
A Step Towards the Evolution of Visual

Languages

Penousal Machado and Henrique Nunes

CISUC, Department of Informatics Engineering, University of Coimbra, 3030
Coimbra, Portugal machado@dei.uc.pt

Abstract. Traditional Evolutionary Art systems allow the evolution of
individual artworks. We present a novel Evolutionary Art engine for the
evolution of visual languages. In our approach, each individual is a con-
text free grammar that specifies an entire family of shapes following the
same production rules. Therefore, search takes place at an higher level of
abstraction (families of shapes) than the one typically explored in Evo-
lutionary Art systems (individual shapes). The description of the system
gives particular emphasis to the novel aspects of the approach and to the
generative potential of the representation.

1 Introduction

Stiny and Gips [1] introduced the concept of Shape Grammars, which: “are
similar to phrase structure grammars, which were introduced by Chomsky in
linguistics. Where phrase structure grammars are defined over an alphabet of
symbols and generate one-dimensional strings of symbols, shape grammars are
defined over an alphabet of shapes and generate n-dimensional shapes.”[1]. Stiny
and Gips have successfully built shape grammars that capture the “language”
of Frank Lloyd Wright’s prairie houses, Mughul Gardens, Palladian Plans, etc.
Additionally, they were also able to use these grammars to produce new instances
of the same language, e.g. to create new prairie house designs that obey Frank
Lloyd Wright’s style to the point of being indistinguishable, even to experts,
from his original works [2].

Although these grammars are hand-built, and result from a complex process
of analysis and formalization of the hidden rules followed in the originals, these
results show that: (i) it is possible to capture specific visual languages using a set
of production rules; (ii) it is then possible to use this set of rules to automatically
generate new objects that belong to the same visual language.

The main motivation for the present work is the development of a system for
the evolution of novel visual languages. For that purpose we created an evolu-
tionary engine where each individual is a context free grammar, and developed
appropriate genetic operators, including several mutation operators and graph-
based crossover.

The use of the Context Free Design Grammar (CFDG) language [3] for rep-
resentation allows the specification of complex families of shapes through a com-
pact set of rules, and has several potential advantages over typical Evolutionary

41



Art (EA) representations. A brief overview of current evolutionary art systems,
focusing on representation issues, is presented in Section 2 to allow a better
contextualization of the present work, while, in Section 3, we describe the most
relevant characteristics of CFDG. In the fourth Section we describe our evolu-
tionary engine, and, in section 5, we present some of the experimental results
attained. Finally, in Section 6, we draw some final conclusions and indicate future
work.

2 Related Work

A thorough survey of EA systems beyond the scope of this paper (see, e.g., [4]
for a in-depth survey). Here we present a brief overview, focusing on the issues
that are of most relevance to the present work, namely, representation scheme
and generation abilities of the system. The most popular EA approach is in-
spired in the seminal work of Karl Sims [5]. It uses Genetic Programming (GP)
to evolve populations of images. Each genotype is a tree that encodes a LISP-
like symbolic expression. The internal nodes of the tree are functions (typically
arithmetic, trigonometric and image processing operations) and the leafs are ter-
minals (typically x and y variables and random constants). The rendering of the
expression results in a phenotype, e.g. an image. More often than not user-guided
evolution is employed, i.e., the user assigns fitness to the images, thus indirectly
determining the survival and mating probabilities of the individuals. The fittest
individuals have a higher probability of being selected for the creation of the
next population, which is generated through the recombination and mutation of
the genetic code of the selected individuals.

The use of Genetic Algorithms (GAs) coupled with a fixed or variable length
string representation is also frequent. In these cases the most common approach
is parametric evolution [4]. In other words, the genotype encodes a set of param-
eters that determine the phenotype. Among other applications, this approach
has been used to evolve cartoon faces, fractal shapes, fonts [4]. The use of EC
approaches to the evolution of line-based drawings, 3D shapes, l-systems, filters,
etc., has also been explored. Although the application area and implementa-
tion details vary, most systems can be seen as instances of expression-based or
parametric evolution.

As Machado and Amı́lcar [6] point out, most expression-based EA systems
are theoretically able to create any image (see also [7]). Nevertheless, in practice,
the image space that is actually explored depends heavily on the particularities
of the system (primitives, genetic operators, genotype-phenotype mapping, etc.).
In other words, and notwithstanding works such as [8] that describes an approach
to iterative stylistic change in EA, most systems have an identifiable signature

that naturally emerges from the interactions between its di↵erent components. In
parametric evolution models, system signature is even stronger since: “...creating
a parametric model implicitly creates a set of possible designs or a solution
space.” [4] Thus, there are strong contraints that limit the search-space and
define the type of imagery produced by the system.

