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 Introduction

Some geological formations are susceptible to weath-
ing and erosion more so than others, e.g., formations
mprising mainly argillaceous limestone and claystone
e smoother than pure limestone and dolostone. Forma-
ns composed of later lithologies have greater hardness
d thus, they are affected little by chemical weathering
ghanabati, 2004; Candela et al., 2009; Motiei, 1993).
tical image processing methods generally lack the

capability to describe and differentiate the morphologies
of geometric patterns. Synthetic aperture radar (SAR) data,
acquired by airborne and spaceborne sensors, have made it
possible to study surface roughness, which provides useful
information for geoscientists, particularly geologists. The
backscattered signal in all polarizations is affected by
surface roughness and it contains surface roughness
information (Baghdadi et al., 2015; Gorrab et al., 2015;
Martı́nez-Agirre et al., 2015).

For optimal differentiation of the lithologies of various
terrestrial surfaces, it is necessary to consider the
smoothness and roughness parameters and to have a
description of the type and material of each surface.
Spectral images cannot offer such lithological separation
for large areas in a cost-effective manner, whereas
microwave remote sensing allows lithological separation
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A B S T R A C T

Determining surface morphology using synthetic aperture radar (SAR) data requires

accurate topographic and microtopographic models. To distinguish different surface

geometric patterns and to differentiate the formation of geological rock surfaces, it is

necessary to model the smoothness and roughness of surfaces based on radar signal

backscattering. Euclidean geometry is less able than fractal geometry to describe natural

phenomena; however, in application to radar backscattering models, fractal geometry has

never fully replaced Euclidean geometry. Using fractal geometry only, this paper attempts

to improve the backscattering simulation generated by an Integral Equation Model to

improve the description of geological rock surfaces. As the application of radar signal

backscattering is a rarity in the domain of geology, the paper also discusses the efficiency

of the method in improving the results of conventional geological mapping methods. The

proposed method is applied to the Anaran geological formation (between Dehloran and

Ilam in IRAN) using TerraSAR-X SAR data and in situ roughness measurements on pure

sites with rough, intermediate, and smooth morphologies. This implementation shows

fractal and diffractal behavior of geological morphologies under various conditions.
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ased on the degree of erosion, alteration, and weathering
f the surface (Dierking, 1999; Ghafouri et al., 2015; Li
t al., 2012).

To measure surface roughness using SAR data, surface
eometric parameter(s) must be modeled against the
ackscattering coefficient for each polarization. Generally,

 describe and differentiate patterns and geometric
urface textures, it is necessary to model the interaction
etween the backscattered signals and the surface
roperties (Ulaby and Long, 2014).

Fung et al. (1992) developed an Integral Equation Model
EM) as a physically based electromagnetic transfer model
at can tolerate a very wide range of roughness

imensions. Theoretically, the IEM is not restricted to
ny special frequency range or roughness measure (Fung
t al., 1992). The IEM exploits rms-height parameters and
utocorrelation functions (ACFs) to characterize surface
oughness (Hajnsek, 2001).

Given the irregular nature of terrestrial topography and,
onsequently, the irregular nature of the surface roughness
arameters, estimations based on fractal geometry could
e contaminated by fewer errors compared with Euclidean
eometry. Unlike Euclidean geometrical shapes, fractals
re irregular and thus, they are suitable for modeling
nvironmental effects (Falconer, 2005; Franceschetti et al.,
999a; Mandelbrot, 1983).

The main improvements offered by fractal geometry to
ackscattering modeling, especially the IEM, are as
llows:

 application of a generalized (i.e. fractal) ACF instead of
Gaussian and exponential ACFs (Baghdadi et al., 2004);

 calculation of the correlation length using fractal
parameters (e.g., the fractal dimension) (Zribi et al.,
2000). The fractal dimension is the fractal parameter that
best describes the complexity of objects and, contrasting
with topological dimension, is a real and not a natural
number (for linear objects between 1 and 2, and for
surfaces between 2 and 3, depending on their levels of
complexity);

 computation of the rms-height using fractal parameters
(e.g., the fractal dimension) (Franceschetti et al., 1999a);

 calculation and application of the ACF as a function of
fractal dimension (Falconer, 2005).

