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Abstract. This paper presents a multi-agent computational simulation of the 
effects on creativity of designers' simple social interactions with both other 
designers and consumers. This model is based on ideas from situated cognition 
and uses indirect observation to produce potential changes to the knowledge 
that each designer and consumer uses to perform their activities. These changes 
result in global, social behaviors emerging from the indirect interaction of the 
players with relatively simple individual behaviors. The paper provides results 
to illustrate these emergent behaviors and how the social interactions affect 
creativity. 

1   Introduction 

Computational models of creativity typically simulate the reasoning process of one 
creative agent that produces designs (whether they are of residences [1], stories [2], 
software [3], artwork [4], or other artifacts, whether abstract or physically realizable). 
In this view, the simulation ends as soon as the design of the artifact is generated by 
the simulated designer, and this design generation concludes when the simulated 
design process converges to an acceptable solution. The simulated designer is 
programmed with a particular body of knowledge, which may or may not change over 
time, that embodies its expertise and that includes evaluation knowledge that allows 
the agent to determine the acceptability of the designs it proposes and therefore halt 
the simulated design process. 

This simulated design process might have some parameters that can be adjusted, 
but usually employs the same overall method in order to generate designs (whether it 
be evolutionary algorithms [5], analogy [6], constraint satisfaction [7], shape 
grammars [8], or other computational strategies for creating designs). If the design 
process is run again on the same problem, then the same solution, or at least the same 
type of solution, will be obtained as output. This is the "design as search or 
optimization" view, and does not account for the fact that most designers are able to 
continue producing creative output throughout their lives. Designers do not just 
produce one design and stop, and the designs that they have produced in the past 
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influence the ones they produce in the future, instead of each episode of producing a 
design being done in complete isolation from all other episodes. 

As Boden has pointed out, creative products must be both novel and 
useful/valuable [9]. In order for a designer's output to be considered creative it must 
be sufficiently distinct from the designer's previous body of work, and in order for 
this to occur in a computational model, the simulated designer must be dynamic: at 
minimum, some aspect of the way it analyzes and/or produces designs must change 
over time. In addition, in order for a designer's output to be considered creative it 
must be valued by others, and in order to be successful in this a designer must be 
aware (as much as possible) of what others look for or value. It thus appears that 
traditional computational models of design are limited in their veridicality because 
they do not take into account a designer's social context in modeling design activity 
and the factors that drive it. 

This paper describes a computational model that embodies a broader view of 
design than single designer simulations. In this view the design decisions that a 
designer makes (i.e., the evaluation criteria on which those decisions are based) are 
influenced by multiple factors, some of which are external to the agent. In particular, 
the knowledge that a designer uses both to produce and evaluate designs changes over 
time as a result of the interactions of the designer with other members of the world 
around it. The other members that can influence a designer's design decisions can be 
classified into those that are competitors (other designers in the same industry or 
domain, producing the same kinds of designs) and those that are consumers (of the 
type of artifact produced by the designer). The influence is not a result of direct 
communication between them, but rather results from each member being able to 
analyze the behaviors of the others around it, in particular their responses to the 
different designs being produced, and adjusting its own knowledge over time as a 
result. In broad terms, we can consider the computational model simulates that 
consumers' purchasing behavior in the world is independent of, but indirectly affects, 
the evaluation criteria used in producing new products. 

This view of designing as including a social phenomenon is influenced by research 
in the branch of cognitive science known as situated cognition [10, 11]. One of the 
observations of situated cognition is that reasoning occurs within a world and is 
influenced by a designer’s current worldview, called a “situation” [12]. The same 
designer confronted by the same requirements at a different time, or different 
designers confronted by the same requirements at the same time, might make different 
decisions while reasoning and therefore come up with different solutions to the 
requirements. Basing this computational simulation on ideas from situated cognition 
allows for the explanation of, and experimentation with, many of the phenomena 
involving social influences that are related to design activity. 

The remainder of the paper is organized as follows. Section 2 briefly presents the 
mechanics of the computational simulation of a social environment in which creative 
agents are present, using ideas from multi-agent systems [13]. Section 3 presents 
some details about the makeup of the agents used in this simulation. Section 4 
describes and presents the results of some experiments performed with this 
simulation. The paper concludes by discussing, in Section 5, some of the important 
outcomes of this research. 

