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Abstract. We consider a two-component Bose–Bose mixture at infinitely strong repulsive interactions in a
tightly confining, one-dimensional ring trap and subjected to an artificial gauge field. By employing the
Bethe Ansatz exact solution for the many-body wavefunction, we obtain the ground state energy and the
persistent currents up to four particles. For each value of the applied flux, we then determine the symmetry
of the state under particles exchange. We find that the ground-state energy and the persistent currents display
a reduced periodicity with respect to the case of non-interacting particles, corresponding to reaching states
with fractional angular momentum per particle. We relate this effect to the change of symmetry of the ground
state under the effect of the artificial gauge field. Our results generalize the ones previously reported for
fermionic mixtures with both attractive and repulsive interactions and highlight the role of symmetry in this
effect.

Résumé. Nous considérons un mélange de bosons à deux composantes en interaction répulsive infiniment
forte dans un piège en anneau unidimensionnel à fort confinement et soumis à un champ de jauge artifi-
ciel. En utilisant la forme exacte de la fonction d’onde à N corps donnée par l’ansatz de Bethe, nous obte-
nons l’énergie de l’état fondamental et la valeur des courants persistants jusqu’à quatre particules. Ensuite,
en fonction du flux appliqué, nous déterminons quelle est la symétrie de l’état sous l’échange de particules.
Nous constatons que l’énergie de l’état fondamental et les courants persistants présentent une périodicité ré-
duite par rapport au cas sans interaction, ce qui correspond à l’obtention d’états avec un moment cinétique
fractionnaire par particule. Nous relions cet effet au changement de symétrie de l’état fondamental sous l’ef-
fet du champ de jauge artificiel. Nos résultats généralisent ceux précédemment rapportés pour les mélanges
fermioniques avec des interactions attractives ou répulsives et mettent en évidence le rôle de la symétrie dans
cet effet.
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1. Introduction

Ultracold atomic gases are a very versatile system for investigating fundamental physics and for
quantum simulation [1–3]. The steady progress in trapping and manipulating cold atoms allows
for an unprecedented control on the parameters of the system such as interaction strength, num-
ber of particles and components, and geometry [4, 5]. In particular, cold atoms can be confined
in one-dimensional potentials of different geometries and subsequently used to experimentally
realize [6–9] paradigmatic strongly correlated one-dimensional models [10–14]. One of the main
advantages of investigating these systems rely on the wide class of exact methods one can imple-
ment. For instance, one-dimensional homogeneous systems interacting via zero range poten-
tial can be solved at any interaction strength by means of Bethe Ansatz [12, 15, 16], while mod-
els including non-homogeneous confinement can be exactly solved in some specific interaction
regimes using different methods [17–19].

In the context of homogeneous systems, quantum gases trapped in a ring-shaped potential
are a suitable platform to investigate quantum coherence and transport [20]. These systems can
be threaded by an artificial gauge flux [21–23]. The corresponding artificial gauge field can be
implemented e.g. by stirring the gas using a barrier [24] or by imprinting a geometrical phase
to the gas [25]. The artificial gauge field induces a persistent current of particles flowing in
the ring (see e.g. [26–28] for reviews in fermionic and bosonic systems). Persistent currents
are a manifestation of quantum coherence of the particles all over the ring. They coincide
with supercurrents in the case of superfluid or superconductors, but can also occur in normal
fermionic systems, and can be used to probe different phases of the system [29, 30]. In ultracold
atomic rings, the persistent current can be experimentally accessed by co-expansion protocols
of the gas on the ring and a reference gas at the center. The value and the sign of the current
emerges as the result of spiral interferometry analysis [31–36].

In analogy with superconducting rings [37], the persistent current is a periodic function of
the external effective flux, whose period is defined as the quantum of flux of the gas [38]. The
increase the flux by an amount equal to the quantum of flux corresponds to a change of the value
of the total angular momentum and consequently of the current. A reduction of the period of the
current as a function of the flux has been predicted both for Fermi and and for Bose gases with
strong attractive interactions [39–41], and corresponds to angular momentum fractionalization,
i.e. to the possibility of associating a fractional value of angular momentum per particle. This
phenomenon relies on the formation of two-body and many-body bound states, respectively for
Fermi and Bose gases, which deeply affect the state of the gas. In particular, the period of the
current oscillations as a function of the effective flux is reduced by a factor corresponding to
the number of particles giving rise to the bound state: two for attracting fermions forming pairs
and N – with N being the total number of particles – for attracting bosons forming the quantum
equivalent of a bright soliton. A similar phenomenon has been predicted for a multi-component
Fermi gas with very large repulsive interactions [42, 43]. In this case, the period of the persistent
current oscillations is also reduced by a factor N . However, this phenomenon is not related to the
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formation of molecules, rather, it is due to the creation of fermionic spin excitations, i.e spinons,
in the ground state at finite flux [42, 43].