The flowchart presented in Fig. 1 summarizes the
roposed method.

Apart from the platform and antenna parameters, the
urface parameters, i.e. roughness parameters and dielec-
ic constants, must be measured in situ and extracted,

espectively (Fig. 1a). Having two methods of rms-height
alculation and three methods of ACF calculation provides
ix methods of backscattering coefficient simulation via

e IEM (Fig. 1b). To evaluate the efficiency of each method,
e calculated backscattering coefficients are compared

gainst TerraSAR-X backscattering measurements (Fig. 1c).
The remainder on this paper is organized as follows.

ection 2 describes the IEM and the conventional
haracteristics of geological surface roughness in detail.
urthermore, in this section, we propose the methodology

of this paper, which is based on using fractal geometry for
the IEM input calculation to improve the results. Section 3
describes the study area and the data obtained for the
implementation of the methodology and for the compari-
son with conventional methods. Section 4 presents and
compares the results of the implemented simulation of the
case study. Section 5 offers concluding remarks, explains
the improvements achievable in geological mapping using
the IEM model based on surface roughness, and unders-
cores the effectiveness of replacing Euclidean geometry by
fractal geometry. Furthermore, the fractal and diffractal
regimes of different geological surfaces are analyzed.

2. Microwave Backscattering Model

Fung et al. (1992) introduced the IEM, for which further
details were published subsequently by Fung (1994). This
model gives the backscattering coefficient so in terms of
platform, antenna, and surface parameters. Surface pa-
rameters involve surface roughness parameters and a
dielectric constant. In this paper, the IEM co-polarization
equation based on the updated version of the equation is
used (Fung and Chen, 2004).

In the following two subsections, the characterizations
of surface roughness specifications in both Euclidean and
fractal geometries are explained.

2.1. Surface roughness parameters in Euclidean geometry

In backscattering models, surface roughness is charac-
terized via three features: root mean square height (rms-
height), correlation length, and ACF.

Fig. 1. Study flowchart. For implementation of the IEM, in addition to the

platform and antenna parameters, surface parameters as described in (a)

are needed. For assessment of the methodology proposed in this paper,

surface roughness parameters via six methods of calculation (i.e. six

combinations of two rms-height calculations and three ACF calculation

methods), mentioned in (b) are inserted into the IEM. To evaluate the

results, in (c), they are compared mutually with TerraSAR-X

measurements.
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. Root Mean Square Height (rms-height)

The rms-height, as a statistical parameter, describes the
riety of microtopographical elements on the surface.
is parameter can be calculated based on a one-

mensional discrete surface profile consisting of N points
ith elevations hi (Zribi, 1998).

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

h2
i

  !
�Nh

2

" #vuut (1)

here

¼ 1

N

XN

i¼1

hi (2)

An increase in the length of the profile usually triggers a
e in the rms-height value (Baghdadi et al., 2006;
ghdadi et al., 2015). Additionally, calculations have
own that in single-scale studies, increasing the mea-
rement profile length affects the rms-height value, but
nsidering fractal geometry, there is no such an effect
ranceschetti et al., 2006).

. Autocorrelation function (ACF)

The ACF defines the extent of the similarities of
fferent parts of a surface. Different parts of rough
rfaces, in contrast with smooth surfaces, have less
utual correlation. The normalized ACF, for j = jDx, where

 is the spatial resolution of a surface with N samples, is
ven by:

j Þ ¼
PN�j

i¼1 hihiþjPN
i¼1h2

i

: (3)

In order to characterize the ACF of a surface fully, the
scretization interval, used to sample the profile, should

 at least as small as one tenth of the correlation length
ribi, 1998). In backscattering models, such as the IEM, the
rface spectrum is included in the equation. Thus, a
gression of Eq. (3) is used to provide a certain equation
r the ACF. Two types of regression used commonly are
ponential and Gaussian. According to Fernandez-Diaz
010), the exponential ACF is

j Þ ¼ e
� jj j/l (4)

d the Gaussian ACF is (Fernandez-Diaz, 2010)

j Þ ¼ e
�j2/l2 ; (5)

where l is the correlation length. In addition to rms-
ight, both exponential and Gaussian regressions are
itable to represent roughness geometry in the IEM.
cording to Hajnsek (2001), the behavior of ACFs for
ugh surfaces tends to be Gaussian, whereas it tends to be
ponential for smooth surfaces. In the calculation of ACFs,
rrelation length is considered as one third of the
mivariogram range (Western et al., 1998).

