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Abstract

Creativity is an important part of human intelligence, and it
is difficult to quantify (or even qualify) creativity in an in-
telligent system. Recently it has been suggested that quality,
novelty, and typicality are essential properties of a creative
system. We describe and demonstrate a computational sys-
tem (called DARCI) that is designed to eventually produce
images in a creative manner. In this paper, we focus on qual-
ity and show, through experimentation and statistical analy-
sis, that DARCI is beginning to be able to produce images
with quality comparable to those produced by humans.

Introduction
DARCI (Digital Artist Communicating Intention) is a com-
puter system designed to eventually create visual art in order
to convey intention and meaning to the viewer. Currently,
DARCI can automatically render a given image to match an
accompanying list of adjectives. This ability is the founda-
tion of a visual language for DARCI to communicate with
an audience—an important element of creative expression
in the visual arts. DARCI is part of ongoing research that is
exploring the perception of creativity in an artificial system.

Measuring creativity both quantitatively and qualitatively
is a difficult challenge. Ritchie describes quality, novelty,
and typicality as being essential in ascribing creativity to a
system (2007). Ritchie defines quality as the extent to which
the artefact is a high quality example of its genre. In this pa-
per, we focus on quality, and show that DARCI is beginning
to be able to produce quality artefacts comparable to human
artists given the same resources.

DARCI’s design has two main components: the image ap-
preciation component, and the image creation component.
The image appreciation component is designed to allow
DARCI to learn to evaluate it’s own artwork according to
various descriptive words. This ability to assess these quali-
ties in an image guides the image creation component. The
image creation component uses evolutionary mechanisms to
create artefacts and the appreciation component serves as
part of the fitness function.

We briefly describe the main components of DARCI and
how they work together to produce artefacts. We then
present several images that DARCI has created and describe
an experiment in which we compare DARCI’s images with
ones made by humans. Finally, we discuss how the results

show that DARCI is becoming comparable to humans in
producing quality artefacts.

Image Appreciation
It has been argued that the ability to appreciate and evaluate
its own artefacts is necessary for a system to be considered
creative (Colton 2008). In order for DARCI to appreciate
art, it must first acquire some basic understanding of art. For
example, in order for DARCI to appreciate an image that is
dark and gloomy, DARCI must first understand the concepts
dark and gloomy. To do this, DARCI must learn to associate
images with artistic descriptions.

Image Features Before DARCI can form associations be-
tween images and descriptive words, appropriate image fea-
tures for the task must be extracted from the image. Sig-
nificant research has been done in the area of image feature
extraction (Gevers and Smeulders 2000; Datta et al. 2006;
Li and Chen 2009; Wang, Yu, and Jiang 2006; King ;
Wang and He 2008), and we have culled 102 image features
from this. These are low-level features that can be coarsely
classified as treating one the following image characteristics:
color, light, texture, and shape.

Artistic Descriptions As an initial step, the artistic de-
scriptions that DARCI can learn are limited to lists of ad-
jectives. We use WordNet’s (Fellbaum 1998) database of
adjectives to give us a large, yet finite, set of descriptive la-
bels. In WordNet, each word belongs to a synset of one or
more words that share the same meaning. If a word has mul-
tiple meanings, then it can be found in multiple synsets. To
collect training data, we have created a public website for
training DARCI (http://darci.cs.byu.edu). From this web-
site, users are presented with a random image and asked to
provide adjectives that describe the image. Additionally, for
each image presented to the user, DARCI lists seven adjec-
tives that it associates with the image. The user is allowed
to flag those labels that are not accurate. This creates strictly
negative examples of those synsets, which is important for
learning.

Another program for creatively generating visual art,
NodeBox, is also dependent on semantic networks such as
WordNet. The NodeBox project takes the use of semantic
networks even further by using a more elaborate database
they created called “Perception” (De Smedt, De Bleser, and
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Nijs 2010). However, unlike DARCI, NodeBox does not
have a strong learning component. In the future, we hope to
expand DARCI by using more sophisticated semantic net-
works, perhaps even “Perception” itself.

Learning Method In order to make the association be-
tween image features and synsets, we use a collection of
artificial neural networks (ANNs) that we call appreciation
networks. There is an appreciation network for each synset
that has a sufficient amount of training data. As we incre-
mentally accumulate more data, new neural networks can
be dynamically added to the collection to accommodate the
new synsets. Currently, there are 211 appreciation networks.
This means that DARCI essentially “knows” 211 synsets.