In this article, we study a strongly-interacting two-component Bose gas trapped on a ring
and threaded by an artificial gauge field. The model is exactly solvable: using the Bethe Ansatz
we explicitly obtain the many-body wavefunction, the ground-state energy, and the persistent
current at very large interactions up to four particles. In analogy with fermionic mixtures, we find
that at large interactions the period of the ground-state energy and of the persistent current as
a function of the flux is reduced by a factor equal to the total number of particles. At non-zero
flux, such ground-state branches correspond to spin-excited states at zero flux, characterized
by a different value of angular momentum. Furthermore, we characterize the symmetry under
particle exchange of the ground state at varying values of the effective flux. We find that each
ground-state branch has a different symmetry i.e. it is associated to a different Young tableau. We
also show that, when the number of low-energy spin excitations exceeds the number of particles,
for some values of the flux the ground state may be degenerate and correspond to more than one
symmetry under particle exchange. For each of such cases we identify the corresponding Young
tableaux.

In the following, after introducing the model and the definitions, we first consider the instruc-
tive case of two particles and then we study the more involved case of a mixture of four particles.

2. Model and definitions

We consider a two-component Bose–Bose mixture of N atoms, made of N −M particles in one
component (denoted as spin up) and M particles in the other component (denoted as spin
down). We focus on the balanced case M = N /2. The bosons interact via a delta potential of
strength g , taking the case where the interaction strength g of the intra-species interactions is
the same as the one of the inter-species interactions. The gas is confined in a one-dimensional
ring of radius R

.= L
2π , with L being the circumference of the ring. We consider an artificial gauge

field, e.g. induced by setting the system in rotation with frequency Ω inducing an effective flux
Φ= 2ΩπR2 flowing through the ring.

The Hamiltonian of the system is:

H =
N∑

j=1

1

2m

(
p j −mΩR

)2 + g
∑
j <ℓ

δ(x j −xℓ) (1)

where m is the mass of the particles. In the following, we define the quantities c
.= 2m

ħ2 g and

Φ̃
.= Φ
Φ0

, whereΦ0 = h
m , to indicate respectively the interaction strength and the reduced flux. The

kinetic part of the Hamiltonian can be hence rewritten as Hki n =∑N
j=1

1
2m (p j − 2πħ

L Φ̃)2. We also

set ϵ= ħ2π2

mL2 as the energy scale.
This model is integrable at any interaction strength and can be solved exactly using Bethe

Ansatz [16, 44, 45]. In each coordinate sector Q = {xQ(1) ≤ xQ(2) ≤ . . . xQ(N )} the wavefunction
reads [16]:

Ψ
(
xQ(1)..xQ(N )

)=∑
P

AQ
(
Λm ,kP ( j ),c

)
exp

{
i
∑
P

kP ( j )xQ( j )

}
, (2)

where the sum is performed over all the possible permutations P in the symmetric group SN .
In Eq.(2) we introduced the amplitudes AQ , the spin rapidities Λm with m = 1..M , M being
the number of spin down particles, and the charge rapidities k j with j = 1..N . The two sets of



90 Giovanni Pecci, Gianni Aupetit-Diallo, Mathias Albert, Patrizia Vignolo and Anna Minguzzi

rapidities fully specify the wavefunction of the system: they can be obtained for each value of Φ̃
by solving the coupled Bethe equations [44],

Lk j = 2πIj +2
N∑
ℓ=1

arctan

(
kℓ−k j

c

)
+2

M∑
m=1

arctan

(
2
(
k j −Λm

)
c

)
N∑

j=1
2arctan

(
2

c

(
Λm −k j

))= 2πJm +
M∑

n=1
2arctan

(
Λm −Λn

c

)
,

(3)

where we introduced the charge and the spin quantum numbers Ij and Jm , which are integers
or half-integers respectively if N − M is odd or even. The energy of the system is given by
E(Φ̃) = ħ2

2m

∑
j (k j − 2π

L Φ̃)2 and the total momentum is P =ħ∑
j k j .

The choice of the quantum numbers fixes the state of the system. In particular, in the ground
state, adjacent quantum numbers are spaced by one unit. They are chosen, for each value of the
flux, such that the corresponding rapidities k j minimize the energy E(Φ̃) [44, 46, 47].

In this article, we focus on the Tonks–Girardeau (TG) fermionized limit c →∞, where the inter-
particle interactions are infinitely repulsive. This induces an effective Pauli principles among
the particles: the wavefunction of the system vanishes as two particles occupy the same spatial
position, still ensuring the preservation of the bosonic symmetry under particle exchange. In the
TG regime, the Bethe Ansatz solution of the model is markedly simplified. To describe such limit,
we introduce the rescaled spin rapidities λm

.= 2Λm
c [16, 47, 48], which we assume to be finite in

the limit c →∞. In this limit, exploiting the anti-symmetry of the arctangent function, the Bethe
equations read: 

Lk j = 2π

(
Ij − 1

N

M∑
m=1

Jm

)
2N arctan(λm) = 2πJm +

M∑
n=1

2arctan(λm −λn) .

