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This paper is dedicated to the presentation of an advanced 3D numerical methodology 
for virtual sheet and/or bulk metal forming simulation to predict the anisotropic ductile 
defects occurrence. First, the detailed formulation of thermodynamically-consistent fully 
coupled and fully anisotropic constitutive equations is given. The proposed constitutive 
equations account for the main material nonlinearities as the anisotropic plastic flow, the 
mixed isotropic and kinematic hardening and the anisotropic ductile damage under large 
inelastic strains. Second, the related numerical aspects required to solve the initial and 
boundary value problem (IBVP) are very briefly presented in the framework of the 3D 
finite element method. The global resolution schemes as well as the local integration 
schemes of the fully coupled constitutive equations are briefly discussed. Finally, some 
typical examples of sheet and bulk metal forming processes are numerically simulated 
using the proposed numerical methodology.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The main objective of modern metal forming processes is to design robust and lightweight structural components which 
help reducing carbon dioxide emissions during both the manufacturing process as well the future use of the final prod-
uct. Accordingly, the rising demands of customers concern the lightweight design in order to reduce significantly energy 
consumption and cost efficiency while increasing the structures’ service life by enhancing their stability and deformation 
resistance under various thermomechanical loading paths. These objectives cannot be reached without the help of an ‘effi-
cient’ and ‘robust’ numerical or virtual design methodology based on:

• ‘advanced’ constitutive equations to describe, as accurately as possible, the main thermomechanical fields and their 
various interactions (full coupling effects) during their evolution,

• ‘advanced’ numerical tools to predict robustly and accurately the evolution of the deformation processes and the possi-
ble defects occurrence during the manufacturing processes or during the use of the final component in any mechanical 
system.

In fact, when formed or machined by large elasto-inelastic strains under room or high temperature, metallic materials 
undergo a strong localization of inelastic flow which is often at the origin of the initiation, growth and coalescence of 
microcracks and/or microvoids usually called the ductile damage. Depending on the geometrical complexity of the forming 
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tools, which define the shape of applied loading path, this well-known mechanism of ductile fracture may cause the loss 
of the quality of the formed part by the formation of macroscopic cracks propagating inside this formed part. This ductile 
damage can be seen as a natural consequence of the large inelastic strain localization which itself is strongly dependent on 
the main thermomechanical phenomena such as the mixed isotropic and kinematic hardening, the heat flux, the various 
initial and induced anisotropies, the initial microstructure of the material and its change (texture) under the applied loading 
paths. Accordingly, the constitutive equations used to simulate and to optimize numerically these metal forming processes 
should account for these phenomena and their mutual interactions or strong coupling.

Many published works have been devoted to the optimization of bulk and sheet metal forming processes using various 
more or less simplified approaches. For example, in the forming of thick or thin metallic sheets, the goal is to enhance 
the capacity of the sheet to carry a large inelastic “homogeneous” strain without any strong localization, giving some 
through thickness necking prior to a macroscopic crack formation. In engineering practice, the material formability is usu-
ally assessed with strain-based forming limit diagrams (FLD) in the case of linear (or proportional) strain loading paths as 
pioneered by Mariciniak and coworkers [1,2]. These forming limit diagrams or curves are determined from the experimental 
measurement of the necking or local fracture onset under linear strain paths using the minor and major principal strain 
diagram. However, it has been shown [3–10] that these strain-based forming limit criteria are not efficient when the applied 
strain path is not linear (or is non-proportional). Unfortunately, in major forming processes, the strain paths supported by 
deforming material points during the deformation process have been shown to be neither linear nor monotonic. This is 
mainly due to the complexity of the geometry of the tools (dies, punches), which cause locally reversed strain path ex-
hibiting non-negligible Bauschinger effects. This is clearly the case in sheet-forming processes, for which the FLD prediction 
underestimates the failure strain as observed in many works (see [11–16] among others). To avoid these drawbacks, some 
authors proposed to construct the FLD (or FLC) in the stress space instead of the strain space, leading to the so-called 
stress-based forming limit diagram, FLSD [3–10]. However, this approach has been shown to be not efficient for complex 
combined stress paths (mainly non-proportional loading paths exhibiting additional hardening), where material hardening 
is strongly dependent on the shape of the loading path [12,13,17]. On the other hand, when necking takes place somewhere 
in the sheet, the plane stress assumption, on which is based the FLSD, becomes highly questionable and the predicted local 
stress state is less accurate or simply wrong.

Another way, proposed in many works in order to enhance the predictivity of the forming limit curves, consists in 
completing the yield function, of von Mises or Hill types, by appropriate instability criteria based on the pioneering works 
by [18–20]. Most instability theories assume the existence of an initial imperfection with a given geometrical definition, 
leading to a high sensitivity to the size of such an assumed initial imperfection. On the other hand, the prediction of plastic 
strain and its value at the final fracture is highly dependent on the used constitutive equations and on whether or not they 
account for non-linear mixed isotropic and kinematic hardening as well as the ductile damage effect on plastic flow and 
hardening evolution. In order to avoid this problem, many authors proposed to replace the initial imperfection by using an 
appropriate ductile damage theory, which allows catching naturally the instability conditions due to the damage initiation 
without assuming the existence of any initial imperfection [21–24] among many others.

An alternative approach, proposed in the recent last two decades, to predict the localized neck prior to fracture in sheet 
or bulk metal forming, is the full coupling between the material’s behavior and the ductile damage using either macroscopic 
monoscale or micro–macro multiscale modeling approaches as can be found in the recent books dedicated to the damage 
prediction in metal forming [25–27]. Two different kinds of damage theories are used in metal forming problems: Gurson’s 
damage theories [28–37] (among others) and continuum damage mechanics (CDM) theories [26,27,38–74]. The equivalence 
between CDM and Gurson-type damage coupling has been investigated in [54], where the potentialities of the CDM ap-
proach compared to Gurson’s approach have been discussed mainly concerning damage-induced anisotropy and its effect 
on the other fields (strong coupling). This kind of fully coupled approach accounts for the direct interactions (or strong 
coupling) between the inelastic flow, including different kinds of hardening, and the ductile damage initiation and growth. 
This full coupling allows the “natural” description of the strain localization modes inside the deformed part on the basis of 
the effect of the ductile damage evolution in the other mechanical fields under concern. Hence, it provides a simple and 
helpful way to predict where and when the inelastic flow localizes due to the earliest stage of ductile damage initiation 
without reference to any initial imperfection. The main advantages of this fully coupled approach are [26,27]:

• it can be used, without any limitation, with advanced constitutive equations accounting for initial and induced 
anisotropies described by various quadratic or non-quadratic yield functions and plastic potentials. Many physical phe-
nomena related to large inelastic strain coupled with ductile isotropic or anisotropic damage can be taken into account;

• the effect of the loading path shape in the stress or strain space (non-proportionality) and in time (cyclic loading) is 
considered, including the reversibility of the load with or without compressive phase. This accounts for:
◦ the Bauschinger effect (kinematic hardening),
◦ the closure of microcracks and/or micro-voids (unilateral effect) under the compressive phase of the loading path and 

its effect on the recovery of some physical properties as the microcracks close;
• due to the localization modes giving rise to highly varying thickness, this approach will be used within full 3D or 

specific thick shell formulations in order to avoid the weakness related mainly to the plane stress assumption.
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This kind of approach leads to thermodynamically-consistent constitutive equations (for elasticity, (visco)plasticity, mixed 
hardening, damage, friction, thermal exchange, environment effect . . . ) with material parameters having a clear intrinsic 
character. In fact, since each phenomenon accounted for is represented by a couple of state variables, which in turn are gov-
erned by appropriate ordinary differential equations, the identification procedure is decomposed in different steps and the 
material parameters are determined using an inverse numerical approach for each phenomenon while the other parameters 
are maintained fixed [26,27].

