose lower level has CBC type
structure, which is sequential and hence can not be pipelined. Our construc-
tion ELmD has a Encrypt-mix-Encrypt type structure and processes associated
data and message in identical fashion, which makes it fully parallel and pipeline
implementable. Note that, in some of the existing constructions like COPA [1],
during the processing of associated data, the last blockcipher input depends on
the previous blockcipher outputs, making the construction sequential for one
block-cipher invocation. So, complete parallelization can not be achieved. Our
construction ELmD doesn’t have such bottleneck and is completely parallel.

5.1.3 Resistant against Block-wise Adaptive Adversaries

We consider the scenario where an authenticated encryption scheme has to
release some portion of the plaintexts before the verification succeeds. This
case can occur when devices have limited buffer to store the entire plaintext,
or when the decrypted plaintext may be needed to be processed quickly due to
real time requirements. This raises some attacks on popular constructions [12].
We consider blockwise adaptive adversaries in this scenario, which have similar
advantages such as privacy and authenticity, however the adversaries would
have access of partial decryption oracles for authenticity security. To resist
against such attacks, intermediate tags can be used. Our construction ELmD
incorporates intermediate tags efficiently and provides security against Block-
wise adaptive adversaries, if required.

5.1.4 Provision for Skipping Intermediate Tags during De-
cryption

ELmD generates intermediate tags in a such a manner that during decryption,
the plaintext computation is independent of the intermediate tag computations.
Hence, if intermediate verifications are not required, the extra computations
required for verifying the intermediate tags, can be skipped. Note that, Sponge
duplex [3], is another authenticated encryption that incorporates intermediate
tags but doesn’t have this advantage.

5.1.5 Robustness

In this subsection, we discuss about the robustness of ELmD.

30

Empty associated data.

ELmD works perfectly even if associated data is empty. In that case, the ini-
tial value is computed using public message number only and then message
processing is done as earlier.

Using the scheme as tweakable encryption scheme.

For complete final block messages, ELmD acts as a length-preserving (tweakable)
encryption scheme (without message/data integrity), with IV being the tweak,
if we set associated data as empty and return the ciphertext without the tag.
For incomplete final block messages, some standard techniques like [16] can be
used to achieve this.

Using the scheme as IV based Stream-cipher.

We can use ELmD as IV -based stream-cipher by setting the message blocks zero
as long as required. The ciphertexts are used as the stream.

Using the scheme as MAC only.

ELmD acts as MAC only if we put the message in the associated data part, set
message part as empty and checksum to 0. The tag is the desired output.

Integrity of associated data.

Considering message as empty and assigning the checksum block to 0n, ELmD
provides integrity of associated data.

Multiple Message Encryption under same Associated Data.

To encrypt multiple messages under same associated data, one can have separate
modules for AD processing and message-ciphertext processing. To ensure that
AD processing module does not need any inverse, we define L to be EK(EK(0))
(instead of something like EK(E−1

K (0) + const)) when 6-round of AES is used.

5.2 Justification for Recommended Parameter
Sets.

In this section, we provide the details that why we have chosen the external
parameters and their recommended values.

We have AES round rd as a parameter. Usual convension is to use full 10
rounds of AES encryption because of it’s security gurantee. So choosing the
round parameter as 10 is obvious. We also observe that, for some applications,
even with much lesser rounds of encryption or decryption is good enough to

31

provide the desired security. In the upper layer encryption, we do not require
much randomness, we just need to ensure that collision probability is low and
the desired randomness is required through the overall upper and lower layer en-
cryption. As AES gives good differential probability after 6 rounds and enough
randomness with 12 (= 6 + 6) rounds, we believe that choosing 6 rounds in
both the layers will provide the desired security. Hence, we opt for the round
parameter 6 as one of our recommended choice.

If implemented in a low-end device, then to resist against block-wise adver-
saries, ELmD must use intermediate tags and set the value of t in between 1
to 127. We recommend to generate tags after the maximum possible gap i.e.
t = 127. But if the buffer is less than 127, then we set t as the size of the buffer.
Applications that don’t have limited buffer problem and during decryption, re-
lease message only after the final tag verification, can use any values of t from
it’s range. If the application demands quick rejection of invalid ciphertexts then
it sets t to an appropriate nonzero value. For example, suppose an application
want to verify the ciphertext after each 256 blocks. Then it sets t = 256. On
the otherhand, if an application doesn’t require any quick rejection, then it sets
t = 0 and skip the extra operations, required to compute the intermediate tags.