(4)

The first equation fixes the energy of the system: in this interaction regime the distribution of
the quantum numbers Jm - thus the spin excitations - affects the total momentum and the
kinetic energy. The second equation coincides with the Bethe equations for an isotropic spin
chain [47,49,50] and does not depend on the charge degree of freedom. The same spin-charge de-
coupling occurs in the wavefunction (2), where the amplitudes satisfy limc →∞ AQ (Λm ,kP ( j ),c) =
AQ (Λm/c) = AQ (λm) and explicitly read [16, 47]:

AQ (λ1, . . .λM ) ∝ (−1)|Q|∑
R

∏
1≤m<n≤M

λR(m) −λR(n) −2i

λR(m) −λR(n)

M∏
l=1

(
λR(l ) − i

λR(l ) + i

)yQ(l )

. (5)

In this equation, the integer yQ(l ) labels the position of the l th spin down in the coordinate sector
Q. The notation |Q| indicates the sign of the permutation linking the coordinate sector Q with
the identical coordinate sector defined by x1 ≤ x2 ≤ ·· · ≤ xN .

The nested structure of the Bethe Ansatz, i.e. the presence of a second set of equation for
the spin rapidities λs , highlights the role of the spin in our system. If we consider a gas of
spinless bosons in the regime c → ∞, the wavefunction (2) has the same functional form: the
differences emerge in the definition of the amplitudes and of the Bethe equations. In particular,
since the wavefunction only depends on the charge rapidities, in this interacting regime one has
kspi nl ess

j = 2π
L Ij , where the quantum numbers follow the same rules we mentioned, provided

M = 0. This yields amplitudes Aspi nl ess
Q = ±1, where the sign is determined by the coordinate

sector, and a fully symmetric wavefunction under particle exchange [51].
We stress that, up to a normalization constant, Eq. (5) has the same functional structure of the

Bethe wavefunction of the isotropic Heisenberg spin chain [47, 49, 50]. Despite the same Bethe
equations and a similar structure of the spin component of the wavefunction, the expression
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for the spectra of Hamiltonian (1) and of the spin chain are in general different: for the full
model (1) the energy is given by the charge rapidities, while for the spin chain it is linked to the
spin rapidities. Still, the correction to first order in 1/c of the spectrum of the full model can
be mapped onto the spectrum of the Heisenberg chain by a suitable definition of an effective
coupling J of the chain [42, 43].

In order to obtain explicit values for the amplitudes AQ , we solve the Bethe equations (4) [47,
50] for all the possible distributions of the quantum numbers Ij and Jm , which are in turn fixed
by the number of particles N and the number of down spins M . Thanks to the periodicity of
the Bethe equations, the number of possible sets of quantum numbers yielding independent
solutions of Eq. (4) is finite.

In particular, in order to determine the amplitudes of the ground state wavefunction for a
fixed value of the flux, we solve the Bethe equation by choosing the sets of quantum numbers
that minimize the energy.

The determination of the amplitudes AQ for each possible spin ordering Q allows us to
write explicitly the many-body wavefunction Ψ(xQ(1)..xQ(N )) in each coordinate sector and to
characterize the symmetry of the state under particle exchange. The symmetry of a state in
each coordinate sector is described by a Young tableau, within the convention that the state is
symmetric under the exchange of two boxes in the same line and antisymmetric respect to the
exchange of two boxes in the same column. The total number of boxes of the tableau is equal
to the number of particles. The symmetry of the wavefunction is evaluated by computing the
expectation value of the SN class-sum operator Γ2

.= ∑
a<b Pab on the state itself [46, 52, 53], Pab

being the permutation operator acting on the N particles. More in detail, Pab is the operator
which maps a spin sector into the one where the spins in the positions a and b are inverted. The
knowledge of the class-sum operator allows us to determine the Young tableaux associated to
the state. In particular, the eigenvalues γ2 of the Γ2 operator are linked to the Young tableaux
encoding the possible symmetries of the state through the following relation:

γ2 = 1

2

∑
j

n j
(
n j −2 j +1

)
, (6)

where j labels the line of the corresponding Young tableau and n j is the number of boxes
in the j th line. The eigenstates of Γ2 are characterized by the symmetry represented by the
corresponding eigenvalue. Therefore, in order to determine the symmetry of a state we evaluate
its decomposition on the eigenstates of Γ2 or, equivalently, the expectation value of Γ2 on the
state itself. If such expectation value coincides with an eigenvalue of Γ2, then the state has a well-
defined symmetry characterized by the corresponding Young tableau. If this is not the case, the
state has a mixed symmetry and the decomposition of the state on the eigenstates of Γ2 provides
the coefficients of the superposition.

3. Case of two particles

Before tackling the case of larger numbers of particle, it is instructive to understand the solution
for N = 2 particles, i.e one boson for each component of the mixture. When N = 2 and M = 1 there
are only two coordinate sectors, namely 1 : x1 ≤ x2 and Q̃ : x2 ≤ x1. Without loss of generality we
assume the positions of the spin down particle in the two sectors to be y1 = 2 and yQ̃ = 1. We use
Eq. (5) to compute the amplitudes of the Bethe wavefunction:

A1(λ) ∝
(
λ− i

λ+ i

)2

,

AQ̃ (λ) ∝ (−1)

(
λ− i

λ+ i

)
, (7)
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where we used the property |1| = 0 and |Q̃| = 1. The Bethe equation for the spin rapidity λ reads:

arctan(λ) = π

2
J , J ∈Z. (8)

In the ground state at zero flux we have J = 0 and A1(0) = AQ̃ (0) = 1, while in the first excited state
J = 1 and consequently A1(∞) = 1, AQ̃ (∞) =−1. Next, in order to make a link with the standard
solutions in the fermionized limit, we decompose the wavefunction in each coordinate sector on
a basis of anti-symmetric combinations of plane waves, as opposed to Eq. (2). Consequently, we
introduce the amplitudes A = (−1)|Q|AQ . Explicitly, the wavefunction in this form reads:

Ψ(x1, x2) =A (x1 −x2)det
(
e i k j xℓ

)
. (9)

A simple reorganization of the terms entering in the above equation yields

Ψ(x1, x2) =A (x1 −x2)sin(k(x1 −x2))e i K (x1+x2)/2, (10)

where K = k1+k2 is the center of mass momentum and k = (k1−k2)/2 is the relative momentum
of the two-particle system. In the homogeneous ring, there is complete factorization between
the internal structure of the state, encoded in the term A (x1 − x2)sink((x1 −x2)), where A (x1 −
x2) controls the overall symmetry under exchange of particles, and the center-of-mass part
exp(i K (x1 + x2)/2). The latter is the one which couples to the artificial gauge flux [39, 54].
The corresponding value of the energy is E = ∑

j=1,2(ħ2/2m)[k j − (2π/L)Φ̃]2. The values of the
wave-vectors k1, k2 are obtained by imposing the periodic boundary conditions Ψ(x1 +L, x2) =
Ψ(x1, x2) =Ψ(x1, x2+L). The function A (x1−x2) for the ground state depends on the value of the
artificial gauge field.

For −0.25 < Φ̃ < 0.25 the ground state of distinguishable bosons coincides with the one of
identical TG bosons i.e. A (x1 −x2) = sign(x1 −x2). In this case the periodic boundary conditions
imposed on Eq.(9) yield k1+k2 = (2π/L)2p and k1+k2 = (2π/L)q with p, q integers. The solution
for the ground state gives k1 =−π/L and k2 =π/L.

Notice that thanks to the analogy of the Hamiltonian with the one of particles in a crystal with
quasi-momentum Φ̃, the same choice for A (x1 − x2) holds for all intervals of flux obtained by a
translations of the interval−0.25 < Φ̃< 0.25 by integer numbers, i.e shiftingΦby integer multiples
ofΦ0.

For 0.25 < Φ̃ < 0.75 the ground state is instead obtained by choosing A (x1 − x2) = 1, as for
spinless fermions. This corresponds to the Bethe Ansatz solution for the wavefunction of the
first excited state at zero flux. In this case, the periodic boundary conditions yield k1 = 0 and
k2 = 2π/L. As above, the same choice for A (x1, x2) holds for all intervals of flux values obtained
by translations of the considered interval by integer numbers.

By collecting all the above considerations, we obtain the ground-state energy as a function
of flux (see Figure 1): it consists of piece-wise parabolas, with half periodicity with respect of
the flux quantum Φ0. We notice that each parabola is associated to a different value of the total
momentum P = ħ(k1 + k2), and hence of the total angular momentum Lz along the direction
perpendicular to the ring plane, labelled by ℓ = 〈Lz〉/ħ, as also indicated on the figure, where
〈Lz〉 = PR. We notice that the halved periodicity implies fractional angular momentum per
particle as already reported for the case of attracting bosons [39], paired fermions [41, 42, 55],
and SU(N) fermionic mixtures [43].

Our explicit solution allows also to readily obtain the symmetry of the ground state. For
the parabola centered at zero flux (and all its translations by Φ0), the wave-function is fully
symmetric, while for the one centered at Φ0/2 (and all its translations by Φ0) the wave-function
is fully anti-symmetric. The corresponding Young Tableaux are also depicted in Figure 1.

Let us summarize the four main aspects emerging from the analysis of the two-particle case:
(i) the ground state of the mixture on a ring is not degenerate, at difference from the case
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ℓ = −1 ℓ = 1ℓ = 0

ℓ = −1 ℓ = 1ℓ = 0

ℓ = −1 ℓ = 1

Figure 1. On the left, ground state energy (relative to the energy E0 at zero flux, in units of
ϵ) as a function of the reduced flux (dimensionless) for the case N = 2, M = 1 (red solid line).
The violet and magenta dashed lines correspond to the energy landscape for N = 2 single-
component Tonks–Girardeau bosons and spin-polarized fermions respectively. The total
angular momentum quantum number and the Young tableau indicating the symmetry of
the ground state under particle exchange are also indicated on each ground-state branch.
On the right, we show the ground state energy as a function of the dimensionless flux for a
single-component TG gas (top) and spin-polarized Fermi gas (bottom). We also report the
value of the angular momentum and the Young tableau of the corresponding state.

of a mixture under harmonic confinement [18], (ii) the ground-state energy as a function of
the flux is given by piece-wise parabolas, each of them characterized by a given value of total
angular momentum specified by ℓ, (iii) each parabola has a well-defined symmetry (either fully
symmetric or fully anti-symmetric), and (iv) the case of a two-component mixture displays a
halving of the periodicity with respect to the case of a spin-polarized Fermi gas (parabolas
centered at semi-integer values ofΦ0) as well as the one of a single-component TG gas (parabolas
centered at integer multiples ofΦ0).

In the following, we will treat the more challenging case of a 2+2 spin mixture.