Note that the advanced fully adaptive numerical methodology developed by the authors is well working only in 2D cases 
and has been already published. Since its 3D version is still under development, this paper is dedicated to the presentation 
of an advanced 3D (spatially non-adaptive) numerical methodology for virtual sheet and/or bulk metal forming simulation. 
Section 2 gives the formulation of thermodynamically-consistent fully coupled multiphysical constitutive equations account-
ing for the main material nonlinearities as the large plastic flow, the isotropic and kinematic hardening, and the ductile 
anisotropic damage under large inelastic strains. The kinematics of the homogeneous finite transformation is briefly pre-
sented. The formulation of the constitutive equations describing the mechanical behavior of the material is described in 
some details based on the appropriate choices of the state and dissipation potentials. A brief extension is made to include 
the temperature effect including the heat exchange and viscoplasticity. Finally, some indications are given concerning the 
modeling of the constitutive equations for the contact/friction at the solid/tool interfaces.

Section 3 is dedicated to the related numerical aspects. First, the time and space discretization of the Initial and Boundary 
Value Problem (IBVP) in the framework of the finite difference method in time and the finite element method in space are 
discussed. The well-known static implicit (SI) and dynamic explicit (DE) global resolution schemes are summarized, followed 
by the detailed presentation of the local integration scheme of the fully coupled constitutive equations. The numerical 
treatment of the contact between deformable solids is reviewed in the framework of master/slave surface methods taking 
into account the friction constitutive equations. Finally, a brief description of the fully adaptive numerical methodology for 
virtual metal forming is presented.

Section 4 shows some application of the proposed virtual metal forming methodology to some sheet and bulk metal 
forming processes with damage occurrence. Finally, some conclusions and perspectives of this work are given.

Throughout this chapter the following notations are used: x, �x, x, �x, x indicate the zero (scalar), first (vector), second, 
third and fourth rank tensors, respectively. The usual tensorial product is indicated by the symbol ⊗, while the contracted 
(or inner) product is indicated by ·, :, ∴ and :: for the simple, double, triple and quadruple contractions respectively. In 
indicial form with respect to any orthonormal Cartesian frame of basis �e j (�e1, �e2, �e3), this gives: �x · y = xi yi j = a j�e j = �a, 
x : y = xijkl ykl = aij = a, �x ∴ y = xijk yi jkl = al�el = �a or x :: y = xijkl yi jkl = a.

2. Thermodynamically-consistent fully coupled constitutive equations

Here, we limit ourselves to the modeling of the nonlinear behavior of metallic materials including elasticity, (visco)plas-
ticity, mixed hardening and ductile damage with various initial and induced anisotropies. As long as the metallic materials 
are concerned, the assumption of the small elastic strains and large inelastic (plastic or viscoplastic) strains is adopted.

2.1. Kinematics of finite strains

The concept of intermediate configuration using the classical multiplicative decomposition of the total gradient F into 
elastic F e and plastic F̄

p
parts is adopted to define the elastoplastic kinematics. Accordingly, the total gradient of the 

homogeneous transformation is given by:

F = F e · F̄
p = Q · V̄

e · F̄
p = V e · F̂

p = Q · F̄ (1)

where F e = Q · V̄
e

is the elastic transformation gradient in which V̄
e

is the rotated right elastic stretch tensor and Q is 
the rotation tensor which represents the orientation of the rotating frame with respect to the current configuration. The 
upper bar (·̄) for any tensor indicates its rotated form thanks to the orthogonal rotation tensor Q . While F̄

p
is the plastic 

“gradient” with respect to the “isocline” configuration C̄p and F̄ is the rotated total transformation gradient as schematized 
in Fig. 1. The plastic transformation gradient F̂

p = Q · F̄
p

corresponds to the transformation obtained by purely elastic 
unloading from the current configuration Ct .

The fulfillment of the objectivity requirement is based on the rotating frame formulation (see [27,63] and references 
given there). In this framework, any tensorial quantity (namely T for second-rank tensor and T for fourth-rank tensor) 
defined in the current configuration is transported to the rotated configurations C̄p or C̄ according to:{

T̄ = Q T · T · Q for second-rank tensors (a)

T̄ = (Q ⊗ Q T) : T : (Q T ⊗ Q ) for fourth-rank tensors (b)
(2)

The use of Eq. (1), together with that of the small elastic strain assumption (i.e. V̄
e = 1 + ε̄e with ‖ε̄e‖ � 1 and 1 being the 

second-rank unit tensor) in the expression of the spatial velocity gradient (L̄ = ˙̄F · F̄ −1
), leads to the additive decomposition 

of the total strain rate as well as the rotating frame rate (or spin) under the following form [63]:
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Fig. 1. The kinematics of the elastoplastic transformation in the framework of the rotating frame concept.{
D̄ = [L̄]S = ˙̄εe + 2[ε̄e · W̄ ]S + D̄

p = ˙̄εeJ + D̄
p

(a)

W Q = Q̇ · Q T = W − W̄ = W − [K (V̄ )] : D̄ (b)
(3)

where D̄
p = [L̄

p]S = [ ˙̄F p
.( F̄

p
)−1]S is the plastic strain rate, D̄ = [L̄]S and W̄ are the total strain rate and the relative total 

spin respectively with respect to the Jaumann rotating frame rate, and ˙̄εeJ
defines the rotated Jaumann rate of the small 

elastic strain tensor.
The total spin is defined as W = [ Ḟ · F −1]A . Note that the superscripts [·]S and [·]A stand for symmetric and skew-

symmetric parts of [·] respectively. The relative total spin W̄ ij is postulated a priori as a linear function of the total strain 
rate: W̄ = [K (V̄ )] : D̄ in which K (V̄ ) is a fourth-rank tensor depending on the rotated total right stretch tensor V̄ . Note 
that the Jaumann rotating frame is defined by K ≡ 0 and various other cases can be defined as discussed in [63]. Note that 
this simple kinematics is quite different from other kinematics that introduce an extended multiplicative decomposition of 
the transformation gradient of the form F = F e · F p · F d where F d is an additional metric associated with the so-called 
“damage-driven deformation” as described in [75,76].

To simplify the mathematical notations, the upper bar indicating the rotated tensorial variables is deleted below through-
out the paper.

2.2. Damage variable, damage-effect tensor and effective state variables

In continuum damage mechanics framework, the ductile damage can be represented either by scalar variables or by 
tensorial variables of different ranks. For many bulk solids, the use of the isotropic damage theory in which the damage 
is represented by a scalar variable (d) is sufficient to describe the distribution of the ductile defects. However, for the 
textured polycrystalline metallic materials as the sheets obtained by rolling, the microcracks develop in preferred directions 
controlled by the loading directions. In that case, the use of anisotropic damage theory, in which the damage variable is of 
tensorial nature, is required. For the most metallic materials, it has been shown that a second-rank damage tensor d (or dij) 
is sufficient to describe the orthotropic distribution of microcracks [77–89,75,76,90,69] (among others).

Let us write the second-rank damage tensor d under the following matrix form:

d =
⎛
⎝d11 d12 d13

d12 d22 d23
d13 d23 d33

⎞
⎠ =

⎛
⎜⎝

n1
1 n1

2 n1
3

n2
1 n2

2 n2
3

n3
1 n3

2 n3
3

⎞
⎟⎠

︸ ︷︷ ︸
[R]

⎛
⎝d1 0 0

0 d2 0
0 0 d3

⎞
⎠

︸ ︷︷ ︸
[d�]

⎛
⎜⎝

n1
1 n2

1 n3
1

n1
2 n2

2 n3
2

n1
3 n2

3 n3
3

⎞
⎟⎠

︸ ︷︷ ︸
[R]T

(4)

where the eigenvalues of the second-rank symmetric damage tensor 0 ≤ dk ≤ 1 (k ∈ {1, 2, 3}) represent the orthogonal fam-
ilies of micro-defects and (nk

i ) defines its principal basis. The orthogonal tensor P defines the transfer matrix between the 
working basis and the damage principal basis. The isotropic damage d corresponds to the case where the density of micro-
defects is independent of the orientation of each surface. In this isotropic case, the total failure of the RVE (Representative 
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Volume Element) is achieved when the final fracture condition is reached, i.e. d = dc ≈ 0.99. However, the failure condition 
in the case of anisotropic damage is not trivial and a simple final fracture criterion assumes that the RVE is failed when the 
highest damage eigenvalue reaches its critical value: Maxk=1..3(dk) = dc = 0.99.