For more details on our learning method, image features,
and use of synsets, the reader is referred to earlier work de-
scribing DARCI (Norton, Heath, and Ventura 2010).

Image Creation
DARCI uses a evolutionary mechanism to render images ac-
cording to given synsets, and this mechanism operates in two
modes. The initial mode, which we call practice mode, op-
erates by exploring the space of image filters that will ren-
der any image according to a single specific synset. For this
mode, DARCI creates and maintains a separate gene pool
for each synset that the system knows. The second mode,
called commission mode, operates by exploring the space of
image filters that will render a specific image according to
a specified list of synsets. There is no restriction on synset
combinations; in fact, incoherent combinations can produce
unexpected and interesting results as we will demonstrate
later. For commission mode, users prescribe the image and
list of synsets that they wish DARCI to render—in other
words, they “commission” DARCI. For each commission,
DARCI creates a unique gene pool that terminates once the
commission is complete. For both modes, the evolutionary
mechanism functions as follows.

The genotypes that comprise each gene pool are lists of
filters, and their accompanying parameters, for processing
an image. Many of these filters are similar to those found
in Adobe Photoshop and other image editing software. Oth-
ers come from a series of 1000 filters Simon Colton dis-
covered using his own evolutionary mechanism (Colton et
al. 2010). Colton’s set of filters, called Filter Feast, is di-
vided into categories of aesthetic effect that were discovered
by exploring combinations of very basic filters within a tree
structure. We have treated Colton’s filters as if each category
were a unique filter with a single parameter that specifies
the specific filter within the category to use. Figure 1 gives
an example of a genotype and its effect on a sample image.
There are a total of sixty-one traditional filters that we se-
lected for DARCI to use and a total of thirty-one categories
of filters from Filter Feast, making ninety-two filters avail-
able for each genotype. We selected traditional filters that
were easily accessible, diverse, fast, and that didn’t incor-
porate alpha values (since our feature extraction techniques
cannot yet process alpha values).

The fitness function for the evolutionary mechanism can
be expressed by the following equation:

Figure 1: Sample genotype (list of image filters with param-
eters) and its effect on an image. “Ripple” and “Weave” are
the names of two (of ninety-two) possible filters.

Fitness(g) = λAA(g) + λII(g) (1)

where g is an image artefact and A : G → [0, 1] and I :
G→ [0, 1] are two metrics: appreciation and interest. These
compute a real-valued score for an image artefact (here, G
represents the set of all image artefacts). λA + λI = 1, and
for now, λA = λI = 0.5.

Both metrics used in the fitness function are applied to
the phenotype (the image that results when each genotype
is applied to a source image). The fitness of every pheno-
type within a generation of the evolutionary mechanism is
determined using the same source image; but, the source im-
age used from generation to generation depends upon which
mode the system uses. In commission mode, the source im-
age is the same from generation to generation, while in prac-
tice mode the source image for each generation is randomly
selected from DARCI’s growing image database.

The appreciation metric A is computed as the (weighted
sum) of the output(s) of the appropriate appreciation net-
work(s), producing a single (normalized) value:

A(g) =
∑
w∈C

αwnetw(g) (2)

where C is the set of synsets to be portrayed, netw(·) is the
output of the appreciation network for synset w,

∑
w αw =

1, and αw = 1/|C| (though this can, of course, be changed
to weight synsets unequally).

The interest metric I penalizes phenotypes that are either
too different from the source image, or are too similar. This
metric is useful for producing images that meet our defini-
tion of imaginative; however, the interest metric is currently
too simplistic to do more than prevent extreme cases. The
metric begins by tallying the number, n, of image analy-
sis features that have similar values between the two images
(i.e. that fall within a specified distance of each other). This
can be expressed with the following equation:

n =
∑
i

d0.3− |FSi − FPi |e (3)
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Number of Sub-Populations 8
Size of Sub-Populations 15
Crossover Rate 0.4
Filter Mutation Rate 0.03
Parameter Mutation Rate 0.1
Migration Rate 0.2
Migration Frequency 0.1
Tournament Selection Rate 0.75
Initial Genotype Length 2 to 4 filters

Table 1: Parameters used for the evolutionary mechanism.

FSi represents feature i of the source image and FPi repre-
sents feature i of the phenotype. Note that all features are
normalized to the range [0...1], so the ceiling function above
returns either 0 or 1. The value 0.3 was chosen empirically.
The interest metric is calculated using n as follows:

I(g) = 1−


τd−n
τd

if n < τd
n−τs

|F |−τs
if n > τs

0 if τd ≤ n ≤ τs

(4)

τd and τs are constants that correspond to the threshold for
determining, respectively, when a phenotype is too different
from or too similar to the source image. The values τd = 20
and τs = 57 were used here. |F | is the total number of
features analyzed, in our case 102.