Conventionally, Authenticated Encryptions have fixed tag sizes inorder to
minimize ciphertext expansion, but we keep the option of having flexible (i.e.
f = 0) tag size such that the tagged ciphertext is multiple of block size because
having flexible tag lengths, ELmD has some advantages during decryption. Con-
sider the decryption with fixed tag lengths. As the final block of the tagged ci-
phertext may not be full, one can not use decryption to get the checksum block
and verify in the upper level, having full pipelining. Rather, the verification
has to be done in the lower level by first obtaining the plaintext, then calcu-
lating the checksum and generating tag in forward ELmD encryption and then
verifying the tag. Since the checksum value has to pass through a block-cipher
encryption and then a decryption and these can not be pipelined with any pre-
vious blockcipher encryption and decryption (as the output of previous block
cipher invocations are needed to calculate the checksum) - it requiring extra
2.rd-round clock cycles. To avoid these extra clock-cycles, we can use flexible
tags and having the final tagged ciphertext block complete, we can compute
plaintext along with the final checksum block in a fully pipelined manner and
verify in the upper level.

5.3 Comparative Study with AES-GCM

ELmD has the following advantages over AES-GCM :

• AES-GCM needed to ensure distinct nonce for each invocation. Repeata-
tion of nonce doesn’t provide any security for AES-GCM. Our construc-
tion ELmD is a Nonce Misuse Resistant Authenticated cipher and provides
online security when nonce is repeated.

32

• AES-GCM does not provide security against blockwise adaptive adver-
saries. It leaks partial informations during the decryption of invalid ci-
phertexts, when implemented in low end device. As ELmD incorporates
intermediate tags, it resist against such attacks.

• AES-GCM requires one block cipher call plus one field multiplication op-
eration per message block and one field multiplication operation per as-
sociated data blocks, whereas our construction requires two block cipher
call per message block and one block cipher call per associated data block.
Clearly AES-GCM has additional implementation cost, in particular with
hardware as it has to implement both AES blockcipher and field multipli-
cation. Moreover, on the latest Intel CPUs, one call of AES is faster than
one multiplication over the finite field GF (2128). Hence, ELmD has much
better performance in software also.

On the other hand, AES-GCM has following advantages over ELmD :

• AES-GCM uses only the forward direction of the blockcipher is used in the
mode where as ELmD uses both forward as well as backward direction of
the blockcipher. This reduces chip area in AES-GCM when implemented
in hardware. But overall, ELmD require less chip area compared to AES-
GCM as ELmD doesn’t need to implement field multiplications, which
takes a good amount of area.

• On decryption, the authenticity of the associated data can be verified inde-
pendently from the recovery of the plaintext in AES-GCM. So, the block-
cipher calls required during decryption, are not needed. Our construction
doesn’t have this facility as the tag is computed using the checksum of
the plaintexts. Note that, this advantage for AES GCM, has the follow-
ing drawback as well : If the verification is done independently and the
verification succeeds, then to recover the plaintext, again the ciphertexts
has be read, making the construction two-pass.

33

Chapter 6

Design Rationale

The main goal of the cipher is to be efficient, provide high performance and able
to perform well in low end devices. For efficiency, we want our the cipher to
be one pass, nonce misuse resistant. To obtain high performance, we want our
cipher efficient as well as fully pipeline implementable. To perform well in low
end devices, we require that our cipher to be secure against blockwise adaptive
adversaries.

We know that, Encrypt Mix Encrypt or EME [9] is a block-cipher mode
of operation, that turns a block cipher into a tweakable enciphering scheme.
The mode is parallelizable, but as serial-efficient as the non-parallelizable mode
CMC [8]. EME algorithm entails two layers of ECB encryption and a non-linear
mixing in between. In the non-linear mixing, the blockcipher is again used.
EME is proved to provide sprp [14] security in the standard, provable security
model assuming that the underling block cipher is sprp secure. We observed
that replacing non-linear mixing by an efficient online linear mixing actually
helps to have faster and parallel implementation of the construction and gives
online prp [14] security, which is good enough to construct an authenticated
encryption scheme, if tags are properly generated.