Once the damage variable defined, the effective state variables can be introduced in the framework of the total energy 
equivalence assumption and using the so called damage effect tensor of rank four M (or Mijkl). Different forms of the 
damage effect tensor have been considered in the literature [78–80,82,86,91–94] (among many others). In this work, the 
form proposed by [93] is generalized and rewritten here, in the rotated configuration, in the following form (in Eqs. (4)–(6), 
the indicial notations are used for clarity):⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mijkl = 1

2
(hikh jl + hilh jk) − 1

3
(h2

i jδkl + h2
klδi j) + 1

9
h2

nnδi jδkl + 1

3

√
(1 − ‖d‖1)ηδi jδkl (a)

where

hij = (δi j − dij)
1/k (b)

‖d‖1 = 1

3
(dijδi j) = 1

3
dii (c)

(5)

This form has the advantage to affect differently the deviatoric and hydrostatic parts of each tensorial state variable, since 
the damage effect tensor Mijkl = M D

ijkl + M H
ijkl is additively decomposed into a deviatoric [·]D tensor affecting only the 

deviatoric part of any tensor and a hydrostatic [·]H part affecting the hydrostatic part of a tensor:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M D
ijkl = 1

2
(hikh jl + hilh jk) − 1

3
(h2

i jδkl + h2
klδi j) + 1

9
h2

nnδi jδkl (a)

and

M H
ijkl = 1

3

√
(1 − ‖d‖1)ηδi jδkl (b)

(6)

The parameters η and k are material constants governing the effect of the ductile damage on the hydrostatic and deviatoric 
stress parts respectively. It is worth noting that MD

i jkl defined by Eq. (6a) leads to the one initially proposed by [93] if k = 2

in Eq. (5b), while MH
i jkl defined by Eq. (6b) is quite different from the one used by Lemaitre and Desmorat [93] which is 

M H = 1
3 (1 −η‖d‖1)(1 ⊗ 1) where 1 is the second-rank unit (Kronecker) tensor. On the other hand, the first term of the RHS 

of Eq. (6a) defines the damage-effect tensor proposed by [94] if k = 2 in Eq. (5b).
Finally let us indicate that, using the classical Voigt notations, the damage-effect operator Mijkl has the following matrix 

form expressed in the damage eigenvectors basis:

Mijkl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
9 h2

1 + 1
9 (h2

2 + h2
3)

1
9 h2

3 − 2
9 (h2

1 + h2
2)

1
9 h2

2 − 2
9 (h2

1 + h2
3) 0 0 0

4
9 h2

2 + 1
9 (h2

1 + h2
3)

1
9 h2

1 − 2
9 (h2

2 + h2
3) 0 0 0

4
9 h2

3 + 1
9 (h2

1 + h2
2) 0 0 0

1
2 h1h2 0 0

sym 1
2 h2h3 0

1
2 h1h3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 1

3

√(
1 − ‖d‖1

)η
⎛
⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0
1 1 0 0 0

1 0 0 0
0 0 0

sym 0 0
0

⎞
⎟⎟⎟⎟⎟⎠ (7)

where hi are the eigenvalues of the effective damage second-rank tensor hij defined by Eq. (5b). This matrix is symmetric 
but not diagonal compared to the form discussed in [79].

Let us consider that, in the current deformed and damaged configuration Ct , the mechanical state of the material is 
described by both external and internal couples of state variables. In the framework of classical local (Cauchy) continuum 
the two following couples of external state variables are used [95]: (ε = ∫

t Ddt, σ) the total strain tensor associated with the 
Cauchy stress tensor, and (T , s) the absolute temperature associated with the specific entropy. Concerning the internal state 
variables representing the dissipative phenomena, the following couples are used: (εe, σ) the small elastic strain tensor and 
the Cauchy stress tensor, representing the elastoplasticity; (α, X) internal deviatoric strain and stress tensors representing 
the kinematic hardening; (r, R) the internal strain and stress representing the isotropic hardening; (d, Y ) the damage tensor 
and the associated energy release rate tensor representing the ductile damage; and (�q/T , �g = −−→

grad(T )) the heat flux vector 
normalized by the absolute temperature associated with the gradient of the absolute temperature representing the heat 
exchanges.
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According to the total energy equivalence assumption, in the fictive undamaged and rotated configuration C̃t , the me-
chanical state is described by the couples of effective state variables (ε̃e

, σ̃ ) or (εe, σ), (α̃, X̃) and (r̃, R̃) so that the total 
energy defined in the tow configurations is the same [27,48,72,79]. This leads to the following definition of the effective 
state variables:

ε̃e = M : εe (a) and (b) σ̃ = M−1 : σ (8)

α̃ = M : α (a) and (b) X̃ = M−1 : X (9)

r̃ =
√

1 − ‖d‖γ
2 r (a) and (b) R̃ = R√

1 − ‖d‖γ
2

(10)

where use has been made of the following notation: ‖d‖2 =
√

1
3 d : d =

√
1
3 dijdi j to define the norm of the damage tensor 

and γ is a material parameter governing the effect of the ductile damage on isotropic hardening. Note that, through this 
choice, the damage affects the elastic behavior and the kinematic hardening through the fourth-rank (symmetric and posi-

tive definite) damage-effect tensor M and the isotropic hardening through the scalar valued function 
√

1 − ‖d‖γ
2 [27]. The 

parameter k in Eq. (5b) is fixed to the value k = 4 in order to recover the classical relationships developed in our previous 
works for the isotropic damage case [27,41,48,63]. Note that, in the fully isotropic damage case, the damage tensor reduces 
to d = ‖d‖1 · 1 and h = (1 − ‖d‖1)

1/41; while the damage-effect operator reduces to M = √
1 − d1 (1 being the fourth-rank 

unit tensor) with η = 1 so that the equations Eqs. (8) to (10) become:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε̃e =
√

1 − dεe and σ̃ = σ√
1 − d

(a)

α̃ =
√

1 − dα and X̃ = X√
1 − d

(b)

r̃ =
√

1 − dγ r and R̃ = R√
1 − dγ

(c)

(11)

These effective state variables will be used to derive the state relations as well as the evolution equations from the state 
and dissipation potentials defined on the fictive undamaged and rotated configuration.

2.3. State potential and state relationships

The state potential has to be defined in the rotated fictive (undamaged) configuration. The global Helmholtz free energy 
ρψ(ε̃e

, α̃, ̃r, T ), positive and convex function of all the effective strain-like state variables in the fictive strain space, is taken 
as a state potential (ρ is the material density). Note that in this framework of large plastic strains, all the tensorial variables 
are rotated according to Eq. (2) including the rotated damage tensor d̄ = Q T · d · Q which has the same eigenvalues as d, 
but rotated with the rotation tensor Q . For the sake of the notations simplicity, and as mentioned above, the upper bar 
indicating the rotated tensors will be not used in what follows.

Keeping in mind the symmetry of all the second and fourth-rank tensors, the state potential is written in the rotated 
fictive configuration as follows:

ρψ
(
ε̃e

, α̃, r̃, T
) = 1

2
ε̃e : Λ : ε̃e − (T − Tr)P t : ε̃e − ρ

cε

2Tr
(T − Tr)

2 + 1

2
α̃ : C : α̃ + 1

2
Q r̃2 (a)

= 1

2

(
εe : M

) : Λ : (M : εe) − (T − Tr)P t : M : εe − ρ
cε

2Tr
(T − Tr)

2

+ 1

2
C(α : M) : C : (M : α) + 1

2
Q
(
1 − ‖d‖γ

2

)
r2 (b)

= 1

2
εe : Λ̃ : εe − (T − Tr) P̃ t : εe − ρ

cε

2Tr
(T − Tr)

2 + 1

2
α : C̃ : α + 1

2
Q̃ r2 (c) (12)

where Λ = 2μe1 + λe1 ⊗ 1 = 2μe1 + 3κe1 ⊗ 1 is the symmetric fourth-rank tensor defining the material elastic properties 
of the undamaged isotropic elastic material, where μe and λe are the classical Lame’s constants and κe = (2μe + 3λe)/3
is the compressibility modulus, P t is the symmetric second-rank thermal expansion tensor which is given by P t = αt1
if the thermal expansion is fully isotropic, defined by the single scalar αt , cε is the specific heat and Tr is the reference 
temperature. The fourth-rank (isotropic, symmetric and positive definite) tensor C = (2/3)C1dev and the scalar Q are the 
kinematic and the isotropic hardening modules, respectively, while αt is the thermal dilatation parameter. Note that all 
these material parameters are temperature dependent. Their damage-affected values used in Eq. (12c) are given throughout 
Eqs. (6), (7) and (8) by:
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Λ̃ = MT : Λ : M = MT : [2μe1 + λe1 ⊗ 1] : M = 2μeMT : M + λe
(
MT : 1

) ⊗ (1 : M) (13)

C̃ = MT : C : M = 2

3
C MT : M (14)

Q̃ = Q
(
1 − ‖d‖γ

2

)
(15)

P̃ t = P t : M = αt1 : M = αt M : 1 (16)

Clearly, the tensors Λ̃, C̃ and P̃ t lose their initial isotropy due to the damage-induced anisotropy throughout the damage-
effect tensor M .