111



2   Multi-agent Simulation 

This simulation was implemented in MASON (Multi-Agent Simulation Of 
Networks), a multi-agent simulation platform, developed at George Mason University 
[14]. In this simulated world there are 1,000 agents, of which 2.5% are designers 
(which are also called producers) and 97.5% are observers or consumers (which are 
also called receivers) of the designs produced by the designers. These proportions are 
based on statistics gathered by the U.S. Census Bureau [15] that show that 
approximately 2.5% of the U.S. population is involved in some sort of creative 
activity or industry. 

Each designer and consumer is modeled as a single agent in MASON resulting in 
25 designers agents and 975 consumer agents. Each of these agents has its own value 
system, modeling its situation at any time: a set of interests and preferences, or biases, 
that are used to evaluate designs. In addition, each of the designer agents has its own 
set of skills: generative knowledge that it uses to produce new designs. The sets of 
preferences and skills are different in each agent. 

The "lives" of the agents are divided into time-steps, and a simulation is run for 
each agent for 1,000 time-steps. Within each time-step each designer agent produces a 
new design based on its set of generative skills and its evaluation criteria for deciding 
what makes a good design. The consumers then observe the produced designs and use 
their own evaluation criteria to assign a value to the quality of the designs. 

Once all the consumers have had a chance to evaluate the designs produced by all 
the designers the results are gathered together to obtain mean values of the population 
of designs produced in that time-step. The mean values are used to rank the designs 
and the designers according to their success (the relative quality of the designs they 
produced, as judged by the consumers) and the consumers according to their 
enthusiasm (for the overall set of designs produced by the designers). The results of 
this procedure are used by the agents as a catalyst for potentially making adjustments 
to the knowledge that they use in their activities in the next time-step (evaluating 
designs and, in the case of designers, also producing designs). 

In order to simulate the adoption of technologies and methods that have been used 
by others and have been proven to be successful, in a previous time-step, the least 
successful designers change their situation by adopting some of the knowledge (both 
generative and evaluative) that the most successful designer used in the time-step that 
has just ended (and thus try to improve their own success in the future). In the real 
world this adopted knowledge could have been obtained through licensing, patents, 
reverse engineering, industrial espionage, or other means. In order to simulate the 
membership behavior of consumers, where consumers are influenced to adopt 
products based on which products have been adopted by large groups, the least 
enthusiastic consumers adopt some of the evaluative knowledge that the most 
enthusiastic consumer used in the time-step that has just terminated in order to try to 
improve their enthusiasm for the overall set of designs in existence. 

The above procedure is then repeated for each subsequent time-step in the 
simulation. Fig. 1 schematically shows the simulation framework just described. The 
agents in the simulation undergo gradual changes in their way of viewing the world 
around them (and of producing designs, in the case of the designer agents) as the 
simulation proceeds. These gradual changes occur as a result of each agent observing 
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the behavior (skills, evaluation criteria, and opinions) of others, rather than as a result 
of direct communication between the agents. As a result of these gradual changes, our 
hypothesis is that interesting global (social) behaviors that were not programmed 
directly into the simulation emerge on the basis of the elementary social individual 
agent behaviors. 

 
Fig. 1. Framework for the simulation of a society of producer and receiver agents. 

3   Individual Agent Models 

In this simulation the designer agents produce simple shapes consisting of sets of 
colored unit squares through an evolutionary algorithm. Any generative approach can 
be substituted for the evolutionary algorithm. Each agent uses several criteria in 
parallel to evaluate designs. In the case of the designer agents, these criteria are used 
to evaluate the designs that they themselves generate, and guide their generation 
towards convergence in each time-step. In the case of the consumer agents, the 
criteria are used to evaluate the designs that the designer agents produced during that 
time-step. 

The sets of evaluation criteria, which are used to model the notion of “situation,” 
available to designer and consumer agents overlap but are distinct. The initial state of 
the agents is randomly set (choosing for each agent a fixed number of criteria from 
the set of possible criteria that corresponds to it) before commencing the simulation. 
In this example the evaluation criteria relate to geometric properties of the designed 
shapes (such as their tallness, flatness, area-to-perimeter ratio, bumpiness, degree of 
convexity, and symmetry) as well as criteria that relate to color properties of the 
shapes (such as degree of color saturation, contiguousness of the colors, and the 
existence of different color patterns within the unit squares that make up the shapes). 

