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Abstract

Computers can help us to trigger our intuition about how to
solve a problem. But how does a computer take into account
what a user wants and update these triggers? User prefer-
ences are hard to model as they are by nature vague, depend
on the user’s background and are not always deterministic,
changing depending on the context and process under which
they were established. We pose that the process of prefer-
ence discovery should be the object of interest in computer
aided design or ideation. The process should be transparent,
informative, interactive and intuitive. We formulate Hyper-
Pref, a cyclic co-creative process between human and com-
puter, which triggers the user’s intuition about what is pos-
sible and is updated according to what the user wants based
on their decisions. We combine quality diversity algorithms,
a divergent optimization method that can produce many, di-
verse solutions, with variational autoencoders to both model
that diversity as well as the user’s preferences, discovering
the preference hypervolume within large search spaces.

Introduction

Although we will never be able to fully and concisely grasp
it, Hegel describes that in its core, the creative process strives
to discover one’s true self. Art has the task to reflect upon
the spectator and is necessarily interactive (Hegel 1842).

We experience intuitions about what we want but are often
not able to formalize our preferences. They are based upon
direct experience, on cross-connections we make based
upon unrelated experiences, on familiarity but also on our
problem solving skills (Raidl and Lubart 2001). We expe-
rience a physical sensation as a reaction to these intuitions,
as defined by C.G. Jung, or more precisely, introverted intu-
itions, which are paramount to discovering one’s own prefer-
ences (Jung 1923). Research that provided evidence that in-
tuition and creativity are positively related (Raidl and Lubart
2001) however shows that the debate on creativity and intu-
ition has not been and might never be settled.

We use the definition of intuition as a sensation that
arises when a perceived pattern is unconsciously matched to
another formerly perceived one (Rosenblatt and Thickstun
1994). One source that can act as a stimulus to intuition is
external (Raidl and Lubart 2001). The artist’s or creative en-
gineer’s vigorous search cannot be performed in a vacuum.
We might have an initial idea and the ability to perform a
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divergent search, yet need others to reflect upon themselves
and gain true insight into what they are and want. Sartre em-
phasizes that the Other is needed for reflection, but the artist,
every creator, or indeed everyone, has the responsibility to
choose (Sartre and Elkaim-Sartre 1946). In a creative pro-
cess, especially when reflecting with others, we might use
the Jungian ability of extraverted intuition, or brainstorm-
ing, to come up with and reflect upon novel solutions that do
not coincide with our own intuition (Jung 1923).

In order to communicate and reflect upon our preferences
with ourselves as with others we need to create examples
that try to capture abstract ideas. Creativity, which Guil-
ford defined as the ability to perform divergent thinking, is
about generating many examples that adhere to one’s prefer-
ences (Guilford 1967). It is through these examples that we
can both explore and communicate our preferences.

We combine the ideas of Guilford about divergent think-
ing, Jung on intuition and Sartre on reflection by others and
pose that the central object of preference discovery in com-
putational creativity should be the creative process that in-
cludes all three aspects, whereby the Other is represented
by a computer and by other creators. We present an exam-
ple of such a process, akin to the generative-explorative cre-
ative model (Ward, Smith, and Finke 1999), using quality
diversity algorithms to perform divergent search to trigger
the intuition of the users, allowing them to take influence
interactively. The computer feeds and reflects upon this in-
teraction and merges the intuitions of what is possible and
preferred in a model. The model and the quality diversity al-
gorithm are the motor behind the creative process, in which
computer and users co-create a common understanding.

Related Work

Evolutionary computation has often given us unexpected so-
lutions to engineering problems (Lehman, Clune, and Mi-
sevic 2018). Novelty search (Lehman and Stanley 2011)
took the idea of divergent search to a new level by aban-
doning the objective function altogether, its only goal to find
a set of novel solutions. Reintroducing the objective to this
purely divergent search method gave way to quality diversity
(QD) algorithms like MAP-Elites (Cully et al. 2015). As in
multimodal optimization (Preuss 2015), it finds a diverse set
of high quality optimizers, but instead of performing nich-
ing in the search space directly, it does so in phenotypic



or behavioral space. First applied to robotics, QD finds a
large number of high-performing robot controller morpholo-
gies by only comparing fitness between similar solutions, in
terms of their morphology or behavior. QD keeps track of
solutions in an archive of niches and finds a subset of regions
in genetic space, called the elite hypervolume (Vassiliades
and Mouret 2018), or prototypes (Hagg, Asteroth, and Béck
2018). Similarly, we can describe the volume that contains
the preferred solutions the preference hypervolume.

A computer aided ideation process using QD can be de-
veloped that is based on an a posteriori articulation of prefer-
ence (Hagg, Asteroth, and Bick 2018), or “design by shop-
ping” (Balling 1999). By using a preference model based
on genetic similarity to selected solutions, and incorporat-
ing a factor in the objective function that rewards solutions
that are closer to the selected ones, new solutions generated
by the system are similar to the user’s selection (Hagg, As-
teroth, and Bick 2019). This approach depends on whether
genomes that are closer together also are close in their ex-
pressed form, which cannot always be guaranteed. When
a user prefers a solution, they would certainly expect the
updated solutions to be similar in terms of their expressed
morphology or behavior, not their encoding.