Finally, to the best of our knowledge, there are two reported examples of
the use of CFDG in the context of Evolutionary Art. Unfortunately, none of

42



them allows the evolution of visual languages. As the name indicates CFDG

Mutate [9] only allows the application of mutation operators, which is limiting,
and does not handle non-deterministic grammars, which means each individual
represents a single shape (see Section 3). Saunders and Kazjon [10] present a
parametric evolution model that evolves parameters of specific CFDG hand-
built grammars. Although this allows some degree of exploration, in essence it
has the same shortcomings as other parametric evolution approaches.

3 Context Free

Context Free [11] is a popular open-source application that renders images spec-
ified using a simple language entitled Context Free Design Grammar (CFDG).
In essence, and although the notation is di↵erent from the one used in formal
language theory, a CFDG program is a context free grammar, i.e. a 4-tuple:
(V,⌃, R, S) where,

1. V is a set of non-terminal symbols
2. ⌃ is a set of terminal symbols
3. R is a set of production rules that map from V to (V � ⌃)
4. S is the initial symbol

In Fig. 1 we present a simple grammar and the image generated by it. Programs
are interpreted by starting with S (in this case S = TREE, as defined by the
startshape directive) and proceeding the expansion of the production rules in
breath-first fashion. Pre-defined V symbols call drawing primitives (e.g. CIRCLE
draws a circle) while predefined ⌃ symbols produce semantic operations (e.g.
size produces a scale change, y moves forward, etc.). Program interpretation is
terminated when one of the two following criteria is met: (i) There are no V

symbols left to expand; (ii) The further expansion does not change the image
(E.g.: although the recursive loop of the grammar presented in Fig. 1 is endless,
the set of transformation is contractive [12], after a few iterations we reach
a size smaller than pixel size and, therefore, further expansion will not cause
visible di↵erences). This second termination criterium has no parallel in formal
language theory, but is similar to the termination criterium used in Iterated
Function Systems (IFSs) rendering.

The grammar depicted in Fig. 1 is deterministic, there is exactly one rule
for each V symbol, therefore its interpretation will always result in the same
image. To specify languages of shapes we have to resort to non-determinism. In
Fig. 2 we present a non-deterministic version of this grammar, with two di↵erent
production rules for the ’TREE’ symbol. When several production rules may be
applied one of them is selected randomly and the expansion of the grammar
proceeds. One can control the relative probability of selection by specifying a
weight after the V symbol1 (in this case, 0.8 for the first rule and 0.2 for the
second).
1 The same e↵ect can be attained by making copies of the production rule we wish to

use more frequently. So this does not violate the formal language theory definition
of a context free grammar.

43



startshape TREE

rule TREE {

CIRCLE {}

TREEA {size 0.95 y 1.6}}

rule TREEA {

CIRCLE {}

TREEB {size 0.95 y 1.6}}

rule TREEB {

CIRCLE {}

TREEC {size 0.95 y 1.6}}

rule TREEC {

CIRCLE {}

TREED {size 0.95 y 1.6}}

rule TREED {

CIRCLE {}

TREE {size 0.95 y 1.6 rotate 45}

TREE {size 0.95 y 1.6 rotate -45}}

Fig. 1. A deterministic grammar and the tree-like shape generated by it.

startshape TREE

rule TREE 0.80 {

CIRCLE {}

TREE {size 0.95 y 1.6}

}

rule TREE 0.20 {

CIRCLE {}

TREE {size 0.95 y 1.6

rotate 45}

TREE {size 0.95 y 1.6

rotate -45}}

Fig. 2. A non-deterministic version of the grammar presented in Fig. 1 and instances
of the family of tree-like shapes generated by it.

4 Evolutionary Context Free Art

In this section we describe our evolutionary engine. For the sake of parsimony
we will avoid mentioning the implementation details and focus on the key com-
ponents. An in-depth description is left for a future opportunity.

