Automatic Similarity Detection in LEGO Ducks

Mark Ferguson!, Sebastian Deterding', Andreas Lieberoth?,
Marc Malmdorf Andersen?, Sam Devlin®, Daniel Kudenko* and James Alfred Walker!
I University of York, UK. maf541 @york.ac.uk, sebastian.deterding @york.ac.uk, james.walker @york.ac.uk
2 Aarhus University, Denmark. andreas @edu.au.dk, mana@cas.au.dk
3 Microsoft Research Cambridge, UK. sam.devlin@microsoft.com
4 Leibniz University Hannover, Germany. kudenko@13s.de

Abstract

The automated evaluation of creative products promises both
good-and-scalable creativity assessments and new forms of
visual analysis of whole corpora. Where creative works are
not ‘born digital’, such automated evaluation requires fast and
frugal ways of transforming them into data representations
that can be meaningfully assessed with common creativity
metrics like novelty. In this paper, we report the results of
training a Spatiotemporal DeepInfomax Variational Autoen-
coder (STDIM-VAE) on a digital photo pool of 162 LEGO
ducks to generate a phenotypical landscape of clusters of sim-
ilar ducks and dissimilarity scores for individual ducks. Vi-
sual inspection suggests that our system produces plausible
results from image pixels alone. We conclude that under cer-
tain conditions, STDIM-VAEs may provide fast and frugal
ways of automatically assessing corpora of creative works.

Introduction

How to evaluate creativity is a major and ongoing con-
cern in research, the creative industries, education, and
many other areas. Researchers have developed numer-
ous methods to assess both human and computational cre-
ativity across the “four P’s” — person, process, product,
and press/environment (Kaufman, Plucker, and Baer 2008;
Lamb, Brown, and Clarke 2018; Jordanous 2019; Plucker,
Makel, and Qian 2019). In psychology, expert evaluations
of creative products are often seen as the ‘gold standard’
(Plucker, Makel, and Qian 2019). In computational creativ-
ity evaluation, human judges are likewise frequently used
(Lamb, Brown, and Clarke 2018). Expert evaluations fea-
ture comparatively high reliability, intersubjectivity, predic-
tive value, and ecological and criterion validity: they are
close to everyday practices around creative works like cri-
tiques, reviews, or prizes (Lamb, Brown, and Clarke 2018;
Plucker, Makel, and Qian 2019). They also embody the
sense-making within a social context that most contempo-
rary definitions consider essential to creativity (Colton and
Wiggins 2012; Plucker, Beghetto, and Dow 2004).

Automated Creativity Assessment

That said, expert evaluations are labour-intensive (Lamb,
Brown, and Clarke 2018; Jordanous 2019); they don’t scale
to the volumes of creative products one may find with cul-
tural archives, generative systems, or large-scale testing.
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This has led researchers to trial computational formalisa-
tions of creativity such as novelty to automate creativity
evaluation (Lamb, Brown, and Clarke 2018). One unique
opportunity of automated evaluations is that they can pro-
vide rich statistical and visual analyses of a whole corpus
(Grace et al. 2015; Elgammal and Saleh 2015), in addition
to individual products. This makes them potentially akin
to cultural analytics (Manovich 2016), the use of computa-
tional and visualisation techniques to analyse massive cul-
tural data sets. A good example are expressive range anal-
yses of procedural content generators (Summerville 2018),
which visualise the frequency space of creative outputs of a
system as a heat map.

While there have been some attempts to apply automated
creativity evaluation to human works (Grace et al. 2015;
Karampiperis, Koukourikos, and Koliopoulou 2014; Elgam-
mal and Saleh 2015; Zhu, Xu, and Khot 2009), it remains
chiefly confined to computational creativity (Lamb, Brown,
and Clarke 2018). Human creativity assessment continues
to use either poor-but-scalable self-reports and test batteries
or good-but-expensive human expert evaluations (Kaufman,
Plucker, and Baer 2008). We are missing robust, usable,
validated computational tools for automatically evaluating
human creative works. Such tools could not only provide
cheaper, more reliable creativity measurement at scale: they
would also allow us to analyse whole corpora of creative
products in the style of cultural analytics.

The Context: The LEGO Duck Task

In response, we have been exploring the automated evalua-
tion of a creativity exercise, the LEGO Duck Task (hence-
forth ‘Duck Task’). In this task, participants are instructed
to make a duck from a standard set of six LEGO bricks.
Task instructions can vary from e.g. making ‘the most cre-
ative duck’ to making as many different ducks as possible
in a given time. The Duck Task has many attractive fea-
tures for (automated) creativity assessment: It is easily un-
derstood across cultures. It is repeatable, unlike other task-
based assessments where knowing the solution biases subse-
quent runs. Recombining the six bricks opens a vast pheno-
typic landscape of possible ducks and non-ducks. And yet
the six bricks present a small set of simple, low-dimensional
shapes that are relatively easy to formalise in terms of their
(dis)similarity or other dimensions of interest.