In reinforcement learning, learning a neural network
model from human preferences makes it possible to find
robust controllers without an explicit objective and instead
showing the user pairs of examples and letting them pick
which one they prefer (Christiano et al. 2017). Showing the
user a rich set of high performing designs and having the
user select designs is not new (Stump et al. 2003). Recent
work shows that using generative or latent models that are
trained on a diverse set of solutions (Fernandes, Correia, and
Machado 2020) allow the user to easily search in the latent
space created by the model. This allows interactive evolu-
tion of the latent model, for example to interactively recreate
images (Bontrager et al. 2018). However, the latent space is
per definition an interpolative space which seems to be less
suited for ideation processes than an extrapolative space.

HyperPref

We introduce HyperPref, an implementation of the idea of
integrating divergent thinking, intuition and reflection into
an interactive co-creative process (see Fig. 1). The central
process consists of two alternating steps: I) the computer
initiates the process by producing a diverse set of high qual-
ity solutions and II) the users select the solutions they prefer,
after which the computer updates the set of solutions that are
preferred as well as high performing.

An initial pool of random solutions is generated and eval-
uated using a user-defined objective, which can be an op-
timality criterion or a more general criterion about the ap-
pearance of solutions, throwing a wider net for more “free”
thinking. The genomes are then expressed into their pheno-
types. A latent model, a variational autoencoder (VAE), is
trained to compress the phenotypes into a low-dimensional
description. This allows us to determine how similar so-
lutions are and perform phenotypic niching despite of the
high dimensionality of the phenotypes. QD creates such a
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Figure 1: Discovering the preference hypervolume with Hy-
perPref. The co-creative process (gray box) consists of
computer-generated solution sets (step I) that are influenced
by the users’ selection (step II). A latent model is trained on
the phenotypes (1,2) of a random set of solutions. The model
predicts phenotypic features (3) while creating diverse solu-
tions using quality diversity (4), enhancing the intuition of
the user. The user can now select/deselect solutions. The
selection and a snapshot of the latent model form a con-
straint model. In the next iteration, the selected solutions are
extracted and a new population is created by adding small
mutations to the selection (5). The objective function is ad-
justed with a constraint penalty and the process resumes at
(1). The phenotypic latent model (not the constraint model)
is updated (2) and an intuition about what is high performing
and within the user’s selection is expressed (4).

latent niching archive, consisting of high-performing solu-
tions (according to the user-defined objective function) and
triggers a first intuition of what good solutions can look like.

Triggering their intuition, users select their preferred so-
lutions from the archive, and a snapshot of the latent model
and preferences is saved. By using a similarity metric
based on the latent distance of new candidate solutions to
the preferred and non-preferred solutions we can determine
whether a new candidate solution is likely to be part of the
preference hypervolume or not. The preferred solutions are
used to create a new set of initial solutions by perturbing
the original solutions and adding them to the set of origi-
nally selected ones, adding possibly new innovations into
the data set. The preference hypervolume usually consists
of disconnected regions in the search space. By increasing
the mutation strength (the o of the normal distribution from
which the amount of perturbation is chosen), we allow find-
ing shapes between phenotypic clusters.

Note that in contrast to other work, we do not directly
use the latent space for the search, only to compare pheno-
typic similarity of solutions. Although the VAE would allow
this, it would constrain the search to the interpolated space
between selected solutions. This would only be really sen-
sible when the first latent model from which the users select
solutions was trained on all feasible and relatively high per-
forming solutions. Although QD is a strong mechanism to
find diverse solutions, it does not guarantee that all solutions
are found. We can also assume that the latent model will
not be able to model all variations within the solution set,
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Figure 2: Shapes are encoded with 16 polar control points
that get transformed into the final shape using locally in-
terpolating splines (Catmull-Rom). The shape is then dis-
cretized to serve as the input to the latent model.

especially not with low-dimensional latent space, which are
necessary for QD to remain feasible. In conclusion, not lim-
iting the search to the latent space will allow more innova-
tive solutions to be found once the users constrain the search
to their preferences, considering solutions that would not be
considered by the first model.

The computer updates the latent model, which now de-
scribes the similarities within the preference hypervolume.
By adjusting the objective function, adding the constraint
model, the intuition is updated. This process can continue
until the users are satisfied. Novelty search (as opposed to
QD) and autoencoders have been combined (Liapis, Yan-
nakakis, and Togelius 2013), but without involving an ex-
plicit external objective. Our generator searches for quality
as well, and we use the autoencoder not as a way to enhance
novelty but rather to capture the user’s choice.