4. Results for N = 4, M = 2

In this section, we provide the results for a balanced multicomponent Bose gas of N = 4 particles
and M = 2 spins down. The quantum numbers Ij and Jm are both semi-integers [44]. We can
write Eq. (5) as follows:

AQ (λ1,λ2) ∝

(−1)|Q|
(
λ1 −λ2 −2i

λ1 −λ2

(
λ1 − i

λ1 + i

)yQ(1)
(
λ2 − i

λ2 + i

)yQ(2)

+ λ2 −λ1 −2i

λ2 −λ1

(
λ2 − i

λ2 + i

)yQ(1)
(
λ1 − i

λ1 + i

)yQ(2)
)

. (11)

The set of Bethe equations is:
Lk j = 2πIj − 2π

4

(
J1 +J2

)
8arctan(λ1) = 2πJ1 −arctan λ2−λ1

2

8arctan(λ2) = 2πJ2 +arctan λ2−λ1
2 ,

(12)
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Table 1. Solutions of the Bethe equations for a strongly repulsive Bose–Bose mixture of
N = 4 particles and M = 2 spin-down particles. We consider various values of total angular
momentum P and quantum numbers configuration J1,J2. Such solutions are the ground-
state and the first excited states for zero reduced flux Φ̃ (see column E(0)/ϵ), but become
the ground state in a given interval of flux as indicated in the last column of the table.

P J1 +J2 λ̃1 λ̃2 E(0)/ϵ Reduced flux interval

0 0 1/
p

3 −1/
p

3 10 −1/8 ≤ Φ̃≤ 1/8
0 0 i∞ −i∞ 10 −1/8 ≤ Φ̃≤ 1/8

2π/L 1 −1 ∞ 21/2 1/8 ≤ Φ̃≤ 3/8
4π/L 2 0 ∞ 12 3/8 ≤ Φ̃≤ 5/8
4π/L 2 i −i 12 3/8 ≤ Φ̃≤ 5/8
6π/L 3 1 ∞ 29/2 5/8 ≤ Φ̃≤ 7/8

which can be simplified using the trigonometric relation arctan(a)+arctan(b) = arctan( a+b
1−ab )

Lk j = 2πIj − 2π
4

(
J1 +J2

)
λ1+λ2

1−λ1λ2
= tan

(
π
4

(
J1 +J2

))
8arctan(λ2) = 2πJ2 +arctan λ2−λ1

2 .

(13)

In order to minimize the energy associated to the charge sector we have to minimize
∑

j Ij .
As a consequence, the set of quantum numbers Ij for the ground state of the charge sector is
Ij = {− 3

2 ,− 1
2 , 1

2 , 3
2 }. Moreover, due to the periodicity of the tangent function, the second equation

only gives independent solutions for (J1+J2)(mod 4). Therefore, we can focus on the four cases
J1 +J2 = 0,1,2,3, which, for each value of Φ̃, correspond to respectively the ground state and
the first three excited states. Explicitly, these configurations yield the following values for the total
momentum P = 0, 2π

L , 4π
L , 6π

L . The solutions of Eq. (13) are listed in Table 1. Remarkably, if we allow
for complex λn , multiple solutions can be associated to the same value of the momentum. We
define aℓ,i

Q = AQ (λ̃i
1(P ), λ̃i

2(P )) as the amplitudes of the Bethe wavefunction for each configuration

of quantum numbers and where λ̃i
1,2(P ) are the i th solutions of the last two Bethe equations (13)

for a fixed value of the total momentum P , labelled by the quantum number ℓ. In particular,
for P = 0 and P = 4π/L we get two solutions, while for P = 2π/L and P = 6π/L the solution
is unique. We also stress that in order to get all the possible low-energy excitations, we had to
include singular solutions of the Bethe equations [56, 57].

Table 2. Amplitudes aℓ,i
Q corresponding to the different spin sectors for N = 4 and M = 2.

Sector a(0,1)
Q a(0,2)

Q a(1,1)
Q a(2,1)

Q a(2,2)
Q a(3,1)

Q

|↑↑↓↓〉 2 2 1− i 0 2 1+ i
|↑↓↑↓〉 −4 2 0 2 0 0
|↓↑↑↓〉 2 2 1+ i 0 −2 1− i
|↑↓↓↑〉 2 2 −1− i 0 −2 −1+ i
|↓↑↓↑〉 −4 2 0 −2 0 0
|↓↓↑↑〉 2 2 −1+ i 0 2 −1− i

In Table 2 we show all the possible aℓ,i
Q for this case in the different coordinate sectors, defined

by the possible spin orderings. We get six possible solutions, which correspond to six different
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Figure 2. Top panel: energy levels (relative to the energy E0 at zero flux, in units of ϵ) as
a function of the reduced flux (dimensionelss) for both a bosonic and a fermionic mixture
with N = 4 and M = 2. The red continuous line highlights the ground state of the system.
For each value of the flux, we indicate the angular-momentum quantum number of the
ground state. The two upper lines of Young tableaux (blue diagrams) indicate the symmetry
of the bosonic ground state as function of the flux. The two bottom lines (orange diagrams)
the ones of the fermionic ground state. Bottom panel: corresponding persistent current,
displaying the 1/N -periodicity emerging at strong interactions.

states. This value coincides with the possible and distinguishable spin configurations allowed in
this case, given in general by N !