One challenge we discovered early on is transforming
physical LEGO ducks into computational representations.
Standard methods of image recognition ran into interesting
issues that are beyond the scope of this paper. We also con-
sidered but early on discarded the use of digital LEGO con-
struction tools. Not only are physical LEGO bricks more ac-
cessible and familiar: research suggests that physical tools
afford forms of embodied creative cognition that their digi-
tal remediations can constrain (Dove et al. 2017). We rea-
soned that this physical-to-data transformation poses a gen-
eral challenge for in-the-wild automated evaluation of ‘born
analog’ creative works. Hence, we began exploring potential
ways of transforming large sets of physical works — LEGO
ducks — into data representations that lend themselves to au-
tomated creativity assessment.

Contribution & Structure of this Paper

In this paper, we present one fast and frugal method for
transforming a small corpus of physical creative works into
a phenotypical landscape and individual novelty metrics us-
ing STDIM-VAEs, formalising novelty as corpus-relative
dissimilarity. Our method generated plausible scores and
clusters of human-meaningful similarity for our LEGO duck
pool from raw pixels of simple mobile phone photos. This
is particularly surprising, as existing methods for automat-
ically assessing novelty rely on well-structured data sets in
which human algorithm designers pre-specified likely mean-
ingful dimensions (Grace et al. 2015; Pérez Y Pérez et al.
2011; Karampiperis, Koukourikos, and Koliopoulou 2014;
Elgammal and Saleh 2015; Zhu, Xu, and Khot 2009; Cor-
reia et al. 2019).

We will first present the Duck Task and how we generated
a diverse set of human-made LEGO ducks and photographed
them. We will then present the computational architecture
and methods we used to pre-process images, evaluate duck
novelty, and generated a phenotypical landscape of the to-
tal corpus. Finally, we present our results and discuss their
ramifications in light of the existing literature.

Lego Duck Data Set

A corpus of trial ducks was generated by passing members
of the public during an open science event at Aarhus Univer-
sity. Sealed packs of the six bricks were piled on a tabletop
under a large sign saying ‘Build a duck for science!’, dis-
playing a yellow rubber duck but no finished LEGO ducks to
avoid constraint by example. Participants who approached
the booth were given a brief verbal introduction to the pur-
pose and asked to build a duck in whatever way they saw fit,
with various tweaks to the patter throughout the day: some-
times encouraging builders to come up with something new,
and many told to ‘just have fun’. Only after building a duck
were participants invited to proceed to the back of the booth,
where previous ducks were on display.

3D photography was conducted using an iPhone with the
Foldio 360 app (orangemonkey.com/app) attached in place
on a Foldio 2 photography light tent, with a Foldio 360
turntable for rotating ducks. Each duck photographed was
stored as 36 individual jpg files, and as a 3D rotation video
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in .GIF and .mp4 formats. Later in the process, this was re-
duced to 24 pictures. 518 ducks were 3D photographed in
the initial stages of the project, in groups of 169, 162 and
187 observations. The second group (162) was chosen for
the study in this paper.'

Methodology
STDIM-VAE

To assess the (dis)similarity of LEGO duck models, we
compressed the high-dimensional image data into low-
dimensional representations with the STDIM-VAE hybrid
encoder (Ferguson et al. 2020). This combines features of a
Spatiotemporal DeepInfomax (ST-DIM) (Anand et al. 2019)
and a Variational Autoencoder (VAE) (Kingma and Welling
2013). The architecture for the hybrid encoder is shown in
Figure 1.
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Figure 1: STDIM-VAE Network Architecture
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As this encoder is designed for video data, the duck ro-
tation videos were used, which stitch together the avail-
able images of each duck at different angles to generate a
video with the camera ‘circling’ the duck. This is key since
while the VAE section aims to purely encode visual infor-
mation frame by frame, the ST-DIM section aims to learn
a representation that maintains high mutual information be-
tween local features in the same spatial location in sequen-
tial frames, as well as between the global features and all the
next sequential frame’s local features.

Image Pre-processing

Before feeding video frames into the network to train the en-
coder, we pre-processed them to generate a mask for each
duck that would align images in each frame and reduce
their size. Smaller images reduced the compute requirement,
while alignment ensured dissimilarity is not reported due to
shifts in the model placement. To generate masks, we first
extracted edges using color-based edge detection (Chen and
Chen 2010) and thresholding. We then applied Connected
Component Labeling (CCL) (Wu, Otoo, and Shoshani 2005)
to label each region. As the duck is fully contained within
the image, any region that touches the side of the image can
be discarded. A smoothing filter was then passed over the
image along with a second round of thresholding. Next, we
relabelled the resulting image. We then took the largest la-
belled region as the mask and: calculated its centre of mass,

"Data set available at https://osf.io/73kv2/.



recorded the distance from the centre to each mask edge, and
determined a bounding box for the whole image set based on
the maximum distance in each direction. This box was then
used to crop each image around their centre point.