Fitness-based tournament selection determines those
genotypes that propagate to the next generation and those
genotypes that participate in crossover. One-point “cut and
splice” crossover is used to allow for variable length off-
spring. Crossover is accomplished in two stages: the first
occurs at the filter level, so that the two genomes swap an
integer number of filters; the second occurs at the parameter
level, so that filters on either side of the cut point swap an
integer number of parameters. By necessity, parameter list
length is preserved for each filter. Table 1 shows the param-
eter settings used.

Mutation also occurs at two levels. Filter mutation is a
wholesale change of filter (discrete values), while parameter
mutation is a change in parameter values for a filter (contin-
uous values). When filter mutation occurs, either a single fil-
ter within a genotype changes or a new filter is added. When
a parameter mutation occurs, anywhere from one to all of
the parameters for a single filter in a genotype are changed.
The degree of this change, ∆fi, for each parameter, i, is
determined by one of the following two equations chosen
randomly with equal probability:

∆fi = (1− fi) · rand
(

0,
(|f |+ 1)− |∆f |

|f |

)
(5)

∆fi = −fi · rand
(

0,
(|f |+ 1)− |∆f |

|f |

)
(6)

Here, |f | is the total number of parameters in the mutating
filter, |∆f | is the number of changing parameters in the mu-
tating filter, and rand(x, y) is a function that uniformly se-
lects a real value between x and y.

Because there are potentially many ideal filter configura-
tions for modeling any given synset, we have implemented
sub-populations within each gene pool. This allows the evo-
lutionary mechanism to converge to multiple solutions, all of
which could be different and valid. The migration frequency
controls the probability that a migration will occur at a given
epoch, while the migration rate refers to the percentage of
each sub-population that migrates. Migrating genomes are
selected uniform randomly, with the exception that the most
fit genotype per sub-population is not allowed to migrate.
Migration destination is also selected uniform randomly, ex-
cept that sub-population size balancing is enforced.

Practice gene pools are initialized with random geno-
types, while commission gene pools are initialized with the
most fit genotypes from the practice gene pools correspond-
ing to the requested synsets. This allows commissions to be-
come more efficient as DARCI practices known synsets. It
also provides a mechanism for balancing permanence (artist
memory) with growth (artistic progression).

Methods and Results
The evaluation of artefacts is very subjective, making an
evaluation of DARCI non-trivial. Furthermore, the quality
of the artefacts that DARCI produces can be judged based
on two distinct criteria: how well the artefacts portray the
synsets dictated by a commission, and how well the arte-
facts demonstrate artistic skill. Depending on the synsets
in question, the first criterion can be considered less subjec-
tive than the second. For example, if the synset blue, as in
the color blue, were chosen, the degree to which an artefact
possesses the color blue could be measured quite objectively.
As less simple/concrete synsets are applied, this criterion be-
comes increasingly subjective; however, we argue that it will
never be more subjective than a general assessment of artis-
tic merit. For this reason, we have chosen to focus on the
first criterion of quality and relegate the second criterion to
an interesting side note in this paper.

Despite focusing on the first criterion of quality, we want
to eventually move in the direction of artistic analysis of
DARCI’s artefacts. Thus, we have selected three synsets
that, while dictating some expected traits within an image,
also prescribe subjective features within an image. The
synsets we have selected are “fiery” as in like or suggestive
of fire, “happy” as in enjoying or showing or marked by joy
or pleasure, and “lonely” as in lacking companions or com-
panionship. These synsets are well represented in DARCI’s
database and are distinct in meaning.

Because there is always a subjective component in deter-
mining whether an image can be described by a given ad-
jective, the most objective way that we can evaluate such
quality is through a combination of many personal opin-
ions. For this reason, we designed a survey in which peo-
ple rank DARCI’s artefacts, alongside several other arte-
facts, with respect to how well the images reflect partic-
ular adjectives. For this survey we selected three images
on which to test DARCI’s rendering of the aforementioned
synsets. The images we selected are shown in Figure 2. We
chose photographs in order to accentuate the impact of the
non-photorealistic rendering tools available to DARCI. The

Proceedings of the Second International Conference on Computational Creativity 12



(a) Image A (b) Image B (c) Image C

Figure 2: The three source images used to evaluate the qual-
ity of DARCI’s artefacts.

three photographs explore the light vs. dark, chromatic vs.
monochromatic, and close vs. distant spectrums.