The stress-like variables, which are the state relations, are easily derived from the state potential (Eq. (12c)):

σ = ρ
∂ψ

∂εe = Λ̃ : εe − (T − Tr) P̃ t (17)

X = ρ
∂ψ

∂α
= C̃ : α (18)

R = ρ
∂ψ

∂r
= Q̃ r (19)

s = −∂ψ

∂T
= 1

ρ
P̃ t : εe + cε

Tr
(T − Tr) (20)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y = −ρ
∂ψ

∂d
= Y e + Y α + Y r (a)

where

Y e = −1

2
εe :

[
∂Λ̃

∂d

]
: εe + (T − Tr)

[
∂ P̃ t

∂d

]
: εe (b)

Y α = −1

2
α :

[
∂ C̃

∂d

]
: α (c)

Y r = +γ

6
Q r2‖d‖γ −2

2 d (d)

(21)

Note that the damage energy density release rate (Eq. (21)), symmetric second-rank tensor, is additively decomposed into 
three contributions coming from elasticity Y e, kinematic hardening Y α , and isotropic hardening Y r [27,72].

Using Eqs. (13) to (16) with the help of Eq. (6) the above state relations can be expressed under the following indicial 
form:

σi j = 2μe
(
h2

imεeD
ml h2

l j

)D + κe

(
1 − 1

3
dnn

)η

εe
rrδi j − αt(T − Tr)

√(
1 − 1

3
dnn

)η

δi j (22)

Xij = 2

3
C
(
h2

imαmlh
2
l j

)D
(23)

R = Q
(
1 − ‖d‖γ

2

)
r (24)

s = αt

ρ

√(
1 − 1

3
dnn

)η

εe
kk + cε

Tr
(T − Tr) (25)

Y e
i j = −2μeε

eD
rk h2

kmεeD
ml

∂h2
lr

∂dij
+ κeη

6

(
1 − 1

3
dnn

)η−1(
εe

rr

)2
δi j + αtη

6
(T − Tr)

(
1 − 1

3
dnn

)(η−2)/2(
εe

rr

)
δi j (26)

Y α
i j = −2

3
Cαrkh2

kmαml
∂h2

lr

∂dij
(27)

Y r
i j = γ

6
Q r2

(√
1

3
dkldkl

)γ −2

dij (28)

The derivatives of the effective damage-effect function h2
i j appearing in Eq. (26) and Eq. (27) are developed in detail in [69].

The close examination of the elastic contribution Y e
i j given by Eq. (26) shows that the latter contains separately the effect 

of the deviatoric strain (the first term of the RHS of Eq. (26)), which is expected to govern the shear damage growth, while 
the second term of the RHS of Eq. (26) is spherical in nature and controls the isotropic growth of voids under hydrostatic 
stress state. The kinematic hardening contribution defined by Eq. (27) governs exclusively the shear damage due to the 
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deviatoric nature of the back strain tensor α . The isotropic hardening contribution Y r
i j (Eq. (28)) is directly dependent on 

the damage directions, giving an anisotropic damage evolution despite the isotropic character of the hardening.
Finally, let us note that, if the damage is isotropic, dij = dδi j and η = 1, leading to Mijkl = √

1 − dδikδ jl , the damage 
energy density release rate reduces to its classical form, developed in our previous works [27,48,63,72].

In metal forming, even if the tool kinematics is monotonic, some material points can be found in compression after 
tension or vice versa, depending on the forming tool geometry. On the other hand, it is well known that when an RVE is 
subjected to tension loading until some microcracks are created, then the applied loading direction is inverted in compres-
sion, the created microcracks tend to close, giving a clear decrease in the damage growth under compression. The usual 
way to describe this effect is to decompose the tensorial state variables into positive and negative parts and to affect them 
differently by the damage variable [83,84,86,88,96,93,97–105] (among many others). This gives satisfaction as long as the 
damage is isotropic; however, in the presence of anisotropic damage, many difficulties arise related to a loss of continuity 
and/or convexity of the state and dissipation potentials [83,84,99,103,105].

The simplest way to describe this microcrack closure effect without introducing the loss of convexity and continuity of 
the state and/or dissipation potentials is to apply the spectral decomposition of the state variables, which contribute to the 
definition of the damage energy density release rate Y as defined by Eqs. (26)–(29) [69]. The decomposition into positive and 
negative parts of any symmetric second-rank tensor T is performed through a spectral decomposition by T + = ∑r≤n

k=1〈Tk〉Ek

in which 〈Tk〉 stands for the positive part of Tk , and T − = T − T + with Tk are the r distinct eigenvalues of the tensor T
and Ek = �ek ⊗ �ek are the eigenprojection tensors in which �ek are the eigenvectors associated with the eigenvalues Tk . When 
applied to the two strain-like tensorial state variables ε̃e and α̃ appearing in Eqs. (26) and (27), their associated effective 
state variables given by Eqs. (8a) and (9a) take the following form:

ε̃e
i j = M D

ijkl+εeD
kl+ + 1

3

√(
1 − ‖d‖1

)η〈
εe

nn

〉
δi j + M D

ijkl−εeD
kl− − 1

3

√(
1 − h̄‖d‖1

)η〈−εe
nn

〉
δi j (29)

α̃i j = M D
ijkl+αkl+ + M D

ijkl−αkl− (30)

with εeD
i j+ and εeD

i j− are the positive and negative parts of the deviatoric elastic strain tensor classically defined by εeD
i j =

εe
i j − 1

3 εe
kkδi j = εeD

i j+ + εeD
i j− . The damage-effect operator noted M D

ijkl+ is applied to the positive part of the deviatoric strain 
and the back strain tensors as defined by Eqs. (6a) and (6b). However, the damage-effect tensor noted MD

i jkl− is applied to 
the negative parts of these deviatoric strain tensors through Eq. (6a) with the effective damage operator hij− = (δi j − h̄di j)

1/4

instead of hij = (δi j − dij)
1/4. The parameter h̄(0 ≤ h̄ ≤ 1) represents the microcracks closure effect by reducing the damage 

effect during the negative parts of the loading path. For metallic materials, the value of this parameter is usually taken as 
h̄ = 0.2 [73], leading to a lower damage growth under compressive loading paths, with two limit cases: (i) h̄ = 1, which 
makes no difference between the damage growth under positive and negative loading paths (no microcracks closure effect), 
and (ii) h̄ = 0, for which damage growth takes place only under the positive loads while no micro defects growth under the 
compressive phase of the loading paths (full microcrack closure effect).

When these two effective strain-like variables (Eqs. (29) and (30)) are used in the state potential (Eq. (12a)) from which 
the damage energy density release rate is recalculated, than the following new expressions of the elastic part called Y e∗

i j

and kinematic hardening part called Y α∗
i j are obtained [69]:

Y e∗
i j = Y e∗+

i j + Y e∗−
i j

= −2μeε
eD
rk+h2

kmεeD
ml+

∂h2
lr

∂dij
+

[
keη

6

(
1 − 1

3
dnn

)η−1〈
εe

rr

〉 + αtη

6
(T − Tr)

(
1 − 1

3
dnn

)(η−2)/2]〈
εe

rr

〉
δi j (a)

− 2μeε
eD
rk−h2

km−εeD
ml−

∂h2
lr−

∂dij
+ h̄

[
keη

6

(
1 − h̄

3
dnn

)η−1〈−εe
rr

〉 + αtη

6
(T − Tr)

(
1 − h̄

3
dnn

)(η−2)/2]〈−εe
rr

〉
δi j (b)

(31)

Y α∗
i j = Y α∗+

i j + Y α∗−
i j = −2

3
Cαrk+h2

kmαml+
∂h2

lr

∂dij
− 2

3
Cαrk−h2

km−αml−
∂h2

lr−
∂dij

(32)

where Ȳ e∗+
i j and Ȳ e∗−

i j (respectively Ȳ α∗+
i j and Ȳ α∗−

i j ) are the elastic (respectively kinematic hardening) contributions de-
pending respectively on the positive and negative parts of the elastic strain tensor (respectively kinematic hardening strain 
tensor).