M !(N−M)! .
In the top panel of Figure 2 we show the energy E(Φ̃) as a function of the flux. The continuous

red line highlights the ground state energy, which is a periodic function of the gauge flux.
Remarkably, the period is reduced by a factor of N = 4 if compared to the one of the non-
interacting case. This effect is also reflected in the persistent current IP (Φ̃) = − ∂E

∂Φ̃
(Φ̃) evaluated

in the ground state, which is shown in the bottom panel of Figure 2. We compare the persistent
current for c = 0 and c →∞. We see the emergence of the 1/N -reduction of the periodicity. This
effect was also reported in strongly interacting Fermi mixtures for repulsive interactions [42, 43].

Looking at Figure 2, we see that each time the flux increases by Φ̃/N , the ground state carries
a different value of total momentum P .

We evaluated the symmetry of the states listed in Table 2 by computing the expectation value
〈aℓ,i |Γ2 |aℓ,i 〉, |aℓ,i 〉 being the vector collecting the coefficients aℓ,i

Q in the different coordinate

sectors for the i th state of total momentum P (i.e the columns of Table 2), suitably normalized.
For each of the above states, this expectation value coincides with an eigenvalue of the class-
sum operator Γ2, i.e each state has well-defined symmetry. This allows us to link them to a Young
tableau and therefore, for any value of the reduced flux, to determine the symmetry of the ground
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state. In the top panel of Figure 2 the upper line (blue) of tableaux provides the symmetry of the
ground state for each branch of the ground-state energy as a function of the flux.

It is instructive to compare our results for the Bose–Bose mixture with the ones for a Fermi–
Fermi mixture with repulsive contact inter-component interactions. In this case, the wavefunc-
tion has still the form Eq. (2). However, the Bethe equations are different since there is no contact
interactions among fermions belonging to the same component, and also the symmetry under
exchange of particles belonging to the same component is different. At strong repulsive interac-
tions the first of Bethe equations (4) reads Lk j = 2π(Ij + 1

N

∑M
m=1 Jm) while the equation for the

spin rapidities coincide to the one for the bosonic case [42, 43]. The results for the solutions of
the Bethe equations for the fermionic case are summarized in Table 3. In this case the quantum
numbers Ij for N = 4 and M = 2 are integers [16]. In the ground state, we have Ij = {−2,−1,0,1}
which implies

∑
j Ij = −2. The total momentum is PF = 2πħ

L (
∑

j Ij +∑
a Ja)

.= ħ
R ℓF [43, 47, 48].

The energy levels as a function of the flux are the same as for the Bose–Bose mixture. Similarly,
for a given value of Φ̃, the angular momentum of the ground state is the same for bosons and
fermions.

On the other hand, the symmetry of the ground state is markedly different in the two cases.
We evaluate the symmetry of the fermionic ground-state wavefunction by following the same
procedure used for the bosonic system. Since the Bethe equation for the spin rapidities is the
same as in the bosonic case, the fermionic amplitudes satisfy aℓF , j

Q = a(ℓ−2)(mod4), j
Q , where ℓF

labels fermionic states with different angular momentum. As a consequence, the same value of
the total momentum PF is associated to different spin rapidities in the two cases and therefore
to different amplitudes AQ . As the amplitudes affect the symmetry of the wave-function, the
corresponding Young tableaux are different in the fermionic and in the bosonic case. The Young
tableaux indicating the symmetries of the fermionic ground state as a function of the flux are
displayed in orange in the top panel of Figure 2.

We also remark that – both in the case of bosonic and fermionic mixtures – different parabolas
display different symmetries, reflecting the fact that they correspond to different excited states at
zero flux.

Let us insist that these features are due to the fact that we are considering a two-component
system, where different symmetries are possible. We remind that for the case of a single-
component gas, also for the case of N = 4 particles, the energy landscapes are those shown in
the right panels of Figure 1 (top panel for the TG gas and bottom panel for spinless fermions).

Table 3. Solutions of the Bethe equations for a strongly repulsive Fermi–Fermi mixture for
N = 4, M = 2 and for various values of total momentum PF . We also provide the energy
associated to each state at zero flux and the reduced flux interval where each state becomes
the ground state.

PF J1 +J2 λ̃1 λ̃2 E(0)/ϵ Reduced flux interval

0 2 0 ∞ 10 −1/8 ≤ Φ̃≤ 1/8
0 2 i −i 10 −1/8 ≤ Φ̃≤ 1/8

2π/L 3 1 ∞ 21/2 1/8 ≤ Φ̃≤ 3/8
4π/L 4 1p

3
− 1p

3
12 3/8 ≤ Φ̃≤ 5/8

4π/L 4 ∞ ∞ 12 3/8 ≤ Φ̃≤ 5/8
6π/L 5 −1 ∞ 29/2 5/8 ≤ Φ̃≤ 7/8
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5. Summary and conclusions

We have studied the ground-state properties of a strongly interacting Bose–Bose mixture sub-
jected to an artificial gauge field on a ring. We have found that the ground-state energy is a peri-
odic function of the flux, made by piece-wise parabolas. As compared to the case of non interact-
ing particles, the period of the ground-state energy, as well as the one of the persistent current, is
reduced by a factor N , with N the total number of particles in the mixture. We understand the re-
duction of periodicity as being due to spin excitations, according to the following mechanism: in
the absence of artificial gauge field, the spin excitations lie above the ground state. However, the
application of a gauge field decreases the values of the energy of such spin-excited states, making
them become the ground state in some intervals of reduced flux.