4.1 Representation

Each genotype is a well-constructed CFDG grammar. Internally the genotype
is represented by a directed graph where each node encapsulates a production
rule. For each node, Ni, outgoing edges are created in the following way:

1. Let Vi be the set of all V symbols that the production generates
2. Let Mi be the set of all nodes representing production rules that may be

triggered by Vi symbols
3. Establish edges from Ni to all Mi nodes

For instance, the grammar of Fig. 1, results in the following edges: TREE !
TREEA, TREEA ! TREEB, TREEB ! TREEC, TREEC ! TREED;

44



Fig. 3. The two leftmost images are the parents, the remaining ones are results of their
crossover

for the grammar of Fig. 2 we would have TREE1 � TREE1, TREE1 �
TREE2, TREE2 � TREE1, TREE2 � TREE2, where TREE1 and TREE2

represent the nodes that would be created for the first and second production,
respectively.

The phenotype is rendered using Context Free. Infinite non-contractive loops
may occur. To cope with this problem we specify a maximum amount of time
for rendering. If that limit is reached rendering stops and the current image is
considered the phenotype.

4.2 Genetic Operators

The design of genetic operators that are well-suited to the adopted represen-
tation is vital for the success of any evolutionary algorithm. In our case the
biggest challenge was to design a recombination operator that allows the mean-
ingful exchange of genetic material between individuals. Given the nature of the
representation we developed a graph-based crossover operator based on the one
presented by Pereira et al. [13]. In simple terms, this operator, inspired in the
standard GP swap-tree crossover, allows the exchange of subgraphs between in-
dividuals. Our implementation follows the algorithm described in [13] closely,
but we have generalized it to allow the exchange of subgraphs of unequal size.
In Fig. 3 we present examples attained trough crossover.

We use a total of eight mutation operators: Startshape mutate – randomly
selects a new V starting symbol; Add V – Adds a V symbol to a given produc-
tion rule in a valid random position; Remove V – Removes a V symbol from
a given production rule and associated parameters (if any exist); Copy rule –
Duplicates a production rule; Remove rule – Removes a given production rule
updating the remaining rules when necessary (if it is the only production rule
associated with a given V symbol, production rules that generate that symbol
must be updated, which is accomplished by removing the symbol from those
rules); Change, Remove, Add parameter – as the names indicate these operators
add, remove or change parameters, i.e. ⌃ symbols.

All operators preserve the validity of the grammar and update the graph
accordingly.

4.3 System Overview and Generation Abilities

In all the experiments presented in this paper we adopted an user-guided evo-
lution approach. Unlike most EA representation schemes, it is feasible to edit

45



CFDG by hand, in fact Context Free users have already created an impres-
sive collection of shapes and visual languages. As such, it would be possible for
the user to directly manipulate the genetic code. Although the ability to read,
understand and edit the evolved genotypes is an important advantage, in the
experiments presented herein we didn’t take advantage of this possibility.

In standard EA systems the initial population is either random or seeded
using examples from previous EA runs. In the present system, and given the
availability of a wide set of hand-coded CFDG grammars, we have the option of
using top-quality grammars to seed the evolutionary runs.

The remaining aspects of the system follow standard Evolutionary Compu-
tation practices. We use a generational approach, elitism and tournament selec-
tion. In the experiments presented in this paper, population size=50, the top
individual was preserved, and tournament size=5.

In what concerns the generative potential of the system, it is trivial to show
that it is possible to represente any image. Consider you want to represent a
particular image, for each pixel use a rule that changes the color so that it
matches the pixel’s color, draw one square, move in the direction of the next pixel,
call the rule for the next pixel. Obviously this would result in an extremely long
and mostly useless grammar, but it can be done. Another way of demonstrating
the generality of CFDG is the following: considering that an IFS can be specified
(compactly) using CFDG and that Barnsley [12] demonstrated that IFSs can be
used to generate any image, the same applies to CFDG. Although this generic
representation abilities are theoretically relevant, in practice the main issue is
knowing what types of images can be represented compactly. The wide set of
imagery produced by Context Free users indicates that it is possible to generate a
large amount of complex and beautiful shapes with surprisingly small grammars.

A more interesting question is knowing which languages of shapes can be
expressed using CFDG. Once again theory and practice can be quite di↵erent.

From a theoretical standpoint, the set of all images of a given resolution,
albeit vast, is finite [7]. As such, considering a fixed resolution, any given shape
language is also a finite collection of shapes. Since it is possible to represent
any image with CFDG and that union is a trivial operation for context free
languages, it follows that any family of shapes can be represented2.