Each of the designer agents uses a set of genes in order to create genotypes that 
describe moves that can be made to describe a shape (design). The set of genes that 
each designer agent uses is initialized at random at the beginning of the simulation, 
and is chosen from a set of 32 possible genes. 

Each gene represents making a unit move from a given start position in one of 
eight possible directions (during the creation of a shape) and placing a unit square (of 
a particular color) in the position resulting from that move. A genotype is a sequence 
of such moves and placements of colored unit squares, read from left to right, that 
together creates an entire shape. The start position for each gene in the sequence 
(genotype) is the end position for the previous gene. Fig. 2 shows a subset of the set 
of genes available to designers (the subset shows the eight possible genes that can 
exist for a given color of unit square). 
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Fig. 2. Subset (for a given color) of the genes available to designer agents. 

4   Experimental Results 

Fig. 3 shows snapshots of the state of the simulated world after each of the first four 
time-steps in a typical simulation. In the snapshots, designers are shown as hollow 
squares distributed in five rows of five columns each, and consumers are shown as 
small circles that are rendered in the vicinity of the designer whose design they liked 
the most upon terminating the corresponding time-step of the simulation. From one 
time-step to the next the designers remain immobile, but the consumers travel within 
the window from their location in the previous time-step to the vicinity of the 
designer whose designs they evaluated most highly in the current time-step. The 
density of the cloud of consumers depicted in the vicinity of each designer is a 
measure of how popular/successful that designer's design was in the current time-step. 

A wide range of responses can be observed in the sequence of snapshots shown in 
Fig. 3. If the designers are numbered from left to right and from top to bottom, 
Designer 8 (second row, third column) maintains an above-average level of popularity 
throughout the four time-steps. Designer 25 (last row, last column) has an above-
average number of "followers" only in the third of the four time-steps shown in the 
sequence of snapshots. Designer 5 (first row, last column) is not successful at all at 
the beginning of the simulation, then has an average number of followers during the 
next two time-steps, and then has very few by the fourth time-step. Designer 21 (fifth 
row, first column) oscillates between being relatively unpopular and being relatively 
popular in each of the four time-steps.  

114



 
 

1.    2.     
 

3.     4.     
 

 

Fig. 3. Snapshots of the first four time-steps in a typical simulation. Designers are shown as 
hollow squares distributed in five rows of five columns each, and consumers are shown as 
small circles that are rendered in the vicinity of the designer whose design they liked. 

 
This first experiment shows that many different types of social responses to 

creative agents can emerge in this computational simulation. This is despite the 
simplicity and indirectness of the knowledge transfer mechanism employed by the 
individual agents in each time-step in the simulation (which is what originates this 
range of behaviors) and despite the fact that only four time-steps were observed in 
detail in order to analyze the agents' individual behaviors. 
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The second set of experiments is designed to determine global emergent trends 
based on these simplified concepts of situated cognition. A Monte Carlo simulation 
[16] (with 1,000 time-steps, 20 runs) was run. The mean and standard deviation of the 
distributions of the evaluation knowledge used by the sets of agents and the genes 
used by the designer agents at each time-step in each run were measured. The 
distributions of knowledge allow us to observe whether some evaluation criteria in 
both types of agent and some production knowledge in the designers tend to dominate 
in time (their initial distribution is set at random, and is therefore statistically 
uniform). The standard deviation of these distributions was used as a measure of the 
variability within the population of agents. The mean and the standard deviation of 
these standard deviations were measured to obtain a global measure of the variability 
within the population across all runs (i.e., the variability of the variabilities). 

Without the concepts of situated cognition, the simulation should tend over time to 
produce agents that will use the same knowledge that only a few of them used at the 
beginning of the simulation (the ones initially that turned out to be the most 
successful or enthusiastic). Situated cognition encompasses changes in the worldview 
of the participants. In the design world we are simulating this could be brought about 
when new knowledge (methods, technologies, ideas, etc.) appears. This new 
knowledge may augment or supplant some of the knowledge that was being used 
earlier. To account for this change in worldviews new values are introduced in an 
“onionskin” model of an open world.  