Each parabola of the ground-state energy landscape is associated to a value of the total angular
momentum which increases by one quantum by moving from one parabola to the next. Hence,
the emergence of such new branches corresponds to states with fractional angular momentum
per particle. This phenomenon was previously reported for the case of Fermi mixtures with strong
repulsive interactions - our analysis proposes yet another system where this same effect occurs.

Furthermore, we have characterized the symmetry under exchange of particles of such
ground-state branches as a function of the flux, and shown that a single Young tableau can be
associated to each branch when it is non-degenerate, while more then one tableau is found when
the ground state is degenerate. This analysis confirms the role of spin excitations as being respon-
sible of the reduction of periodicity and the emergence of the new parabolic branches which are
absent in the non-interacting regime.

The 1/N− angular-momentum fractionalization was also found for multicomponent Fermi
gases at large but finite repulsive interactions [42, 43]. Such regime could be accessed by
performing a perturbative expansion of the Bethe Ansatz solution to first order in 1/c.

Our study contributes to the deep understanding of the spectrum structure and opens the
possibility of designing experiments in which particular symmetries, i.e particular spin states,
can be selected. This could be done by applying an artificial gauge flux whose value is within
the interval where the ground state is associated to the designated symmetry or superposition of
different symmetries. An experimental way to access to the symmetries would be to measure the
Tan’s contact of the mixture [58].
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[23] N. Goldman, G. Juzeliūnas, P. Öhberg, I. B. Spielman, “Light-induced gauge fields for ultracold atoms”, Rep. Prog.
Phys. 77 (2014), no. 12, article no. 126401.

[24] K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D. Phillips, G. K. Campbell, “Driving Phase Slips in a Superfluid Atom
Circuit with a Rotating Weak Link”, Phys. Rev. Lett. 110 (2013), no. 2, article no. 025302.

[25] A. Kumar, R. Dubessy, T. Badr, C. De Rossi, M. de Goër de Herve, L. Longchambon, H. Perrin, “Producing superfluid
circulation states using phase imprinting”, Phys. Rev. A 97 (2018), no. 4, article no. 043615.

[26] A. A. Zvyagin, I. V. Krive, “Persistent currents in one-dimensional systems of strongly correlated electrons”, Low
Temperature Physics 21 (1995), p. 533-555.

[27] S. Viefers, P. Koskinen, P. Singha Deo, M. Manninen, “Quantum rings for beginners: energy spectra and persistent
currents”, Physica E Low Dimens. Syst. Nanostruct. 21 (2004), no. 1, p. 1-35.

[28] L. Amico, D. Anderson, M. Boshier, J.-P. Brantut, L.-C. Kwek, A. Minguzzi, W. von Klitzing, “Colloquium: Atomtronic
circuits: from many-body physics to quantum technologies”, Rev. Mod. Phys. 94 (2022), article no. 041001.

[29] L. Amico, A. Osterloh, F. Cataliotti, “Quantum Many Particle Systems in Ring-Shaped Optical Lattices”, Phys. Rev.
Lett. 95 (2005), no. 6, article no. 063201.

[30] A. Richaud, M. Ferraretto, M. Capone, “Interaction-resistant metals in multicomponent Fermi systems”, Phys. Rev. B
103 (2021), no. 20, article no. 205132.

[31] S. Eckel, F. Jendrzejewski, A. Kumar, C. J. Lobb, G. K. Campbell, “Interferometric Measurement of the Current-Phase
Relationship of a Superfluid Weak Link”, Phys. Rev. X 4 (2014), no. 3, article no. 031052.

[32] L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbène, J. Dalibard, J. Beugnon, “Quench-
Induced Supercurrents in an Annular Bose Gas”, Phys. Rev. Lett. 113 (2014), no. 13, article no. 135302.

[33] R. Mathew, A. Kumar, S. Eckel, F. Jendrzejewski, G. K. Campbell, M. Edwards, E. Tiesinga, “Self-heterodyne detection
of the in situ phase of an atomic superconducting quantum interference device”, Phys. Rev. A 92 (2015), no. 3, article
no. 033602.

[34] Y. Cai, D. G. Allman, P. Sabharwal, K. C. Wright, “Persistent Currents in Rings of Ultracold Fermionic Atoms”, Phys.
Rev. Lett. 128 (2022), no. 15, article no. 150401.

https://arxiv.org/abs/2202.11071


Giovanni Pecci, Gianni Aupetit-Diallo, Mathias Albert, Patrizia Vignolo and Anna Minguzzi 99

[35] G. Del Pace, K. Xhani, A. M. Falconi, M. Fedrizzi, N. Grani, D. H. Rajkov, M. Inguscio, F. Scazza, W. J. Kwon, G. Roati,
“Imprinting persistent currents in tunable fermionic rings”, Phys. Rev. X 12 (2022), no. 4, article no. 041037.