For each photograph and for each synset we commis-
sioned DARCI to produce an image that portrays the synset;
we also commissioned DARCI to produce a variation of
each image that portrays all three synsets simultaneously in
order to demonstrate the effect of combining synsets with
disjointed meaning (this results in a total of 3× 3 + 3 = 12
images). For comparison, we collected three additional sets
of 12 homologous images: a set chosen by us from a col-
lection of images created by DARCI, a set commissioned to
human artists, and a set chosen by us from a collection of
randomly generated images.

For the set created by DARCI, we allowed DARCI to
practice the three synsets for eight hours a piece, and then
gave the system sixteen hours to complete each commission.
For every commission, DARCI chose the single image with
the highest fitness as the result of the commission.

In addition, for each commission, DARCI saved the top
five unique images (those with the highest fitness) encoun-
tered within each sub-population, for a total of forty images.
From these, we chose the single image we thought best por-
trayed the commission target synset(s). (We made this se-
lection with no knowledge of DARCI’s fitness values for the
40 images, and, in particular, we did not know which of the
images DARCI ranked highest and selected as the result of
its commission.) This image we selected represents a close
cooperation between DARCI and DARCI’s programmers—
or, looked at another way, the use of DARCI as a tool rather
than as an autonomous agent.

A third set of images was created by human volunteer
artists, who were restricted to a toolset similar to that used by
DARCI (i.e. image filters) and were skilled with programs
(e.g. Photoshop) using this toolset.

Each image in the final set was chosen from a set of 40
randomly generated images, each of which was generated
using 1 − 8 of the same filters available to DARCI. In or-
der to ensure a reasonable image, and to provide a point of
comparison between random filter generation and DARCI’s
evolutionary mechanism, we chose the one image (out of 40)
that we thought best portrayed the synset in question.

In summary, we acquired four images for every synset-
image combination. One was DARCI’s most fit artefact
(DARCI), one was our choice out of DARCI’s top arte-
facts (Coop), one was produced by a human (Human), and
one was our choice out of randomly filtered images (Best
Random). Representative examples of some of the twelve

Figure 3: The average ranking for each synset across images
A, B, and C for each of the four artefact sources: DARCI,
Human, Coop, and Best Random. “triple” refers to the arte-
facts rendered with all three synsets. These results were ob-
tained from 42 volunteers. Lower rank is better.

Human DARCI Coop Best Random
Average Rank 2.4067 2.7282 2.3194 2.5456

Table 2: The average ranking of the four artefact sources
across all image-synset combinations. These results were
obtained from 42 volunteers. Lower rank is better.

synset-image combinations can be found in Figures 4-7. In
the online survey, volunteers were instructed to rank the four
images for each synset-image combination according to how
well they portrayed the synset(s) in question. In addition, we
asked the volunteers to indicate which images they liked re-
gardless of adjective compatibility. This additional question
was added to stress to the volunteers the fact that the ranking
was to be independant of personal preference for the images.
We obtained a total of forty-two survey responses.

The results of this survey are encapsulated in Figure 3
and Table 2. Figure 3 shows the average ranking for each
synset across all three images for each of the four artefact
sources just summarized: DARCI, Human, Coop, and Best
Random (the lower the rank, the better). Table 2 shows the
average ranking of each of the four artefact sources across all
synsets and images. Table 3 shows which pairs of datapoints
in the aforementioned figures are statistically significant—
such pairs are denoted with an asterisk.

fiery happy lonely triple all synsets
Human/DARCI 0.501 * 1.000 * *
Human/Coop * * 0.155 * 0.217
Human/Best Random 0.286 * 0.326 0.339 0.0540
DARCI/Coop * * 0.132 * *
DARCI/Best Random 0.691 * 0.298 * *
Coop/Best Random * 1.000 0.640 * *

* p-value< 0.01

Table 3: Results of t-Test comparing all binary combinations
of image sources for each synset. The “all synsets” column
refers to Table 2. The other columns refer to Figure 3.
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(a) DARCI (b) Best Random (c) Coop (d) Human

Figure 4: Image A rendered “fiery”—ranked left-to-right
from most to least fiery.

(a) Human (b) Coop (c) DARCI (d) Best Random

Figure 5: Image A rendered “happy”—ranked left-to-right
from most to least happy.