We use online linear mixing to make the construction online and efficiently
implemented in low end device or any platform with limited memory. More-
over, we choose ρ as our online linear mixing, as it is lightweight, efficiently
computable and at the same time, intermediate tags can be generated very effi-
ciently. Note that, we could have used more lightweight mixing like simple xor
operation in the linear mixing, but then generating intermediate tags wouldn’t
have been efficient.

We have used the doubling method [19] to generate the masks because this
method produces many different values of the mask from just one secret value
L and it doesn’t require any precomputations and memory. As, we want full
randomness of L, we compute L = EK(0) when 10 rounds of AES is being used

34

and L = EK(EK(0)) when 6 rounds of AES is being used.

Consider an authenticated encryption construction with intermediate tag ver-
ification is done after each t blocks. Before each intermediate tag verification,
the device where it is implemented, has to hold the t blocks of message as well
as some intermediate computations, required for the verification. So, the device
required to have appropriate amount of buffer. As intermediate tags are used in
low end devices, one needs ensure that the buffer size is minimized. The choice
of ρ helps ELmD to verify after one layer which makes the verification is faster
and it requires to store only rd2 blocks of intermediate computation for the next
rd2 subsequent ciphertext.

We replace the second layer encryption by decryption which makes authen-
ticated encryption and verified decryption almost identical. This helps us to
minimize the combined implementd area when both encryption and decryption
is implemented in the same device. Nowadays in all application environment,
both encryption and decryption of blockciphers are needed to be implemented
and hence we can share the architectures to have a compact combined hardware
implementation of it.

The designers have not hidden any weaknesses in this cipher. The recom-
mended parameter set ELmD10,t,f rules out any weaknesses outside AES. The
only possible weakness in case of ELmD6,t,f is the use of 6 rounds AES encryp-
tion in both the layers, which we have clearly mentioned in chapter 2 and 3.

35

Chapter 7

Intellectual Property

This family of authenticated ciphers or any parts of the cipher, do not have an
kind of patents. Existance of any kind of patent on any parts of the cipher is
not known to the submitters. If any of this information changes, the submitters
will promptly (and within at most one month) announce these changes on the
crypto-competitions mailing list.

36

Chapter 8

Consent

The submitters hereby consent to all decisions of the CAESAR selection commit-
tee regarding the selection or non-selection of this submission as a second-round
candidate, a third-round candidate, a finalist, a member of the final portfolio,
or any other designation provided by the committee. The submitters under-
stand that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published
analyses that led to the selection of the algorithm. The submitters understand
that the selection of some algorithms is not a negative comment regarding other
algorithms, and that an excellent algorithm might fail to be selected simply be-
cause not enough analysis was available at the time of the committee decision.
The submitters acknowledge that the committee decisions reflect the collective
expert judgments of the committee members and are not subject to appeal.
The submitters understand that if they disagree with published analyses then
they are expected to promptly and publicly respond to those analyses, not to
wait for subsequent committee decisions. The submitters understand that this
statement is required as a condition of consideration of this submission by the
CAESAR selection committee.

37

Bibliography

[1] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar W.
Tischhauser and Kan Yasuda, Parallelizable (authenticated) online ciphers
8269 (2013), 424–443, Asiacrypt, Lecture Notes in Computer Science,
2013. Citations in this document: §5.1.2.

[2] A.Biryukov, The Boomerang Attack on 5 and 6-Round Reduced AES 3373
(2005), 11–15, Advanced Encryption Standard - AES, Lecture Notes in
Computer Science, 2005.

[3] G.Bertoni, J.Daeman, M.Peeters and G.V.Assche, Duplexing the Sponge
: Single Pass Authenticated Encryption and Other Applications 7118
(2011), 320–337, Selected Areas in Cryptography, Lecture Notes in Com-
puter Science, 2011. Citations in this document: §5.1.4.

[4] Joan Daemen and Vincent Rijmen, AES Submission Document on Ri-
jndael (1998). URL: http://csrc.nist.gov/archive/aes/rijndael/

Rijndael-ammended.pdf. Citations in this document: §1.4.1.

[5] Patrick Derbez, Pierre-Alain Fouque, Jeremy Jean, Improved Key Re-
covery Attacks on Reduced-Round AES in the Single-Key Setting 7881
(2013), 371–387, Eurocrypt 2013, Lecture Notes in Computer Science,
2013.