The following particular cases can be obtained from Eqs. (31) and (32):

• for anisotropic damage:
◦ without microcracks closure (h̄ = 1): the damage evolves identically under positive or negative loading paths accord-

ing to Eqs. (26) and (27),
◦ with full microcracks closure effect (h̄ = 0): the damage evolves only under the positive phase of the loading path 

governed by the following damage energy density release rate related to elasticity and kinematic hardening:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y e∗
i j = Y e+∗

i j = −2μeε
eD
rk+h2

kmεeD
ml+

∂h2
lr

∂dij
+ keη

6
(1 − 1

3
dnn)

η−1〈εe
rr〉2δi j + αtη

6
(T − Tr)(1 − 1

3
dnn)

(η−2)/2〈εe
rr〉δi j (a)

Y α∗
i j = Y α+∗

i j = 2

3
Cαrk+h2

kmαml+
∂h2

lr

∂dij
(b)

(33)

• for isotropic damage:
◦ without microcracks closure (h̄ = 1), the damage evolves identically in tension and in compression, driven by:⎧⎪⎪⎨

⎪⎪⎩
Y e∗

i j = Y e
i j = 1

3

[
μeε

eD
kl εeD

kl + keη

6
(1 − d)η−1εe

rr + αtη

6
(T − Tr)(1 − d)(η−2)/2

]
εe

rrδi j (a)

Y α∗
i j = Y α

i j = 1

3

[
1

3
Cαklαkl

]
δi j (b)

(34)

◦ with full microcracks closure effect (h̄ = 0): the damage evolves only in tension, driven by the positive parts of the 
damage energy density release rate, given by:⎧⎪⎪⎨

⎪⎪⎩
Y e∗

i j = Y e+∗
i j = 1

3

[
μeε

eD
kl+εeD

kl+ + keη

6
(1 − d)η−1〈εe

rr〉 + αtη

6
(T − Tr)(1 − d)(η−2)/2

]
〈εe

rr〉δi j (a)

Y α∗
i j = Y α+∗

i j = 1

3

[
1

3
Cαkl+αkl+

]
δi j (b)

(35)

while under the negative hydrostatic strain 〈−εe
rr〉 the damage cannot evolve, since h̄ = 0 in Eq. (31b).

2.4. Yield function, dissipation potential and evolution relationships

After the derivation of the state relations from an appropriate state potential as discussed in §2.3 above, the derivation of 
the evolution equations relative to the dissipative phenomena have to be performed based on the following Clausius–Duhem 
inequality expressing the positivity of the volumic dissipation ℘V (see for example [27]):⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

℘V = ℘Int + ℘Th ≥ 0 (a)

with

℘Int = σ : Dp − X : α̇ − Rṙ + Y : ḋ ≥ 0 (b)

℘Th = − �q
T

· −−→grad(T ) ≥ 0 (c)

(36)

Since the stress-like variables {σ , X, R, Y } are known from the state potential (see §2.3) and 
−−→
grad(T ) is known as soon as the 

temperature is known, the fluxes variables {Dp, α̇, ̇r, ̇d, �q/T } should be determined from appropriate dissipation potentials 
in such a manner that the dissipation inequalities Eq. (36a), and consequently Eqs. (36b) and (36c) are identically fulfilled.

Let us first examine the thermal dissipation defined by Eq. (36c) in order to extract the generalized heat equation (the 
reader is referred to [27] for the details of the formulation). The heat flux vector is easily derived from the classical Fourier 
potential as a convex function of the associated stress-like variable �g = −−→

grad(T ). Assuming the isotropy of the thermal 
conductivity represented by the unimodular (spherical) symmetric second-rank tensor k = k1, in which k is temperature-
dependent thermal conductivity of the material, the Fourier potential given by:

ϕ∗
th(�g; T ) = 1

2
�g · k · �g = k

2
�g · �g (37)

allows the derivation of the heat flux vector by:

�q
T

= −∂ϕ∗
th(�g; T )

∂ �g = −k · �g = −k�g (38)

If, as usually observed, k is inversely proportional to the temperature T , than the classical Fourier linear relationship �q =
−k0�g (where is the temperature-independent thermal conductivity) is recovered from Eq. (38).

Now with the help of Eq. (38) and using the first law of thermodynamics expressing energy conservation, the following 
partial differential equation or heat equation is easily obtained [27] under the following general form:

−div(�q) − ρT
∂s

Ṫ + ℘Int + T

(
∂σ : ε̇eJ + ∂ X : α̇ + ∂ R

ṙ − ∂Y : ḋ

)
= 0 (39)
∂T ∂T ∂T ∂T ∂T
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in which ℘Int is the intrinsic dissipation defined by Eq. (37b). This partial differential equation describes the tempera-
ture distribution inside a thermo-elasto-plastic solid containing anisotropic ductile damage, to which appropriate thermal 
boundary conditions should be added.

Now the intrinsic dissipation is analyzed in the generalized standard material framework [95] assuming the non-
associative plasticity theory. If the time-independent plasticity theory is assumed, it is possible to use two independent (but 
fully coupled) yield functions and two dissipation potentials relative to the plasticity ( f p, Fp) and to the damage ( f d, Fd) 
[27,39,48,89]. A detailed analysis of this multiple surfaces non-associative theory can be found in [27]. In this paper, a single 
surface model is used to describe the fully anisotropic and strongly coupled damaged elastoplastic behavior, using a single 
yield function f (σ̃ , X̃, R̃; T ) and plastic potential F (σ̃ , X̃, R̃, Ỹ ; T ), both scalar valued, positive and convex functions of their 
main arguments in the stress space with the temperature acting as the simple parameter, defined here in the rotated fictive 
configuration:

f (σ̃ , X̃, R̃; T ) = ‖σ̃ − X̃‖c − R̃ − σy ≤ 0 (40)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (σ̃ , X̃, R̃, Y ;d, T ) = F p(σ̃ , X̃, R̃; T ) + F d(Y ;d, T ) (a)

with

F p(σ̃ , X̃, R̃; T ) = ‖σ̃ − X̃‖p + 3a

4C
X̃ : X̃ + R̃

(
b

2Q
R̃ − 1

)
(b)

F d(Y ;d, T ) = S

(s + 1)(1 − ‖d‖1)β

〈‖Y ‖3 − Y0

S

〉s+1

(c)

(41)

where σy is the initial yield stress, a and b characterize the nonlinearity of the kinematic and the isotropic hardening, 
respectively. Similarly, the material parameters (β , S , s, Y0) characterize the nonlinear ductile damage evolution. All these 
material parameters are temperature dependent. The stress norms ‖ ·‖c in Eq. (40) and ‖ ·‖p in Eq. (41b) are the equivalent 
stresses characterizing the yield criterion and the plastic potential respectively. In this work, the well-known anisotropic 
Hill48 quadratic equivalent stress is adopted for both:∥∥σ̃ D − X̃

∥∥
i =

√(
σ̃ D − X̃

) : Hi : (σ̃ D − X̃
)

=
√(

σ D − X
) : H̃

i : (σ D − X
)

with i ∈ {c, p} (42)

where Hc and Hp are the initial anisotropic operators of the undamaged material. Each one of these two operators is 
characterized by six material constants (F i, Gi, Hi, Li, Mi, Ni) to describe the initial orthotropic plasticity.

The operators H̃
c = (MD)−T : Hc : (MD)−1 and H̃

p = (MD)−T : Hp : (MD)−1 are the actual anisotropic operators of the 
damaged RVE, indicating that the plastic anisotropies evolve with the anisotropic damage growth. The deviatoric character 
of the plastic strain rate tensor is guaranteed by the use of MD instead of M . If not, a damage induced volume variation can 
be taken into account due to the use of the operator M instead of M D .