Evaluating (Dis)similarity

We combined three approaches evaluate the
(dis)similarity of LEGO duck models. Firstly, we used
Uniform Manifold Approximation and Projection (UMAP)
(Mclnnes et al. 2018) to project representations down into a
2D space. We then used hierarchical clustering with cosine
distance over the concatenated representation of each frame.
The extracted clusters were visually examined to access
the similarity of ducks within the same cluster. Finally,
each duck was ranked based on the average distance and
cluster size (from hierarchical clustering). This allowed us
to examine a small set of models that the system believes
are either common or novel.

to

Results & Discussion

The projection generated by UMAP can be seen in Figure 2,
where the point color represents the cluster label generated
by hierarchical clustering.? Seven regions have been high-
lighted. While not strictly abiding by the labels from the hi-
erarchical clustering, they visually appear to group. Visual
inspection suggested that models within the same region in-
deed shared common traits to the human eye.

Figure 2: UMAP of Lego duck representations

For ducks in region A (e.g. Duck 0,1), it appears that
generally ducks have attempted to model the whole duck.
Additionally, four parts of a duck’s anatomy are commonly
created in the same manner. The head is commonly cre-
ated by combining a 2 x 2 yellow brick on top of a 2 x 3
red plate. The tail is generally modeled by placing a 1 x 2
brick on the back of a 2 x 4 brick. The legs are commonly
constructed by attaching a 2 x 2 brick under a 2 x 4 brick,

*Find an interactive version at https://osf.io/kyzum/.
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although the position this attachment occurs changes within
the region. Finally, a red 2 x 3 plate was often used to create
the duck’s feet. In comparison, models within region C (e.g.
Duck 97,109) appear to focus on modelling the ducks head,
where it is common to use two 2 x 3 red plates for the duck’s
bill. For region B, there appears to be no one common fea-
ture. Instead, the region seems to act as a transition between
regions A and C. In region D (e.g. Duck 135,147), a duck’s
wings are often represented by two 2 x 3 red plates on top
of a 2 x 4 brick, although slight variations exist in how the
duck’s head and tail are created. In the final two regions, F
(e.g. Duck 34,57) and G (e.g. Duck 45,75), the duck’s head
and feet are created in a similar manner to region A. How-
ever, models in regions F and G often differ based on the
height of ducks. In the F region, the models normally have a
maximum height of 3 bricks and 2 plates, whereas models in
region G generally have a maximum height of 4 bricks and
1 or 2 plates.

When we visually examined the twenty clusters identi-
fied from hierarchical clustering, many of the clusters could
indeed fit into one of seven regions previously discussed.
Whenever a cluster did not clearly fit into one region, the
cluster was normally small and contained models that visu-
ally looked novel.

Finally, the ducks were ranked based on average distance
to all other ducks and the size of the cluster. Common ducks
should have a low average distance and large cluster size,
whereas novel ducks should have a high average distance
and small cluster size. The top two models for each of these
are shown in Figure 3.
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Figure 3: Common ducks identified with (a) small average
distances and (b) large cluster sizes. Novel ducks identified
with (c) large average distances and (d) small cluster sizes

We assume our method produced plausible results at least
partially because the possibility space of creative works
(LEGO ducks) and resulting pixel distributions is well-
constrained and features inherent segmentation in the shape
of LEGO blocks. That is, the informational properties of
our raw data offloaded some of the ‘heavy lifting’ of recog-
nising meaningful (dis)similarities, which human algorithm
designers may need to do with more diverse corpora by pre-
specifying semantically rich features or dimensions. This
was further aided by our image pre-processing, cropping and
aligning all image data. Any remaining dissimilarities were
likely to be ‘inherently’ meaningful and structured. Hence,
we would not expect our method to easily generalise to more
inherently diverse corpora like e.g. ‘construct any entity
from any kind and number of LEGO bricks’. However, for
our purposes of developing an automated creativity evalu-
ator of a scalable human creativity assessment — the Duck
Task — the initial results are encouraging.



Conclusions & Future Work

The main aim of this work was to test the viability of a
STDIM-VAE on photo imagery to create a representation
that allows the easy creativity evaluation of products of the
Duck Task human creativity assessment. The UMAP pro-
jection generated from our data shows that the representa-
tion indeed encapsulates human-legible feature differences
in duck models, such as using particular bricks/plates to cre-
ate particular parts of duck anatomy, or modelling the whole
duck vs. just the head. Ranking ducks on two dissimilarity
metrics generated a ranking topped by ducks that appeared
on first inspection to be novel.

To validate our findings, future work will compare these
to rankings by human expert evaluators. Further experi-
ments on unused datasets would allow to test the replicabil-
ity of our method, including evaluating the trained encoder
on duck models unseen during training. Additionally, by
sweeping all starting points to find the best match, the as-
sumption of temporal alignment can be removed. Finally,
exploring the generalisability of our approach to more di-
verse corpora is an interesting area for future work.
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