In practice, defining a language of shapes through enumeration is either un-
feasible or uninteresting. Thus, from a practical standpoint we can consider the
set of all images and the set of all shape languages infinite. It then follows that
it is not possible to represent any language of shapes, nor even the set of all
recursive languages, since the pumping lemma for context free languages aplies.
Like previously, the hand-coded examples of CFDG languages developed by the
numerous users of Context Free indicate that, in spite of this limitations, it is
possible to create interesting and sophisticated shape languages with compact
CFDG grammars.

2 Consider that you have two grammars, A and B, with initial symbols SA and SB ,
A[B can be attained by: preserving all the production rules of A and B; creating a
new initial symbol, SA[B ; adding the production rules SA[B ! SA and SA[B ! SB .

46



5 Experimentation

The main goals of the experiments conducted were testing the ability of the
system to: (i) evolve appealing and complex shapes; (ii) cope with hand-coded
CFDGs; (iii) evolve families of shapes.

The analysis of the experimental results attained by evolutionary art systems,
specially user driven ones, entails a high degree of subjectivity. In our case, there
is an additional di�culty: each individual encodes a set of images. Considering
these di�culties, space restrictions, and the visual nature of the results, we chose
to focus on a single evolutionary, which can be considered typical.

To address goal (ii) we initiate the run using 6 hand-coded CFDGs down-
loaded from the Context Free gallery [11]. Fig. 4 presents examples of images
created by these grammars.

In what concerns goals (i) and (iii) we already know it is possible to create
stunning imagery and visual languages using CFDG, so the main issue is de-
termining if it is possible to guide the EC algorithm to promising areas of the
search space.

The visual diversity of the populations found throughout the run was always
high (see Fig. 5). Population diversity is generally welcomed and has the ad-
ditional benefit of keeping the user engaged; however, we found that the user
was often distracted due to the presence of too many interesting alternatives,
and unable to keep steady evaluation criteria. Nevertheless, the user was able to
guide the EC algorithm with relative ease and promote convergence whenever it
was found necessary. In Fig. 6 we present some of the favorite images produced
by individuals of this run.

The mutation operators proved valid throughout the run producing results
that are conceptually similar to the e↵ects of mutation in expression-based EA.
That is, the e↵ects of mutation range from minor visual alterations to dramatic
changes in appearance induced by small changes of the genetic code, with the
later being less often [6]. Although it is subjective to say it, in what concerns
mutation, the system appears to have an adequate degree of plasticity – allowing
change – and stability – preventing chaotic behaviour.

The e↵ects of the crossover operator appear to depend heavily on the struc-
tural similarity of the genotypes and on their size. In general terms, when the
parents are unrelated the visual appearance of each descendent tends to be
mostly determined by one of the parents (see fig. 3). This e↵ect is particularly
visible when the genotypes are small and with hand-built grammars (which tend
to share little resemblance). Like previously, similar findings have been reported
for expression-based EA, particularly for non-random initial populations [6].

In Fig. 7 we present instances of the visual languages defined by two of the
individuals evolved during the run. The experimental results show that non-
trivial and interesting families of shapes were evolved.

During evolution the user only has access to one instance of the images an in-
dividual generates. This means that the quality, diversity and consistency of the
language of shapes generated by the individual isn’t directly assessed. Arguably,
individuals that fail to reliably generate high quality images will eventually be

47



Fig. 4. Hand-coded grammars used as initial population.

Fig. 5. Images generated by the first 15 individuals of the 10th population of the run.

discarded by evolution, and the user will eventually grow tired of individuals
that systematically generate the same image. Nevertheless, this is not the same
as directly assessing the language of shapes that each individual defines, and
interesting languages may easily be overlooked. This may contribute to a lower
diversity of shapes within each family. In spite of this, the ability to create fam-
ilies of shapes is inherent to the the system and the experiments successfully
evolved interesting visual languages.

6 Conclusions and Future Work

We presented a novel evolutionary engine that allows the evolution of CFDGs, is
able to cope with non-deterministic grammars, and allows their recombination
trough a graph-based crossover operator. Due to these abilities, it successfully
overcomes the limitations of previous EC approaches where CFDGs are used.
When compared with typical expression-based and parametric evolution models
our approach presents several advantages, including the ability: to evolve visual

48



Fig. 6. Images generated by some of the most valued individuals evolved during the
course of the run.

languages instead of individual images; to use hand-coded grammars; and to
allow the user to editing of the genotypes.