2.4. IEM modification using fractal geometry

Although not exactly self-similar, natural features are
generally self-similar statistically. It means that every
part of their structure has statistical properties (i.e. a
mean and a standard deviation) similar to those of the
entire structure. Regular curves and smooth surfaces can
be described using Euclidean geometry, whereas natural
features such as clouds, coastlines, and mountains have
irregular structures and they should be best described
using fractal geometry (Mandelbrot, 1983).

Based on the self-affine fractals definition, we can
obtain the following equation between the increments j
and the difference of the function values over these
distances

E h x þ jð Þ�h xð Þj j2
h i

¼ Akjk2H
(6)

where A is a constant, || || is a distance norm, and H is the
Hurst exponent, 0 < H < 1 (Franceschetti et al., 1999b),
which can be obtained using the fractal dimension (FD)
(Franceschetti et al., 2000)

H ¼ 3�FD (7)

Larger Hurst exponent values have smaller fractal
dimensions and indicate smoother surfaces. In the
following, we describe the methodologies considered to
calculate the input geometric parameters of the IEM
necessary to improve the accuracy of surface roughness
and geological morphology estimations.

2.5. Computation of rms-height using fractal geometry

For self-affine isotropic stochastic fractal surfaces, the
fractal dimension (or, alternatively, the Hurst exponent)
and topothesy, together, provide a complete description of
the surface. In fractal geometry, there is a relationship
between a fractal geometry parameter, called topothesy
and rms-height.

Topothesy (T) is a measure of the ‘‘strength’’ of a
fractal and it is defined as the horizontal distance
between two neighboring points connected by a chord
that has one radian of rms-slope (Agnon and Stiassnie,
1991). Using these two fractal parameters (H and T), the
standard deviation of the pdf of a fractal surface can be
written as

s ¼ T 1�Hð ÞtH: (8)

The standard deviations of the slopes sp of the fractal
surfaces can be evaluated as s/t (Franceschetti et al.,
2000):

sp ¼
T

t

� �1�H

: (9)

Therefore, topothesy is the observation scale t at
which the average standard deviation of the slopes is
equal to unity. In fact, when t = T in Eq. (8),
s = 1. Topothesy, as well as the Hurst exponent, can
be obtained using the fractal dimension (D) and rms-
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eight (s) (Franceschetti et al., 2000):

D ¼ 3�H
s ¼ T 1�Hð Þ (10)

.6. Computation of ACFs using fractal geometry

As shown in Eq. (6), the variance of the normal
istribution of h(x + 1) – h(x) on a fractal surface is
j2H. Thus, it could be shown that (Zribi et al., 2000):

 h x þ jð Þ�h xð Þj j½ � ¼ 2

Z 1
0

uffiffiffi
A
p

jH ffiffiffiffiffiffiffi
2p
p exp � u2

2Aj2H

  !
du

 jH 2
ffiffiffi
A
p
ffiffiffiffiffiffiffi
2p
p

 jH
E h x þ 1ð Þ�h xð Þj j½ �

(11)

here u = |h(x + j)–h(x)|.
As discussed in Zribi et al. (2000), the fractal

utocorrelation function is as follows:

 jð Þ ¼ s2 1�1

2

j
t

� �2H
" #

; (12)

where j < t, which is valid for scales lower than Dx in
hich the surface structure is described with the fractal

imension, rms-height, and t. In Eq. (12), the variance s2 is
omputed from Eq. (8). In Zribi et al. (2000), a good
greement is shown between this function and the
xponential function for surfaces that have small values
f rms-height, whereas a good agreement is shown with
e Gaussian function for surfaces with large values of rms-

eight.