In Eq. (41c), the notation 〈x〉 indicates the positive value of x i.e. 〈x〉 = x if x > 0 and 〈x〉 = 0 if x ≤ 0 and the norm ‖Y ‖3
is defined by: ‖Y ‖3 = √

3Y : Y .
The following remarks are highlighted:

• the classical associative theory is recovered when taking Hc = Hp,

• the classical isotropic von Mises equivalent stresses are recovered when taking H c = Hp = 1 ⊗ 1 − 1
3 1.

In the framework of this non-associative formulation, the application of the generalized normality rule to the plastic poten-
tial F instead of the yield function f , the following evolution equations governing the overall dissipative phenomena:

Dp = λ̇
∂ F

∂σ
= λ̇np = λ̇

[
MD]−1 : ñp with ñp = Hp : (σ̃ D − X̃)

‖σ̃ D − X̃‖p
(43)

α̇ = −λ̇
∂ F

∂ X
= Dp − λ̇aα (44)

ṙ = −λ̇
∂ F

∂ R
= λ̇

(
1√

1 − ‖d‖γ
2

− br

)
(45)

ḋ = λ̇
∂F = λ̇

β

〈‖Y ‖3 − Y0
〉S 3Y

(46)

∂Y (1 − ‖d‖1) S ‖Y ‖3
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In Eq. (43), np = ∂ F/∂σ is the outward normal to the plastic potential F in the stress space, while ñp = ∂ F/∂σ̃ is the 
outward normal to F in the effective stress space and λ̇ is the Lagrange multiplier. For this case of time-independent 
plasticity, the plastic multiplier λ̇ = λ̇p is deduced from the classical consistency condition applied to the yield function i.e. 
ḟ = 0 if f = 0. Its analytical form can be found in [69]; however, when using the FE method, λ̇ is calculated numerically at 
each Gauss quadrature point of each finite element during the structure calculation by the FEM.

For time-dependent plasticity or viscoplasticity, it has been shown (see [27,72]) that the same constitutive equations; 
i.e. the state relationships defined by Eqs. (22) to (35) and the evolution equations (Eqs. (43) to (46) are obtained. The sole 
difference comes from the expression of the Lagrange multiplier, which is now denoted λ̇ = λ̇vp and given by:

λ̇vp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈 f (σ̃ , X̃,R̃;T )

K v
〉nv Noton–Hoff type (a)

or

K1v sinh(〈 f (σ̃ , X̃,R̃;T )

K2v
〉) hyperbolic sine type (b)

(47)

in which f (σ̃ , X̃, R̃; T ) is the yield function defined by Eq. (40); (K v , nv ) are viscous parameters for Norton–Hoff-type 
viscoplasticity, while (K1v , K2v ) are viscous parameters for hyperbolic-sine type viscoplasticity.

Finally, let’s note that the friction between the deformed solid and the tools is based on the well-known Coulomb model 
implemented in standard way on the ABAQUS explicit base on the master/slave surface techniques.

3. About the numerical resolution schemes

The numerical simulation of metal forming processes consists in solving a highly nonlinear initial and boundary value 
problem (IBVP) containing two strong forms defined, on the space domain Ωt and on the time domain It = [t0 tf], where t0
and tf are the initial and final time, by [27]:

• the equilibrium equations deduced from the principle of the virtual powers (�f is the body forces vector, �γ is the 
acceleration vector, �̄F is the imposed forces on the specified solid boundary oriented by the normal �n and �̄u is the 
imposed displacement on the specified solid boundary):⎧⎪⎪⎨

⎪⎪⎩
−→
div(σ ) + �f − ρ �γ = 0 in Ωt, t ∈ It (a)

σ · �n = �̄F on ΓF (Neumann) (b)

�u = �̄u on Γu (Dirichlet) (c)

(48)

• the heat equations deduced from the first principle of thermodynamics by Eqs. (39) and (38):⎧⎨
⎩k0Lap(T ) − ρT

∂s

∂T
Ṫ + ℘Int + T

(
∂σ

∂T
: ε̇eJ + ∂ X

∂T
: α̇ + ∂ R

∂T
ṙ − ∂Y

∂T
: ḋ

)
= 0 on Ωt, t ∈ It

with appropriate Dirichlet and Neumann thermal boundary conditions
(49)

in which Lap(T ) stands for the Laplacian of the absolute temperature. The weak forms associated with Eqs. (48) and 
(49) can be easily obtained based on the weighted residual and Galerkin methods. When Ωt is discretized by the FEM 
(finite element method) with a variable space size hx and It is discretized by the FDM (finite difference method) with 
a variable time step size �t , these two weak forms lead to two nonlinear algebraic systems to be solved on each time 
increment of the form [tn tn+1 = tn + �t].

Various dynamic implicit or explicit resolution schemes can be adopted to solve these two nonlinear algebraic systems 
in order to obtain the displacement vector �u and the temperature T at each node of the structure (see the following general 
books [106–110] among many other). For metal forming problems where the inelastic strains are very large, the contact 
with friction is varying and concerns a great number of nodes located and the external boundaries of the deformed solid 
and due to the damage effect (fully damaged elements deletion), the dynamic explicit scheme is preferred. Here the dynamic 
explicit resolution scheme is used.

Whatever the global resolution scheme, the state variables (σ or (εp), X or (αp), R or (r), Y or (d) and �q) have to be 
calculated at each Gauss point of each element in order to compute the internal force vector. This is performed using the 
iterative fully implicit integration scheme based on the elastic prediction and inelastic correction algorithm applied to the 
reduced number of equations, i.e. only two scalar equations with two unknowns namely �λ (i.e. �λp or �λvp) and dn+1
for the fully isotropic case, or three equations (with two of tensorial nature) with three unknowns namely �λ (i.e. �λp or 
�λvp), np

n+1 and dn+1 in the case of fully anisotropic flow (i.e. anisotropy of large inelastic strains and ductile damage).
Various versions of these models as well as some specific elements have been developed and implemented in 

ABAQUS/Explicit through the user’s subroutines VUMAT (to implement the fully coupled advanced constitutive equations) 
and VUEL (to implement the specific elements). This implementation was made in such a manner that the computation can 
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Table 1
Elastoplastic parameters for the overall three models.

E
(GPa)

ν
(–)

σy

(MPa)
C
(GPa)

a Q
(GPa)

b
(–)

FC

(–)

195.0 0.3 300 7.0 170.0 2.6 1.5 0.863

GC

(–)
HC

(–)
NC = LC = MC

(–)
Fp

(–)
Gp

(–)
Hp

(–)
Np = Lp = Mp

(–)

0.800 0.200 1.452 0.461 0.447 0.553 1.400

Table 2
Damage parameters for each of the three models.

S
(J/mm3)

s β Y0

(J/mm3)

γ η h̄ hx

(mm)

Model 1 12 1 1 0 6 1 1 0.5
Model 2 18 1 2 0 6 1 1 0.5
Model 3 18 1 2 0 6 1 0 0.5

be performed with or without damage coupling. The fully damaged elements with the lowest size are deleted in order to 
reproduce the macroscopic cracks initiation and propagation leading to the creation of new boundaries with adaptive new 
remeshing methodology. Since the present modeling is fully local, the IBVP solution with damage effect is highly dependent 
on the mesh size inside the active zones. Thus, for 2D problems, an adaptive resolution methodology with mesh refine-
ment and coarsening is used with various error indicators based either on thermomechanical fields as well as on the radius 
curvature of the contact interfaces [27,64,66]. In this adaptive resolution methodology, the lowest mesh size is naturally at-
tributed to the fully damaged elements. However, for 3D calculations the mesh adaptation procedure is still under progress 
and the initial mesh is refined as required using the “convenient” mesh size obtained for a given material thanks to the 
identification procedure.

For the sake of shortness, all these numerical aspects are not detailed in the present paper. Instead, the reader is referred 
to the recent book [27] where all these numerical aspects are presented in details.

4. Application to sheet and bulk metal forming processes

To illustrate the predictive capacity of this numerical methodology, a few examples are now presented in what follows 
concerning both the sheet metal forming processes using the fully anisotropic model under isothermal room temperature 
conditions and the bulk metal forming processes using the fully isotropic model, but under anisothermal conditions.

