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Abstract

We consider computational creativity as a search pro-
cess and give a No Free Lunch result for computational
creativity in this context. That is, we show that there is
no a priori “best” creative strategy. We discuss some
implications of this result and suggest some additional
questions to be explored.

Introduction
It seems natural to interpret the creative process, particu-
larly in a computational context, as one of search. This has
been done since the early years of thinking about compu-
tational creativity (Boden 1992; 1998), and, more recently,
Wiggins has suggested a rather more concrete formalization
of the idea (2006). Here we take up the idea of creativity as
search and ask the question, “Is there a best creative (search)
strategy?” Not surprisingly, perhaps, under some reasonable
assumptions, we can show that the answer turns out to be an
emphatic, “No.” To show this, we present a simple reformu-
lation of some classical ideas from the search, optimization
and machine learning literature known collectively as the No
Free Lunch (NFL) theorems (Wolpert and Macready 1995;
Wolpert 1996; Wolpert and Macready 1997).

For simplicity, we will limit our discussion to a discrete,
finite domain D containing “artefacts” to be discovered. As
is typical, we consider the problem of discovering novel,
useful artefacts, and here we focus on the discovery pro-
cess, attributing greater creativity to strategies that make
quick discoveries. This is not unreasonable given the fact
that with enough time, even exhaustive search can discover
good artefacts, and these ideas have been formalized else-
where (Ritchie 2007; Ventura 2008). Indeed, it is often sug-
gested that part of creativity is an aspect of surprise (Boden
1995; Macedo, Coimbra, and Cardoso 2001), and another
way to look at rapid discovery is as a surprising result (i.e.,
if an observer, unaware of the search strategy used, cannot
produce the result nearly as quickly [or at all], they are likely
to be surprised by the result).

Main Result
To begin with, we will consider the case that there is one best
element a ∈ D, which we will call a∗. We are interested

in how long it will take a particular creative (search) strat-
egy π to discover a∗ (note that we include heuristics, back-
ground knowledge, etc. in the concept of search strategy).
In the general case, π can be probabilistic, and so the num-
ber of steps j required to find a∗ should be represented as
a probability distribution. Also, since the creator employing
the strategy may have experience, exposure to an inspiring
set, etc., which we will represent as I as in (Ritchie 2007),
this probability distribution can be conditioned on this, and
we can write P a

∗

π (j|I) to mean the probability, given I that
strategy π will discover a∗ in exactly j steps. Then, we are
interested in the cumulative distribution function

Ca
∗

π (n) =
n∑
j=0

P a
∗

π (j|I)

which gives the probability that π will discover a∗ in n or
fewer steps1.

Ideally, we would like to find a strategy π∗ such that

∀a ∈ D, a = a∗ =⇒ Ca
∗

π∗(n) ≈ 1
for some small, finite n � |D|. In other words, we would
like to find a strategy that quickly discovers the artefact, no
matter which artefact in the domain is the artefact. Some
reflection should suggest that such a strategy is unlikely to
exist. However, perhaps we can at least find a strategy π+

that dominates all other strategies, so that

∀π∀a ∈ D, a = a∗ =⇒ Ca
∗

π+(n) ≥ Ca
∗

π (n)
That is, perhaps there is a strategy that will at least find

the artefact as fast or faster than any other strategy. Unfortu-
nately, there is the further complication that, in fact, we do
not know a∗, so we can not compute P a

∗

π (j|I). Thus, we
must sum over all possible a ∈ D, redefining our goal as
finding a strategy π+ that dominates all other strategies, in-
dependent of the artefact a ∈ D for which we are searching,
so that

∀π,
∑
a∈D

Caπ+(n)P (a) ≥
∑
a∈D

Caπ(n)P (a)

1We have completely ignored here the structure of the domain
D as well as the mechanism of strategy π; both are abstracted into
the probability distribution P a

∗
π (j|I).
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where P (a) is shorthand for P (a∗ = a). Because we have
no way of knowing a priori for which artefact we may be
looking, we must, in essence, have a strategy that will find
any artefact in the domain faster than any other strategy (at
least in an expected sense, weighted by the likelihood). Of
course, we do not know the likelihood distribution, P (a),
either, so for now we will assume P (a) is uniform; that is,
we will assume that all artefacts inD are equally likely to be
the artefact we are seeking. The question now is, given this
uniformity assumption, is there a “best” creative strategy?
The following theorem says that no such strategy exists.