[36] W. J. Chetcuti, A. Osterloh, L. Amico, J. Polo, “Interference dynamics of matter-waves of SU(N ) fermions”, preprint,
arXiv:2206.02807, 2022.

[37] N. Byers, C. N. Yang, “Theoretical Considerations Concerning Quantized Magnetic Flux in Superconducting Cylin-
ders”, Phys. Rev. Lett. 7 (1961), no. 2, p. 46-49.

[38] A. J. Leggett, “Some Considerations Related to the Quantization of Charge in Mesoscopic Systems”, in Granular
Nanoelectronics (C. W. J. Beenakker et al., eds.), NATO Science Series B: Physics, vol. 251, Plenum Press, New York,
1991, p. 343-358.

[39] P. Naldesi, J. Polo, V. Dunjko, H. Perrin, M. Olshanii, L. Amico, A. Minguzzi, “Enhancing sensitivity to rotations with
quantum solitonic currents”, SciPost Phys. 12 (2022), article no. 138.

[40] X. Waintal, G. Fleury, K. Kazymyrenko, M. Houzet, P. Schmitteckert, D. Weinmann, “Persistent Currents in One
Dimension: The Counterpart of Leggett’s Theorem”, Phys. Rev. Lett. 101 (2008), no. 10, article no. 106804.

[41] G. Pecci, P. Naldesi, L. Amico, A. Minguzzi, “Probing the BCS-BEC crossover with persistent currents”, Phys. Rev. Res.
3 (2021), no. 3, article no. L032064.

[42] N. Yu, M. Fowler, “Persistent current of a Hubbard ring threaded with a magnetic flux”, Phys. Rev. B 45 (1992), no. 20,
p. 11795-11804.

[43] W. J. Chetcuti, T. Haug, L.-C. Kwek, L. Amico, “Persistent current of SU(N) fermions”, SciPost Phys. 12 (2022), article
no. 033.

[44] Y.-Q. Li, S.-J. Gu, Z.-J. Ying, U. Eckern, “Exact results of the ground state and excitation properties of a two-
component interacting Bose system”, Eur. Phys. Lett. 61 (2003), no. 3, p. 368-374.

[45] A. Imambekov, E. Demler, “Exactly solvable case of a one-dimensional Bose–Fermi mixture”, Phys. Rev. A 73 (2006),
no. 2, article no. 021602.

[46] A. Imambekov, E. Demler, “Applications of exact solution for strongly interacting one-dimensional Bose-–Fermi
mixture: Low-temperature correlation functions, density profiles, and collective modes”, Ann. Phys. 321 (2006),
no. 10, p. 2390-2437.

[47] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, V. E. Korepin, The One-Dimensional Hubbard Model, Cambridge
University Press, 2005.

[48] M. Ogata, H. Shiba, “Bethe-ansatz wave function, momentum distribution, and spin correlation in the one-
dimensional strongly correlated Hubbard model”, Phys. Rev. B 41 (1990), no. 4, p. 2326-2338.

[49] H. Bethe, “Zur theorie der metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette”, Z. Phys. 71 (1931),
no. 3, p. 205-226.

[50] F. Franchini et al., An introduction to integrable techniques for one-dimensional quantum systems, Springer, 2017.
[51] M. Girardeau, “Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension”, J. Math.

Phys. 1 (1960), no. 6, p. 516-523.
[52] J. Decamp, P. Armagnat, B. Fang, M. Albert, A. Minguzzi, P. Vignolo, “Exact density profiles and symmetry classifica-

tion for strongly interacting multi-component Fermi gases in tight waveguides”, New J. Phys. 18 (2016), no. 5, article
no. 055011.

[53] N. Andrei, K. Furuya, J. H. Lowenstein, “Solution of the Kondo problem”, Rev. Mod. Phys. 55 (1983), no. 2, p. 331-402.
[54] M. Manninen, S. Viefers, S. M. Reimann, “Quantum rings for beginners II: Bosons versus fermions”, Physica E Low

Dimens. Syst. Nanostruct. 46 (2012), p. 119-132.
[55] F. Bloch, “Superfluidity in a Ring”, Phys. Rev. A 7 (1973), no. 6, p. 2187-2191.
[56] R. I. Nepomechie, C. Wang, “Algebraic Bethe ansatz for singular solutions”, J. Phys. A, Math. Theor. 46 (2013), no. 32,

article no. 325002.
[57] A. N. Kirillov, R. Sakamoto, “Singular solutions to the Bethe ansatz equations and rigged configurations”, J. Phys. A,

Math. Theor. 47 (2014), no. 20, article no. 205207.
[58] J. Decamp, J. Jünemann, M. Albert, M. Rizzi, A. Minguzzi, P. Vignolo, “High-momentum tails as magnetic-structure

probes for strongly correlated SU(κ) fermionic mixtures in one-dimensional traps”, Phys. Rev. A 94 (2016), no. 5,
article no. 053614.

https://arxiv.org/abs/2206.02807

	1. Introduction
	2. Model and definitions
	3. Case of two particles
	4. Results for N = 4, quad M = 2
	5. Summary and conclusions
	Conflicts of interest
	Acknowledgements
	References