Discussion
By looking at Table 2, we see that DARCI functioning au-
tonomously does perform the worst of the artefact sources,
but not dramatically so. Furthermore, Table 3 indicates that
human performance was not distinguishable, in the statisti-
cal significance sense, from the performance of DARCI in
cooperation with humans nor from the performance of hu-
mans choosing the best random image. These results sug-
gest that, overall, volunteers are not strongly preferring one
artefact source over another.

When looking at performance over individual synsets
(Figure 3), we see that a more distinct preference is given to
certain artefact sources over others. But, even in these cases,
the source given preference varies from synset to synset.
Looking at Figure 3, the clearest distinction between sources
is between the human and autonomous DARCI when ren-
dering “happy” images. In this case humans clearly out-
perform DARCI. However, in the case of “fiery” images,
DARCI performs statistically the same as humans. When in
cooperation with humans, DARCI significantly outperforms
solo humans in both “fiery” images and images combining
all three synsets. In the case of “lonely” images, none of
the artefact sources perform statistically different from one
another. Volunteers prefer human creations for “happy” im-
ages and they prefer DARCI-human collaborations for both
“fiery” images and images combining “fiery”, “happy”, and
“lonely”.

If we look even more specifically at the individual synset-
image pairs, we find that all artefact sources are top ranked
for some of the pairings. Autonomous DARCI is top ranked
for “fiery” image A and “lonely” image C; the best-of-
random source is top ranked for “happy” image C, “lonely”
image A, and “triple” image A; DARCI in cooperation with
humans is ranked top for “fiery” image B, “fiery” image C,
and “triple” image B; humans creating solo are ranked top
for “happy” image A, “happy” image C, “lonely” image B,
and “triple” image C. The rankings for the most substantial
successes of each artefact source are shown in Figures 4-7.

While DARCI’s solo artefacts often rank on par with hu-

(a) Best Random (b) Coop (c) Human (d) DARCI

Figure 6: Image B rendered “happy”—ranked left-to-right
from most to least happy.

(a) Coop (b) Human (c) DARCI (d) Best Random

Figure 7: Image B rendered “fiery”, “happy”, and
“lonely”—ranked left-to-right from most to least fiery,
happy, and lonely.

man artefacts, the best random artefacts do as well. Further-
more, these partially random artefacts are sometimes ranked
better than DARCI’s. If these were totally randomly gener-
ated artefacts, then this would be an area of concern. It turns
out, however, that given the number of random images from
which we selected, it is fairly common to encounter at least
one image that (at least to some extent) satisfies the demands
of the synset in question. Taking into account Ritchie’s pro-
posal that the proportion of high quality artefacts produced
should be correlated with creativity (Ritchie 2007), and ob-
serving DARCI’s top forty artefacts, it becomes clear that
DARCI is accomplishing something better than random im-
age generation. Figure 8 shows the 40 images DARCI chose
to save while rendering image A as “fiery”, while, for com-
parison, Figure 9 shows the 40 random images generated for
the same task. While we did not empirically determine the
proportion of images in these sets that are “fiery”, it is ap-
parent that significantly more images are “fiery” in Figure 8
than in Figure 9.

Conclusions
If we assume that the human artists commissioned to pro-
duce artefacts for this research did indeed produce render-
ings that portray the synsets, then we conclude that, given
the same toolset, DARCI can also produce renderings that
portray them. This is a compulsory assumption since by the
nature of art, the only way DARCI can be evaluated as an
artist, is in comparison to other (human) artists. While on the
whole, at this point people tend to favor human solo works
over DARCI’s solo works, the differences are not substantial
or consistent enough to warrant a different conclusion. Fur-
thermore, the collaboration between DARCI and human’s
was frequently favored over human solo artefacts. This indi-
cates the potential for DARCI to be used as a tool to augment
the creative process of human artists.

Only three synsets were tested in this experiment. How-
ever, these synsets are representative of the meaning that
we want DARCI to be able to incorporate into artefacts to
facilitate visual communication with an audience. DARCI
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Figure 8: The top five “fiery” renderings for all eight sub-
populations discovered by DARCI for image A (not ordered
by fitness).

has sufficient data, ergo sufficient appreciation to perform
similarly on many more synsets. We are currently updating
DARCI so that the system can perform commissions online
while using any known synsets. This will allow us to further
observe DARCI’s capacity for rendering.

In future work regarding the evaluation DARCI, we will
be exploring Ritchie’s other criteria for creativity: namely
novelty and typicality. In addition, we will explore the artis-
tic side of quality, rather than the strictly pragmatic one ex-
plored in this research (i.e. the degree to which synsets were
incorporated into the artefacts).
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