Theorem 1. For a fixed, finite domain D, an integer 0 ≤
n ≤ |D| and any strategy π,∑

a∈D
Caπ(n)P (a) =

n

|D|

Proof: ∑
a∈D

Caπ(n)P (a) =
∑
a∈D

n∑
j=0

P aπ (j|I)P (a)

=
∑
a∈D

n∑
j=0

P aπ (j|I) 1
|D|

=
1
|D|

∑
a∈D

n∑
j=0

P aπ (j|I)

=
1
|D|

n∑
j=0

∑
a∈D

P aπ (j|I)

=
1
|D|

n∑
j=0

1

=
n

|D|

The first equality is by definition; the second is by assump-
tion of uniformity; the next two are simple algebra; the fifth
is because the probability that some a ∈ D is found is unity;
the last is obvious.

What the theorem says is that, in the absence of biasing
information about the creative task, the probability of dis-
covering a∗ is independent of π, the search strategy2. In
other words, if we do not know anything about the creativity
task, no creative strategy is to be preferred over any other.

Now, let us relax or remove some of our simplifying as-
sumptions and ask if this makes a difference. First, we can
consider the possibility that more than one a ∈ D is de-
sirable; that is, we are searching for any member of a set

2The dual version of this says that the expected number of steps
required to find a∗ is

Ea
∗
π [n] =

|D|
2

and, in particular, is independent of π.

A∗ ⊆ D of desirable artefacts3.
Since PAπ (j|I) ≤

∑
a∈A P

a
π (j|I) (with equality if the

probabilities are independent), the consequent of Theorem 1
takes the form ∑

a∈D
CA

∗

π (n)P (a) ≤ |A
∗|n
|D|

and, notably, is still independent of the choice of π.
Next, we can consider the non-uniform case for P (a). In

this case, the consequent in the theorem statement requires
an additional integral, taken over the continuous space of
possible distributions, and the resulting form is∫

P (a)

∑
a∈D

Caπ(n)P (a)dP (a) =
n

|D|

In other words, not assuming anything about the probability
distribution P (a) has the same effect on our expected suc-
cess as does assuming P (a) is uniform.

Note that these generalizations naturally compose, so that
we can make a statement about the distribution-free proba-
bility of finding one of multiple desirable artifacts4:∫

P (a)

∑
a∈D

CA
∗

π (n)P (a)dP (a) ≤ |A
∗|n
|D|

Finally, we can mention the case of non-stationary D (i.e.
the case for transformational search). While we will not say
much about this here, we will note that there are variations
of the NFL theorems for optimization that treat the case
of a changing objective function (Wolpert and Macready
1997), and similar results will likely hold for transforma-
tional search.

Discussion
On the one hand, anyone familiar with NFL-type results will
not be surprised that one applies here. Indeed, even the orig-
inal NFL theorems could be seen as, in some ways, “formal-
izing the obvious”. On the other hand, the result, whether

3This can be thought of in terms of a fitness function f : D →
[0, 1] that measures the desirability of an element of the domain,
and a threshold θ, such that A∗ = {a|a ∈ D, f(a) > θ}. Or, we
can eliminate the hard constraint and compute with the fitness f
more directly. In this case, rather than summing over the different
elements for which we might be searching, we integrate over the
different fitness values we might find, weighted by the probability
of finding a domain element whose fitness is that particular value.
Then, the probability of finding the a ∈ D with the highest fitness
(which we assume is 1), assuming the distribution of fitness values
P (f) is uniform becomes:Z 1

f=0

Cfπ(n)P (f)df =
n

|D|

4Our most general statement, distribution-free, directly includ-
ing a fitness function, and making no assumption about the distri-
bution of fitness values becomes:Z

P (a)

Z
P (f)

Z 1

f=0

Cfπ(n)P (f)dfdP (f)dP (a) =
n

|D|
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surprising or not, has profound implications for computa-
tional creativity and gives us a framework in which to dis-
cuss general principles.