Although the interpretation of the results is subjective, they provide evidence
of the adequacy of the genetic operators and of the generative power and poten-
tial of the system. They also indicate that further experimentation is required to
fully explore the potential of the approach for the creation of visual languages.
Nevertheless, we consider this to be an important step in that direction.

In terms of future work, redesigning of the user interface, exploring of auto-
matic image fitness assignment schemes, and developing approaches to automat-
ically assess a language of shapes in terms of consistency, diversity and aesthetic
qualities of the generated images are our top priorities.

References

1. Stiny, G., Gips, J.: Shape grammars and the generative specification of paintings
and sculpture. In Freiman, C.V., ed.: Information Processing 71, Amsterdam,
North Holland Publishing Co. (1971) 1460–1465

2. Boden, M.A.: The Creative Mind: Myths and Mechanisms. Basic Books, New
York (1990)

3. Coyne, C.: Context free design grammar. http://www.chriscoyne.com/cfdg/ (last
accessed in September 2009)

4. Lewis, M.: Evolutionary visual art and design. In Romero, J., Machado, P., eds.:
The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music.
Springer Berlin Heidelberg (2007) 3–37

49



Fig. 7. Instances of the language of shapes defined by two individuals.

5. Sims, K.: Artificial evolution for computer graphics. ACM Computer Graphics 25
(1991) 319–328

6. Machado, P., Cardoso, A.: All the truth about NEvAr. Applied Intelligence,
Special Issue on Creative Systems 16(2) (2002) 101–119

7. McCormack, J.: Facing the future: Evolutionary possibilities for human-machine
creativity. In Romero, J., Machado, P., eds.: The Art of Artificial Evolution: A
Handbook on Evolutionary Art and Music. Springer Berlin Heidelberg (2007)
417–451

8. Machado, P., Romero, J., Manaris, B.: Experiments in computational aesthet-
ics: An iterative approach to stylistic change in evolutionary art. In Romero, J.,
Machado, P., eds.: The Art of Artificial Evolution: A Handbook on Evolutionary
Art and Music. Springer Berlin Heidelberg (2007) 381–415

9. Borrell, A.: Cfdg mutate. http://www.wickedbean.co.uk/cfdg/index.html (last
accessed in September 2009)

10. Saunders, R., Grace, K.: Teaching evolutionary design systems by extending ”con-
text free”. In: EvoWorkshops ’09: Proceedings of the EvoWorkshops 2009 on Ap-
plications of Evolutionary Computing, Berlin, Heidelberg, Springer-Verlag (2009)
591–596

11. Horigan, J., Lentczner, M.: Context free. http://www.contextfreeart.org/ (last
accessed in September 2009)

12. Barnsley, M.F.: Fractals Everywhere. Second edn. Academic Press Professional,
Cambridge, MA (1993)

13. Pereira, F.B., Machado, P., Costa, E., Cardoso, A.: Graph based crossover —
A case study with the busy beaver problem. In: Proceedings of the Genetic and
Evolutionary Computation Conference. Volume 2., Orlando, Florida, USA, Morgan
Kaufmann (13-17 July 1999) 1149–1155

50


	Cover
	Proceedings.pdf
	FrontMatter
	title
	preface
	people
	table_of_contents

	Papers
	iccc10_submission_4
	iccc10_submission_29
	iccc10_submission_9
	iccc10_submission_22
	Establishing Appreciation in a Creative System
	David Norton, Derral Heath, Dan Ventura

	iccc10_submission_48
	iccc10_submission_45
	iccc10_submission_39
	iccc10_submission_49
	iccc10_submission_13
	iccc10_submission_21
	iccc10_submission_20
	iccc10_submission_37
	iccc10_submission_50
	iccc10_submission_24
	iccc10_submission_31
	iccc10_submission_30
	iccc10_submission_42
	iccc10_submission_35
	iccc10_submission_44
	iccc10_submission_2
	iccc10_submission_15
	iccc10_submission_11
	iccc10_submission_8
	iccc10_submission_7
	iccc10_submission_10
	iccc10_submission_27
	iccc10_submission_38
	iccc10_submission_17
	iccc10_submission_47
	iccc10_submission_41
	iccc10_submission_28
	iccc10_submission_3
	iccc10_submission_25

	Show&Tell
	s&t55
	s&t56
	s&t57
	s&t58
	s&t59
	s&t60
	s&t61
	s&t62
	s&t63
	s&t64
	s&t65

	author.index

	Back cover