Demonstration

HyperPref is demonstrated on a 2D shape domain, consist-
ing of local interpolating splines (Catmull and Rom 1974).
The splines are encoded by a polar coordinate based genome
(see Fig. 2). By controlling the radius r and angle 6, a large
variety of convex and concave shapes can be created.

We simulate two use cases. In an artistic case, the users
are looking to design a ninja star, starting from centrally
symmetric shapes. The second case, which is closer to cre-
ative engineering, starts out with unbalanced shapes with the
objective to find wing profiles. The first objective prefers so-
lutions that are point symmetric through the center point of
the shape. The shape is sampled at n = 100 equidistant lo-
cations on its circumference, after which the symmetry met-
ric is calculated. The metric is based on the symmetry error
E,, the sum of Euclidean distances of all n/2 opposing sam-
pling locations to the center: fp(x) = m, Ei(x) =

Zyi ® ||2j — @;n/2||- The second objective maximizes the
distance between the center of mass and the center of the
bounding box around the shape.

For simplicity, we use a 2D latent space which only cap-
tures the similarity of solutions based on the largest pheno-
typic variance. The shape genome consists of 16 genes. QD
produces 32 new child solutions for 1024 generations, by us-
ing a normally distributed mutation operator with o = 10%
of the parameters’ range as a generator of diversity. The
archive holds 20 x 20 solutions. The convolutional VAE is
trained on a GPU with 128 by 128 pixel representations of
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Figure 3: Top: starting with centrally symmetric shapes to
design ninja stars. Bottom: starting with unbalanced shapes
to design wing profiles.

the shapes and the ADAM (Kingma and Ba 2014) training
method. The encoder consists of two convolutional and non-
linear (reLu) layers, eight filters of size three with a stride of
one. Training is performed with a learning rate of 0.001 and
maximizes the evidence lower bound, thereby minimizing
the Kullback-Leibler divergence between the original and
the latent distribution. The solution set is updated using as
many perturbed (¢ = 10%) versions of the selected shapes
as the 64 initial solutions. The constraint penalty, which is
multiplied with the original fitness function, is based on the
user selection drift (Hagg, Asteroth, and Béck 2019), with
the minimal distance s of a candidate solution x to a selected
solution and 5 to a deselected solution:

1, if 2= < 0.5
p(x) = 1 2 S }.ES+S)'
-2 (m —0.5), otherwise
Experiments Fig. 3 shows the initial computer-generated

solution set on the left. The diversity of the sets is clearly
visible. We then simulate a group of creators that all have a
different preferred shape (shown in the center). After selec-
tion, the computer updates the set, reflecting the combina-
tion of the creators’ choice and the general objective. This
process of user selection is repeated once more. The result-
ing sets of ninja stars or wing profiles to look like is shown
in the second preference hypervolume on the right.

Discussion The primary solution set contains a large and
diverse number of shapes, offering users inspiration and
feeding their intuition about how shapes could look like.
With a specific goal in mind, namely designing ninja stars
or wing profiles, users and computers can co-create in an
intuitive creative process. The process offers reflection, by
combining preferred shapes and zooming in on the prefer-
ence hypervolume. Only two steps are necessary to create
shapes that are close to what one could and would expect
from such a creative process.



Conclusion

We showed how to combine the divergent search of quality
diversity to trigger the user intuition about what solutions
are possible and high performing, allowing creators to select
shapes they prefer by shopping for designs, and then having
the computer reflect upon that selection, incorporating the
preferences through a constraint model and discovering the
preference hypervolume in an intuitive, co-creative manner.
The features upon which the initial set is based are generated
by a variational autoencoder, trained on the phenotypical ex-
pression of the solutions, rather than hand-crafted features
or genetic similarity. The constraint model is based upon
a snapshot of that model in combination with the set of se-
lected and non-selected solutions.

The resulting creative process, which continuously visual-
izes and updates the creators’ intuition, was shown in a sim-
ple 2D shape domain. The updates can be fast, depending on
the GPU used for training the VAE and the number of QD
updates and VAE prediction speed. The current bandwidth
of GPUs is such that the method is close to being on-line.

We recognize that optimizations and variations of the in-
troduced process exist. We used a 2D latent space for
the purposes of simplicity and visualization, but higher-
dimensional latent spaces are more accurate in measuring
similarity in detailed shapes. An interesting research path
will be to analyze the differences between searching the
VAEs latent space, interpolating between selected shapes,
and searching genetic space directly, allowing extrapolation
away from the modeled surface, which seems to be more fit-
ting for a creative process. Often times we only find innova-
tive solutions during the creative process, and we certainly
hope that unexpected, novel solutions are discovered once
we made the first few design decisions.

We took a short but deep dive into exploring the prefer-
ence hypervolume, combining quality diversity with latent
models and interactive user selection into a co-creative pro-
cess that shows what we can expect in the near future when
creators work together. We put the human into the loop by
feeding and reflecting upon their intuitions, leading the cre-
ative process by example: No one can tell what the painting
of tomorrow will be like; one cannot judge a painting until
it is done (Sartre and Elkaim-Sartre 1946).
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