In the onionskin model the open world is modeled as a sequence of closed worlds, 
one embedded in the other. Each “skin” completely envelopes the previous world, 
thus the previous world becomes an open world embedded within the next world as 
the constants that define that world are turned into variables by the next closed world. 
In this work we treat both the criteria and the generation knowledge as fixed in each 
time-step. This makes each time-step operate within a closed world defined by those 
criteria and the generation knowledge. In the next skin the criteria that were 
previously fixed become part of a larger set as does the generation knowledge. In this 
way the current time-step becomes an open world for the previous time-step. Here a 
set of new values is regularly introduced to account for changes that emerge from the 
current state of the world. These new values are added to or substituted for existing 
values. This is repeated at regular intervals. At every 200 time-steps new evaluation 
criteria are introduced for both designers and consumers and new genes are added to 
the pool from which designs are produced by designers. Fig. 4 shows the graph of the 
resulting variability (for the distribution of both designer and consumer evaluation 
criteria). The eleven values shown in the horizontal (time) axis of Fig. 4 and Fig. 5 
correspond to eleven key time-steps in the simulation: the initial (time-step 0) and 
final (time-step 1,000) state of the simulation, and just before and just after the 
introduction of new knowledge in time-steps 199, 200, 399, 400, .... 

The effect of this introduction of new knowledge can be seen in Fig. 4, which 
shows that the variability of the evaluation knowledge is maintained and does not 
converge. Having the agents react to these changes in the world by altering the way 
they do things crudely models the way they construct situations (interpretations of the 
world around them) for themselves, and thus change, as they interact with other 
agents in that world in the course of performing their activities [10, 11]. 
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Fig. 4. Graph of the variability in terms of the standard deviations of the standard deviations of 
the evaluation knowledge, expressed as criteria, used by the designers and consumers. 

 
 

Fig. 5. Graph of the variability in terms of the means of the standard deviations of the designer 
and consumer criteria. The means of the designer criteria have been multiplied by 10 to make 
them viewable at the same scale as the consumer criteria. 

Another measure of the variability is the means of the standard deviations. If these 
drop that is an indication of a drop in variability. If, however, they stay high then 
variability is sustained. Fig. 5 shows the means of the standard deviation values of the 
designer and consumer criteria. 

Both graphs show that the variability is maintained throughout the entire process. 
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5   Discussion 

In this paper we have presented a computational simulation that uses ideas from 
situated cognition to model some of the social aspects of creative activity. In our 
simulation, creativity does not stop as soon as an agent finishes producing some 
design for a particular set of requirements, as in many traditional computational 
models. Instead, we view creativity as an ongoing process that is influenced by factors 
that are external to creative agents. Our model fits well within, and contributes a 
computational implementation of, the DIFI (Domain-Individual-Field-Interaction) 
framework proposed in [17], which views creativity as a property of the interaction 
between individuals in a society (field) that belong to a given culture (domain). 

Another model that is conceptually similar to the one we present here is described 
in [18]. The model in [18] uses a direct interaction between the agents, unlike the one 
we describe in this paper, but shares our interest in observing the emergence of 
complex social behavior from the elementary interactions of individual behaviors. It 
does so by having agents' knowledge not be static, and their "lives" not end as soon as 
they produce satisfactory designs, but rather modify agents' knowledge based on their 
changing situation as they proceed with their activities and interact with other agents, 
and keep agents active throughout many problem-solving episodes. A preliminary 
version of the model described in this paper appeared in [19]. 

There are no causal models of the relationship between consumer preferences and 
the designers of the consumed designs. However, computational simulations like this 
permit the testing of hypotheses and the observation of the resulting systemic 
behaviors. The focus of this paper has been on the hypothesis that peer pressure and 
market pressure are drivers of change in the way designers design creatively, and that 
this occurs through the indirect observations that designers make of the opinions that 
consumers and other designers have on their previous designs, rather than direct 
communication between them. The paper described and showed the results of 
experiments in which social behaviors emerged from this kind of indirect interaction. 

Computational social science, from which this work is derived, provides the 
techniques to experiment with behavior in silico, behavior that is too difficult to 
experiment with in vivo. Complex social behavior can result from simple individual 
behaviors. The results produced here demonstrate that the hypothesis that creativity is 
both an individual and social phenomenon can be tested. The results indicate that 
social interactions play a role in designers being continuously creative and that the 
concepts of situated cognition play a role in our understanding of creativity. 

Further experiments will be carried out where different ideas about how designs 
and design criteria substitute for existing ones in order to model Schumpeter’s [20] 
foundational concept of “creative destruction” will be tested. 
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