All the numerical simulation in the sequel (Sections 4.1 and 4.3) are performed using the ABAQUS/Explicit based on 
the dynamic explicit resolution scheme to solve the IBVP together with the iterative fully implicit integration scheme to 
compute the stress tensor as well as the overall state variables at the end of each time increment.

4.1. Application to fully anisotropic and isothermal sheet metal forming

In this section, we will focus on the comparison of three different variants of the fully-coupled and fully anisotropic 
proposed model, through two examples of sheet metal forming at room temperature (i.e. under isothermal conditions): 
the bulge test with elliptical die (BTE) and the cross section deep drawing test (CSD). The three chosen variants of the 
anisotropic models are based on non-associative anisotropic elastoplasticity and differ mainly by the anisotropic character 
of the damage coupling. They are termed as following:

• Model 1: Plastic anisotropy with isotropic damage,
• Model 2: Plastic anisotropy with anisotropic ductile damage but without microcracks closure effect (i.e. h̄ = 1),
• Model 3: Plastic anisotropy with anisotropic ductile damage but with full microcracks closure effect (i.e. h̄ = 0).

These three variants are identified using the experimental results of X6CrNi18-09 stainless steel sheets given in [63]. Recall 
that this experimental database includes tensile tests at 0◦ , 45◦ and 90◦ , plane tension tests, cylindrical die bulge tests, and 
elliptical die bulge tests with 0◦ , 45◦ and 90◦ orientations of the elliptical major axis with respect to the material anisotropic 
directions. Only the last test (BTE), not used for the identification, is used to validate the model. Due to the fact that the 
three considered variants of the developed model differ only by the anisotropic character of ductile damage, hence all the 
variants will have the same elastoplastic identified material parameters summarized in Table 1. The damage parameters for 
each of the three variants are given in Table 2. Note that for these cases of local formulation, the smallest mesh size is fixed 
to hx = 0.5 mm and this mesh size is conserved for all the sheet metal forming simulations with the same material.
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Fig. 2. The BTE model with the mesh and boundary conditions.

Fig. 3. Comparison between the experimental and numerically predicted results in terms of pressure versus displacement curves.

4.1.1. Bulge test with elliptical die (BTE)
This test schematized in Fig. 2 is widely used to characterize the formability of thin sheets. The die has elliptical shape 

with an external diameter D0 = 168 mm, major axis DG = 110 mm, minor axis DS = 74 mm, and an edge radius R = 6 mm. 
The sheet has circular shape with uniform thickness e = 1 mm and external diameter D = 133 mm. The sheet is clamped on 
the die and an increasing internal pressure p is applied on the down face of the sheet while the displacement of the dome 
is measured continuously. The sheet is meshed with 156,328 hexahedral 8-nodes solid elements with reduced integration 
of type C3D8R (giving three element layers through thickness), and the die is supposed to be a rigid body meshed with 
10,000 rigid elements of type R3D4, both taken from the ABAQUS® elements library.

With the use of an elliptical matrix we have the ability to deviate the loading path from equibiaxial to biaxial expansion 
according to the ratio of major by minor axes DG/DS of the elliptical die. This allows also studying the effect of the material 
orientation according to the major axis direction ψ0. In this study, we limit ourselves to only two orientations ψ0 = 0◦ and 
ψ0 = 45◦ . In our case, the ratio of in-plane major and minor strains εmax/εmin = DG/DS = 1.5. The global results, in terms 
of dome displacement vs applied pressure, have no significant difference for the three models, as shown in Fig. 3. We 
can observe good agreement with the experimental curve which is mainly due to a non-associative plasticity character, as 
discussed in detail in [63]. Note that these global results are not affected by the material orientation ψ0 .

Fig. 4 shows the numerically predicted damage maps obtained with the three models for both orientations (0◦ and 45◦) 
at the macroscopic cracks initiation compared to the experimental one obtained for the case 45◦ (see Fig. 4d). By comparing 
these distributions to those corresponding to the initial orientation, we see a nearly insignificant effect of initial orientation 
on the initiation and propagation of macro-cracks for the various models.

On the other hand, it is found that all considered models predict the first crack initiation at the dome; however, every 
model predicts a different propagation path of the macro-cracks. It is also noted that the cracks propagate preferentially 
along the major axis of the ellipsoid mainly for the case of Model 3, as shown in Fig. 4c.

The predicted evolution of the anisotropic damage components at the dome (i.e. at the location of the first crack ini-
tiation) is given in Fig. 5. From this figure, significant differences in terms of plastic strain at the fracture are observed 
between Model 3 and the other two models. This is mainly due to the micro-cracks closure effect, which allows slower 
damage evolutions. It should be noted that for Model 2, the maximum damage component is given by the direction normal 
to the plane of the sheet (i.e. direction 3 in Fig. 2a), which is completely different from Model 3 for which the maximum 
component moving in the plane of the sheet (the plane (1 2)) and is carried by the direction normal to the minor ellipse 
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Fig. 4. Comparison of the maximum damage maps obtained with the three models at the moment of the macro-cracks propagation for two different 
orientations ψ0 = 0◦ and ψ0 = 45◦ .
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Fig. 5. Evolution of the local damage components (at the point located in the dome) obtained with the three models for ψ0 = 0◦ .

axis (direction 2 in Fig. 2a). Note also that for model 3 the damage distribution is more localized in the direction of the 
die’s major axis compared to the other models.

To analyze the crack path’s orientation according to the used damage model, the plastic strain ratio εp
max/ε

p
min and 

the maximum damage distributions along a circular area located at 30 mm from the dome are plotted in Fig. 6. These 
distributions are given for the maximum value of the ductile damage dmax = 0.3 reached at the dome. These figures reveal 
that plastic strain paths predicted by the three models vary considerably from 1.5 to 3, while browsing the circle from the 
point situated along direction 1. Note that the maximum strain ratio is obtained along the die’s minor axis. However, the 
distribution of maximum damage follows the major axis direction of the elliptical die as shown in Fig. 6c and Fig. 6e.

4.2. Cross section deep drawing (SCD) test

In this process, the initial blank sheet has an octagonal shape, with length L = 130 mm and thickness e = 1 mm. This 
sheet is maintained between the die and the blank holder as shown in Fig. 7. The punch cross section has a flat bottom 
with a 200-mm major axis and a 140-mm minor axis. A force of 60 kN is applied on the blank holder in order to make 
easy the sheet swallowing. The meshing parameters of the different components of the SCD test are detailed in Fig. 7.

The contact between the blank and the various components is assumed to be of Coulomb type with the same constant 
friction coefficient μ = 0.17 (with lubrication). The orientation of the punch with respect to the material anisotropic direc-
tions of the sheet, allows studying the off-axis loading paths. In this work, given the low plastic anisotropy and taking into 
account of the studies conducted in the previous section, this effect of this orientation will not be discussed.

In Fig. 8 are compared the responses in terms of global punch force–displacement curves for the three considered 
models. We note that both Model 1 and Model 2 predict almost the same maximum force (about 386 kN) and different 
failure displacements (49 mm for Model 1 and 56 mm for Model 2). However, Model 3 predicts higher maximum force 
(about 405 kN) and a larger displacement at fracture (about 70 mm) due to the lower increase of damage rate as expected.

The predicted distribution of the maximum damage values and the crack paths predicted by the three models are com-
pared in Fig. 9. From this comparison the same critical area containing the first crack initiation and propagation, located at 
the corner in the side of major axis of the cross section punch, is observed. Consequently, the most important thickness re-
duction is located in this area. Note that, while Model 3 induces the more important failure punch displacement, it predicts 
the lower thickness reduction due to the lowest damage growth predicted by this model.

The damage state in the critical zone is also completely different, like in the previous example. Indeed, the maximum 
damage for Model 2 is carried out by the normal to the plane direction (i.e. direction 3); however, the maximum damage 
component for Model 3 is carried out by punch major axis.

4.3. Application to bulk metal forming

For the sake of shortness, only one example of bulk metal forming is presented. The proposed numerical methodology is 
now applied to an axisymmetric (2D) extrusion of a cold round billet schematized in Fig. 10a. In this figure, Re is the initial 
radius of the billet, Rs is the final radius of the billet after extrusion, L the initial length of the billet, α is the semi-cone 
angle of the die, and Ar = (Re − Rs)/Re is the radius reduction factor.