. Case study

As a case study to demonstrate the application, the
estern part of the Anaran geological formation was

elected. The region is located near Ilam, in western Iran
28550–338050 N, 468350–468500 E). In this region, the

abdeh Formation (Paleocene to early Miocene) is supe-
imposed to the Asmari Formation (Oligocene to lower

iocene), and the Asmari Formation is overlaid conform-
bly by the Gachsaran Formation (Lower Miocene)

ghanabati, 2004; Motiei, 1993). Fig. 2 depicts general
iews of the outcrop surfaces of these formations.

In this case study, the spectral behaviors of the
lithologies have considerable similarities; therefore, the
morphologies of the outcrops are considered as the
distinguishing constraint (Aghanabati, 2004). Hyperspec-
tral imagery cannot provide textural information of the
lithologies (Li et al., 2012). Therefore, discrimination of
these units for either geological mapping or interpretation
of optical images requires site visits as well as in situ
roughness measurements (Dierking, 1999; Lutgens et al.,
2014).

The Asmari Fm. is composed mainly of limestone in the
upper part and of an evaporitic member in the base.
Meanwhile, the Pabdeh and the Gachsaran Fms. comprise
marl and argillaceous limestone (Fig. 3a, b). The geomor-
phology depicted in Fig. 3c is a geological section of
Anaran. The lower Miocene Asmari Fm. as well as the
Gachsaran and the Paleocene–Oligocene Pabdeh Fms.
outcrop in the Anaran structure. Different outcrop mor-
phologies have different decay properties. The regional
lithology contains limestone, dolomite, marl, and anhy-
dride (Aghanabati, 2004).

The Asmari and Pabdeh Fms. have formed surface
outcrops of rock and smooth clay, respectively, while the
Gachsaran Fm. outcrops represent an intermediate case.
Such lithological differences are considered by the differ-
ent surface roughness parameters in a backscattering
electromagnetic model. The dielectric constant is a
parameter that, by definition (Fung, 1994), is affected
mainly by moisture. If no change is assumed in the value of
the dielectric constant, i.e. no change in moisture,
differences in surface roughness level will be the only
reason for differences in backscattering. This assumption is
an acceptable criterion for the discrimination of alteration
zones (Lutgens et al., 2014).

The backscattering coefficient is calculated using a
TerraSAR-X image, which was acquired in the X-band (i.e.
Freq.: 8–12 GHz, wavelength: 3.75–2.50 cm.) in Staring
SpotLight mode on an ascending orbit with a 228 incidence
angle (Pitz and Miller, 2010). The spatial resolution of the
image on the study site is about 25 cm. Regarding signal
penetration, according to Pitz and Miller (2010), the
backscattered power of the penetrated signal is beyond the
dynamic range of the TerraSAR-X antenna; thus, signal
penetration is ignored categorically in this study.

Based on the IEM validity range presented by Fung
(1994), results of studies by Sahebi et al. (2004), and in situ
roughness measurements of the formations in the study
Fig. 2. General view of outcrop surfaces: (a) Pabdeh Formation (smooth), (b) Asmari Formation (rough), (c) Gachsaran Formation (intermediate).



re
stu
de

se
pr
re
er
di
Pa

ap
lo
w
ap

Fig

at 

A. Ghafouri et al. / C. R. Geoscience 349 (2017) 114–125118
gion, TerraSAR-X was considered as suitable for this
dy (Fung, 1994; Sahebi et al., 2004). The morphological

tails of the study sites are presented in Table Sm1.
As shown schematically in Fig. 4, different sites were

lected within the region for the implementation of the
oposed method. Despite the mountainous nature of the
gion, the local slopes at the sites were lower than the
ror range of the implemented frequency. Each site has
fferent properties in terms of roughness. Site 1 on the
bdeh Fm. has a completely eroded structure, and it
pears mostly in the form of soil on the surface. Site 2 is
cated on the Asmari Fm. It has greater resistance against
eathering and chemical and physical alteration, and it
pears as a rocky face. Site 3 is situated on the Gachsaran

Fm. and it appears with an intermediate characteristic.
Despite the presence of a rocky formation, the site is
covered with rock fragments formed via erosion and
alteration.

According to the available geological maps of the
region, each site is located on a single geological formation,
and surface roughness is almost homogenous. These sites
were selected inasmuch as they have approximately the
same roughness. Moreover, the selection of sites was made
to avoid large-scale topography; however, the large-scale
DEM of the region was considered to calculate the local
incidence angle.