For example, the characterization of creativity as search
as probability, allows a statistical interpretation of many as-
pects of computational creativity, and, in particular suggests
that the optimal (in the Bayesian sense) approach to any cre-
ative endeavor (that can be cast as search) is to use the fol-
lowing search strategy:

π(I) = argmax
a∈D

P (a)

However, it is not even clear what knowledge of P (a)
means; and, of course, even if we did somehow know P (a),
for any interesting domain D, explicitly implementing such
a search is completely intractable. So, the obvious question
is how to approximate the Bayes optimal search. Perhaps it
is possible to dynamically choose the search strategy πa for
any a ∈ D such that

∀π∀a ∈ D,Caπa(n) ≥ Caπ(n)

In other words, we would like a method for biasing our
search strategy towards the artefact we are looking for. Short
of a priori knowledge of a, this at the least requires some
meta-knowledge about the creative task in question that can
be used to guide the choice of πa. We note here the simi-
larity to meta-learning in the field of machine learning and,
further, suggest a close tie to the case of transformational
search. If the domain D is transformed, becoming B, we
must assume that a∗ has likely changed as well, becoming
b∗ ∈ B\D (if not the case, how do we explain/justify the do-
main transformation?) If this is the case, we must have some
mechanism of changing our search bias to match, switching
from strategy πa

∗
to πb

∗
.

In the case of machine learning, the NFL result says,
crudely, that no learning algorithm is better than any other
over all possible learning problems. The standard rejoinder
to this result is that, in fact, we don’t (and Nature doesn’t)
care about all possible learning problems, many of which
represent “learning” scenarios that are not interesting or do
not represent “real-world” scenarios. This dogma is univer-
sally accepted in the field of machine learning, and does
seem intuitively appropriate. Further, it leads to interest-
ing questions about which problems are the “interesting”
ones, and how can we tell, and, knowing this, how can we
build learning algorithms that are biased toward these types
of problems.

In our current discussion of computational creativity, the
analogical argument would be either that we are not likely
to be searching for any possible a ∈ D (and thus universal
quantification over a is too strong a constraint) or, perhaps
that Nature will favor certain members of D (and thus uni-
versal quantification over P (a) is too strong a constraint).
This sort of argument, of course, leads to inquiries regarding
which members ofD might be interesting or which distribu-
tions P (a) might represent Nature; however, it is, at least at
this point, much less clear that, in fact, we can make such a
claim for computational creativity.

Since our result states, essentially, that all search strate-
gies are equally effective over all possible search problems,
we are asking whether all search problems are in some way
“interesting” and, as a result, whether all search strategies
are valuable. If we content ourselves (for the moment) with
equating creativity with search strategy, then, in turn, we
are asking whether all creative approaches are valuable, or
whether some can be shown to be inherently better than oth-
ers.

One might be tempted to claim that for a specific D, that
a∗ is fixed and thus, that a domain fully specifies a “cre-
ativity scenario”. This would, indeed, make further analysis
somewhat more tractable; however, it is unlikely that such
a strong assumption is reasonable (e.g., if D is the set of
all possible paintings, creating the “ultimate” painting is not
likely to be either temporally or spacially consistent; indeed,
the very definition of D, of what constitutes a painting, is
likely to change over time and very possibly across locales
as well). Thus, it is not clear that this question can be an-
swered even for a specific domain D, let alone in the more
general case, but it is, certainly, an interesting question to
consider.
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