The good choices of the geometrical parameters (α and Ar), the friction condition, the material ductility and the tem-
perature are essential to extrude a billet without defects. Unfavorable combinations of these parameters cause damage 
accumulation and chevron-shaped cracks located around the central axis (see Fig. 10b) or surface cracks located at the 
external surface of the billet (see Fig. 1c), which may result in final fracture of the extruded part during its use.
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Fig. 6. Polar distribution of the plastic strain ratio εp
max/ε

p
min and maximum damage along a circular neighborhood area located within a 30-mm radius 

from the dome.

The sample is taken from [59] using the same process parameters and the same material 100Cr6 steel. Due to the 
plastic isotropy of this material, only the model with isotropic plasticity fully coupled with isotropic ductile damage and the 
temperature is used. The geometrical parameters are: initial radius of the billet Re = 9.55 mm, final radius Rs = 7.5 mm, 
die angle α = 45 ◦ .

The moving punch moves with a constant speed of 5.0 mm/s. The billet is meshed with quadrangular axisymmetric 
element with reduced integration and thermal coupling (CAX4RT) of 0.2 mm × 0.2 mm dimension. The Coulomb friction 
model is used with μ = 0.04, corresponding to coated contact condition. The tools are considered as rigid bodies. The initial 
temperature of the billet is Tb = 25 ◦C.
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Fig. 7. Schematization of the CSD test.

Fig. 8. Comparison of global force–displacement curves predicted by the three models for a SDC test.

The material’s behavior is taken fully isotropic thermo-elasto-viscoplastic fully coupled with thermal effect. The param-
eters of the material corresponding to 100Cr6 steel is based on the experimental results taken from [59,74]. The different 
materials and thermal parameters are given in Table 3.

The numerical simulation is performed with ABAQUS/Explicit using the VUMAT together with fully adaptive 2D method-
ology [66,74]. The obtained results are presented in the following figures.

At the end of the extrusion operation, several chevron-shaped cracks inside the billet are predicted, as shown by Fig. 11
where the distribution of the equivalent von Mises stress and the temperature are presented. From Fig. 11a it is clearly 
observed that the stress concentration is located in the reduction zone between the die and the billet with a maximum 
value of 1011 MPa, while the stresses are zero inside the chevron-shaped cracks according to the full coupling between the 
damage and the behavior. The temperature distribution is shown in Fig. 11b, where it is varying between a maximum of 
251 ◦C located at the same reduction zone between the die and the billet, and a minimum of 25 ◦C. The increase of the 
temperature is expected to be generated by inelastic work and the friction at the contact interface.

Fig. 12 shows the distribution of the accumulated plastic strain after a 40 mm punch displacement; five chevron-shaped 
cracks are predicted by the model, which compares very well with the experimental result [59].

The evolution of the punch force versus the displacement of the punch is plotted in Fig. 13. It increases rapidly to reach 
250 kN and then oscillates around this value as the chevron-shaped cracks are initiated. The number of the force peaks 
corresponds to the number of chevron-shaped cracks and the oscillation of the punch force indicates the presence of these 
discontinuous chevron-shaped cracks.

The Zimmerman diagram [111,112] plotted for two different values of the Coulomb friction parameter μ is given in 
Fig. 14.

This diagram consists in the curves indicating the formation of the chevron-shaped cracks and the surface cracks for 
different simulations performed with different values of the couple (α, Ar), as indicated in Fig. 14. The domain Ωc of 



H. Badreddine et al. / C. R. Mecanique 344 (2016) 296–318 313
Fig. 9. Comparison of the maximum damage maps obtained with the three models (zones where D = 1 defines the location of the macroscopic cracks).

Fig. 10. a) Schematic representation of the extrusion process, b) chevron-shaped cracks, c) external surface cracks.

Chevron-shaped cracks is indicated by the red line, while the domain Ωs of external surface cracks is delimited by the 
green line. The safe domain Ωsafe is given by Ωsafe = Ω − Ωc ∪ Ωs . As clearly shown by Fig. 11, the delimitation of the safe 
domain depends highly on the friction condition at the contact interfaces:

• for the Coulomb friction parameter μ = 0.05, the chevron-shaped crack appears for a radius reduction superior to 10%. 
Some defects can also appear in the external surface of the billet, but for large values of Ar and α,

• for the coulomb friction parameter μ = 0.1, the domain of external surface defect Ωs increases at the expense of the 
chevron-shaped crack domain. Indeed, when the outer surface of the billet is too damaged, the internal forces are no 
longer transmitted to the center of the billet, avoiding the formation of chevron-shaped cracks.

5. Conclusion and main perspectives

The main objective of this paper is to show the high predictive capability of the proposed 3D numerical methodology 
in the simulation of various, sheet and bulk metal forming, processes. This methodology is based on advanced “strongly” 
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Table 3
Thermo-elasto-viscoplastic properties of the material.

E
(GPa)

ν Cε

(J·kg−1·C−1)

k0

(W·m−1·C−1)

αt

(C−1)

T0

(◦C)
T f
(◦C)

Thermal functions

205 0.28 475 32 1.2e−6 25 1520 Z(T ) = 1 − (
T −T0
T f−T0

)1.3

Viscoplastic, hardening and ductile damage properties:

K v

(MPa)
nv σy

(MPa)
Q
(MPa)

b C
(MPa)

a S s β Y0 γ h̄ hx

(mm)

100 Z(T) 10 650 Z(T) 720 Z(T) 30 200 Z(T) 30 3.8 Z(T) 1.2 1 0. 6 0 0.2

Fig. 11. von Mises stress (N/m2) distribution.

Fig. 12. Comparison of the experimental and predicted chevron cracks after 40-mm punch displacement.

coupled constitutive equations accounting for various thermomechanical phenomena as thermal, “small” elastic strains, large 
inelastic (plastic or viscoplastic) strains, ductile isotropic and/or anisotropic damage . . .

This kind of numerical methodology can be helpfully used to optimize any forming or machining process in order to 
determine the best forming or machining plan that minimizes the undesirable defects under a low economical cost and a 
low carbon emission according to the demand of the new environmental requirements. Accordingly, using highly predictive 
constitutive equations representing the ‘realistic’ physical phenomena and their mutual interactions (or strong coupling) 
allows one to:

• minimize the occurrence of ductile damage in formed parts in order to obtain safe components without any defects (i.e. 
cracks, localization zones, wrinkles zones, etc.) as in deep drawing of thin sheets, hydroforming of tubes or sheets hot 
or cold forging or extrusion,

• maximize the occurrence of ductile damage in formed parts by controlling its intensity and direction to reproduce 
various material cutting operations such as stamping of thin or thick parts by sheering, or slitting and guillotining thin 
sheets or machining by chip formation and segmentation
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Fig. 13. Punch force versus Punch course.

Fig. 14. The Zimmerman diagram for the axisymmetric extrusion process.

• minimize various kinds of damage (wear, friction, cracks, etc.) inside forming tools (matrices, dies, cutting tools...) and 
at the metal/tool contact interfaces in order to increase their life.

However, all the models presented in this paper are obtained from fully local formulations for which the kinematics and 
the behavior of the continuum are fully determined by the knowledge of the first gradient of the displacement field known 
as the Cauchy continuum. It is well established that, for this kind of local constitutive equations, the strong coupling with 
damage leads damage-induced softening. This makes the solution of the IBVP highly dependent on the discretization of the 
time domain and of the space domain. This problem has been approximately solved here by imposing a convenient mesh 
size and time step size for each material, determined during the identification procedure.

In fact, an elegant solution to this problem can be obtained from the generalized continua as the micromorphic theory 
[27,113–118] in which:

• the kinematics of the homogeneous transformation is enriched by adding new micromorphic degrees of freedom. The 
application of the principle of the virtual power leads to obtaining the classical equilibrium equations and additional 
balance equations with their Neumann boundary conditions related to the targeted micromorphic phenomena;

• the space of the state variables is extended by adding new micromorphic state variables. Accordingly, the use of the 
classical thermodynamics of irreversible processes allows obtaining state relations and evolution equations deduced 
from adequate state potential and dissipation potentials.

The application of these generalized micromorphic constitutive equation to metal forming simulation will be addressed in a 
forthcoming paper.
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