The available geological maps (1:100,000) were those of
the National Iranian Oil Company. These maps are able to
provide complete information for the different lithologies,
and they were used as reference for the alteration zones.

. 3. (a, b) Field views of the Asmari, Pabdeh, and Gachsaran formations

outcrop sections, (c) stratigraphic chart.

Fig. 4. Case study region in western Iran (upper image). Abbreviations on

the geological map (lower image) stand for the geological formations (in

alphabetical order): Aj—Aghajari Formation (upper Miocene to Pliocene);

As—Asmari Formation (lower Miocene); Gs—Gachsaran Formation (Lower

Miocene); Gu—Gurpi Formation (Upper Cretaceous); Il—Ilam Formation

(Upper Cretaceous); Pd—Pabdeh Formation (Paleocene to early

Paleocene). Site 1, Pabdeh Formation (smooth); site 2, Asmari

Formation (rough), and site 3, Gachsaran Formation (an intermediate

case between smooth and rough) (Aghanabati, 2004; Motiei, 1993).
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fter determining the geologically pure formations, the
election of the sites was performed with consideration of

e need for an accessible road to the location of each site.
Surface roughness field measurements were performed

sing the Total Station surveying equipment (Trim-
leTM5600) and data gathering was undertaken on a grid
f points (Fig. 5). This grid at each site comprised a mesh
quare containing 51 � 51 points lying in 20 � 20 m
quare; i.e. the distance between each pair points was
0 cm. Thus, the DEM of the surface was generated with
ampling intervals smaller than the correlation length. As
entioned in the introduction, grid-based data help
easure the roughness of any arbitrary profile. Moreover,

stimating the fractal dimension for evaluating the
orrelation function is made possible through the use of

 DEM.
After implementing a procedure for wavelet despeckl-

g (Roomi et al., 2011), the backscattering coefficient was
alculated based on the product radiometric calibration
anual (Pitz and Miller, 2010), and the results are shown

 Fig. 6.
In order to georeference the radar data, 18 ground

ontrol points (GCPs) were measured using GPS during the
ite visit for the in situ measurements. Because the climatic

conditions were very dry when the satellite data were
acquired, and working on the basis that the geological
maps provided the only chance to identify the surface
lithologies, no in situ dielectric measurements were
performed. All necessary constants were gathered from
Martinez and Byrnes (2001).

4. Implementation and analysis of results

By using the IEM equation for hh and vv polarizations,
the values of so for all three sites are calculated in six
different ways that result from the combination of the
three separate modes of calculation of the ACF and the two
different methods adopted for the rms-height computa-
tion. In other words, Gaussian, exponential, or fractal
autocorrelation equations are combined with Euclidean or
fractal rms-height evaluations to provide six categories of
results.

The dielectric constants were chosen from the tables of
Martinez and Byrnes (2001) and, as mentioned in the
previous section, the DEMs of the three different sites were
obtained using the Total Station surveying instrument.
Conventionally, surface roughness measurement is usually
performed along one or more linear profiles on the surface.
In this study, some zigzag profiles were extracted from the
DEMs to calculate the correlation length (l), fractal
dimension (FD), and topothesy (T). Such a method of
measurement reduces the uncertainty of the parameters
considerably, because a long profile can be drawn and
interpolated for such a calculation.

The calculation of rms-height was presumed even
much more precise. The rms-height, as one of the major
parameters of the IEM, was calculated for each cell of the
DEM using the eight adjacent cells. The surface parameters
of each of the aforementioned sites are tabulated in Table
Sm1.

Figs. 7–9, which compare the computed so of the IEM,
namely the ‘‘Simulated IEM’’ as the results of the six
aforementioned ways of calculating the input parameters
for 30 randomly selected pixels in each of the study sites,
depict the IEM backscattering coefficient values in terms of
the measured SAR backscattering coefficient, referred to as
the ‘‘SAR Measurement’’ (in dB). Obviously, the proximity
of the radar backscattering values (calculated by the IEM
model) to the measured values from the SAR image bears
testimony to the improvement in the performance of the
model.