[6] N. Ferguson, J.Kelsey, S.Lucks, B.Schneier, M.Stay, D.Wagner,
D.Whiting, Improved Cryptanalysis of Rijndael 1978 (2000), 213–230,
Fast Software Encryption, Lecture Notes in Computer Science, 2000.

[7] E. Fleischmann, C. Forler, S. Lucks, McOE: A Family of Almost Foolproof
On-Line Authenticated Encryption Schemes 7549 (2012), 196–215, Fast
Software Encryption, Lecture Notes in Computer Science, 2012. Citations
in this document: §5.1.2.

[8] S. Halevi and P. Rogaway., A Tweakable Enciphering Mode. 2729 (2003),
CRYPTO, Lecture Notes in Computer Science, 2003. Citations in this
document: §6.

38

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf‎
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf‎

[9] Shai Halevi and Phillip Rogaway, A parallelizable enciphering mode 2964
(2004), 292–304, CTRSA, Lecture Notes in Computer Science, 2004. Ci-
tations in this document: §6.

[10] Tetsu Iwata and Kan Yasuda, HBS : A Single-Key mode of Operation
for Deterministic Authenticated Encryption 5665 (2009), 394–415, Fast
Software Encryption, Lecture Notes in Computer Science, 2009. Citations
in this document: §5.1.1.

[11] Tetsu Iwata and Kan Yasuda, BTM : A Single-Key, Inverse-Cipher-Free
Mode for Deterministic Authenticated Encryption 5867 (2009), 313–330,
Selected Areas in Cryptography, Lecture Notes in Computer Science, 2009.
Citations in this document: §5.1.1.

[12] Antoine Joux, Gwenlle Martinet and Fredric Valette, Blockwise-Adaptive
Attackers: Revisiting the (In)Security of Some Provably Secure Encryp-
tion Models: CBC, GEM, IACBC 2442 (2002), 17–30, CRYPTO, Lecture
Notes in Computer Science, 2002. Citations in this document: §5.1.3.

[13] T. Krovetz and P. Rogaway, The Software Performance of Authenticated-
Encryption Modes 6733 (2011), 306–327, Fast Software Encryption, Lec-
ture Notes in Computer Science, 2011. Citations in this document: §5.1.1.

[14] Michael Luby, Charles Rackoff, How to construct pseudorandom permuta-
tions from pseudorandom functions, SIAM Journal of Computing (1988),
373–386. Citations in this document: §6, §6.

[15] D. McGrew, J. Viega, The Galois/Counter Mode of Operation
(GCM), Submission to NIST Modes of Operation Process, Jan-
uary 2 (2004). URL: http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/proposedmodes/gcm/gcm-spec.pdf. Citations in this docu-
ment: §5.1.1.

[16] Mridul Nandi, A Generic Method to Extend Message Space of a Strong
Pseudorandom Permutation., Computación y Sistemas (2009). Citations
in this document: §5.1.5.

[17] Jacques Patarin, The ”Coefficients H” Technique 5381 (2009), 328–345,
Selected Areas in Cryptography, Lecture Notes in Computer Science, 2009.
Citations in this document: §4.2.1.

[18] P. Rogaway, Nonce-based symmetric encryption 3017 (2004), 348–359,
FSE 2004, Lecture Notes in Computer Science, 2004. Citations in this
document: §5.1.1.

[19] P. Rogaway, Efficient Instantiations of Tweakable Blockciphers and Re-
finements to Modes OCB and PMAC. 3329 (2004), 16–31, Asiacrypt
2004, Lecture Notes in Computer Science, 2004. Citations in this doc-
ument: §1.4.2, §4.2.1, §6.

39

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf

[20] P. Rogaway and T. Shrimpton, Deterministic Authenticated-Encryption
: A Provable-Security Treatment of the Key-Wrap Problem 4004 (2006),
373–390, Advances in Cryptology - Eurocrypt, Lecture Notes in Computer
Science, 2006. Citations in this document: §5.1.1.

[21] Phillip Rogaway and Haibin Zhang, Online Ciphers from Tweakable Block-
ciphers (2011), 237–249, CT-RSA, 2011. Citations in this document:
§5.1.2.

40