Fig. 7 shows that the exponential ACF presents better
accuracy than the Gaussian function for site 1. In addition,
the fractal ACF provides the least deviation of the three. As
explained in Section 3, site 1 is located on the Pabdeh Fm.,
which has a corrosive nature, and it is generally found in
the form of soil on the surface.

Fig. 8 shows the simulation results of site 2. The
Gaussian ACF provides obviously more reliable results
than the exponential one. Again, the fractal ACF represents
much less deviation than the other two functions. Site 2 is
located on the Asmari Fm., which is not influenced
significantly by physical and chemical erosion and alter-
ation. Generally, its rocky surface is evident.

ig. 5. In situ field measurement using the Total Station surveying

quipment (TrimbleTM5600).

Fig. 6. Evolution of the Sigma Naught coefficient (expressed in dB).
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The simulation results of site 3 are shown in Fig. 9. The
sults of the IEM obtained for this site show a high degree

 consistency compared with the other two sites.
wever, again, the fractal ACF has less unconformity.

The site located on the Gachsaran Fm. has intermediate
roughness. Although it is located amongst rocky regions,
the alterations have made its surface somewhat
fragmented.
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HH Polarization

VV Polarization

. 7. Backscattering simulation accuracy via the IEM model in two polarizations (hh and vv) at site 1: (a, b) using Gaussian autocorrelation function with

clidean and fractal rms-height, (c, d) using exponential autocorrelation function with Euclidean and fractal rms-height, (e, f) using the fractal

tocorrelation function with Euclidean and fractal rms-height.



h
m
n

F

E

fu

A. Ghafouri et al. / C. R. Geoscience 349 (2017) 114–125 121
Figs. 7–9 depict the effects of each ACF and rms-
eight. However, a closer inspection is needed to
easure the standard deviation of each method

umerically. The results for each site and both hh and

vv polarizations are tabulated separately in Table
Sm2.

Site 1 has less roughness compared with site 2 and it is
modeled more suitably by the exponential function. In
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dition, it is better to apply the Gaussian ACF for the
ugh surface of site 2. The effect of rms-height, which is
t visually obvious in the previous graphs, can be
derstood fully from the tabulated data.

Applying Eq. (9), which contains the Hurst exponent
and is based on fractal geometry, instead of Eq. (1)
generally produces better results, i.e. it reduces the values
of the standard deviation. Interestingly, using fractal
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ometry and calculating both the rms-height and the ACF
ultaneously results in considerable reduction of the

ndard deviation. The improvements made in both
larization cases are evident.
The fractal nature of the surface roughness means
ctal geometry is more efficient than Euclidean geometry

 modeling the surface. Figs. 7–9 show better results for
ctal modeling. The values of the standard deviation in
ble Sm2, and their illustration on the bar chart of Fig. 10,
ow the general improvement. However, considering the
haviors of the different geological surfaces with various
els of roughness, we deduce the following:

there is general similarity in the performance for hh and
vv polarizations and their behaviors have no significant
connotation;
the exponential ACF is much more suitable for smoother
surfaces and the Gaussian ACF results are more
appropriate for rougher surfaces; however, explicit use
of fractal geometry presents the lowest standard
deviations;
rough surfaces offer lower fractal and greater diffractal
behavior than smooth or intermediate surfaces.

 Conclusions

In this paper, a novel method for modeling the surface
ughness of geological top formations using SAR polari-
etric data was presented, with the aim of improving the
ecision of geological maps. The basis of this method is
ndom fractal geometry. Because of the irregular and
ctal nature of natural surfaces, an electromagnetic
ckscattering model of radar signals based on fractal
ometry, in comparison with Euclidean geometry, for the
lculation of geometric input parameters of the IEM,
ovides much more accurate results, i.e. closer to SAR
easured values. Generally, the improvements are clear
r both hh and vv polarizations. Furthermore, the level of
provement was similar for all three of the study sites.
wever, the improvement for rougher surfaces (site 2)

as much more pronounced. Using this method in
ological mapping could improve traditional geological
apping processes that conventionally are based on
perspectral image processing. It must be recognized
at roughness modeling cannot be used as a stand-alone
apping methodology; however, it can improve the
sults of traditional geological mapping methods and
duce the requirements for site visits and field measure-
ent operations considerably.
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