Automatic Composition from Non-musical Inspiration Sources

Robert Smith, Aaron Dennis and Dan Ventura
Computer Science Department
Brigham Young University
2robsmith@gmail.com, adennis @byu.edu, ventura@cs.byu.edu

Abstract

In this paper, we describe a system which creates novel
musical compositions inspired by non-musical audio
signals. The system processes input audio signals using
onset detection and pitch estimation algorithms. Addi-
tional musical voices are added to the resulting melody
by models of note relationships that are built using ma-
chine learning trained with different pieces of music.
The system creates interesting compositions, suggest-
ing merit for the idea of computational “inspiration”.

Introduction

Musical composition is often inspired by other musical
pieces. Sometimes, the new music closely resembles the
inspiring piece, perhaps being an intentional interpretation
or continuation of its themes or ideas. Other times the con-
nection between the pieces is not identifiable (or even con-
scious). And, such sources of inspiration are, of course, not
limited to only the musical realm. A composer can be in-
spired by the sight of a bird, the smell of industrial pollution,
the taste of honey, the touch of rain or the sound of a run-
ning stream. Since this is the case, an interesting question
for the field of computational creativity is whether a similar
mechanism can be effected in computational systems. If so,
new, interesting mechanisms for the development of (musi-
cal) structure become viable.

Many attempts have been made at computational compo-
sition. These attempts use mathematical models, knowledge
based systems, grammars, evolutionary methods and hybrid
systems to learn music theory, specifically whatever music
theory is encoded in the training pieces applied to the algo-
rithms (Papadopoulos and Wiggins 1999). Some of these
techniques have been shown to be capable of producing mu-
sic that is arguably inspired by different music genres or
artists (Cope 1992). Some computational composers focus
on producing melodies (Conklin and Witten 1995), but most
focus on producing harmonies to accompany a given melody
(Chuan and Chew 2007)(Allan and Williams 2005). Ames
(Ames 1989) and others have described training Markov
models on existing artists or styles and generating similarly
sounding melody lines. No system that we have found mod-
els the idea of artistic inspiration from non-musical sources.

We present a computational system which implements a

International Conference on Computational Creativity 2012

simple approach to musical inspiration and limit our focus to
(non-musical) audio inspirational sources. Our system can
autonomously produce a melody and harmonies from non-
musical audio inputs with the resulting compositions being
novel, often interesting and exhibiting some level of accept-
able aesthetic.

Methodology

Our approach to automatic composition from non-musical
inspirational sources is composed of four steps: (1) audio
input and melody generation, (2) learning voice models, (3)
harmony generation and (4) post-processing.

Audio Input and Melody Generation

Inspirational audio input was selected from various sources.
Our samples included baby noises, bird chirpings, road
noises, frog croakings, an excerpt from Franklin Delano
Roosevelt’s “A Date Which Will Live in Infamy” speech,
and an excerpt from Barack Obama’s 2004 DNC speech.

The melody generator takes an audio file (.wav format)
as input and produces a melody. The input signal typically
contains many frequencies playing simultaneously and con-
tinuously, and the generator’s job is to produce a sequence
of non-concurrent notes and rests that mimics the original
audio signal. To do so, it uses an off-the-shelf, free audio
utility called Aubio to detect the onset of “notes” in the au-
dio file (as well as to estimate their duration) and to extract
the dominant pitch at each of these onset times. Aubio is in-
tended for analyzing recordings of musical pieces in which
actual notes are played by instruments; however, in our sys-
tem it is used to analyze any kind of audio signal, which
means Aubio extracts “notes” from speeches or recordings
of dogs barking or anything else. A thresholding step dis-
cards generated notes that are too soft, too high, or too low.
The result is a collection of notes, extracted from the raw
audio, composing a melody.

Learning Voice Models

To produce harmonization for the generated melody, we em-
ploy a series of voice models, M;, learned from a collec-
tion of MIDI files representing different musical genres and
artists. Each such model is trained with a different set of
training examples, constructed as follows. First, because

160

Figure 1: Finding neighbor notes. The top center note (cir-
cled in red) is the current melody note. In this case, k = 3,
and, assuming w, = w, the k closest neighbors are the two
notes surrounding the melody note on the top staff and the
first note on the bottom staff (circled in dark red). d; refers
to the distance in time between the melody note and neigh-
bor, and d,, refers to the change in pitch. The (k + 1)th note
is the rightmost note on the bottom staff (circled in green).

there is no restriction on the time signature of the input or
output pieces, note durations are converted from number of
beats to seconds.

Second, to identify the melody line of the training piece
(and later to identify the melody line of the output piece), we
use a simple heuristic assumption that the highest pitched
note at any given time is the melody note.

Third, for each melody note, we find the k£ + 1 nearest
neighbor notes using the distance function (see Figure 1):

d(n1,n2) = \/wtdt(nhnz)Q + wpdy(ny, n2)?

where n; and n9 are notes, and weights w; and w, allow
flexibility in how chordal or contrapuntal the training data
will be. d; and d,, compute absolute difference in onset time
and pitch, respectively, so

di(n1,ng) = |onset(ny) — onset(ns)|

and

dp(n1,n2) = |pitch(ni) — pitch(ng)|

Training instances are constructed from a musical piece’s
melody notes and its k + 1 closest notes. The training in-
puts are the melody note and its k nearest neighbors, while
the (k + 1)th closest note is used as the training output (see
Figure 1). The melody note is encoded as a 2-tuple con-
sisting of the note’s pitch and duration. The neighbor notes
and the output note are encoded using a 3-tuple consisting of
the time (d;) and pitch (d,) differences between the neigh-
bor note and the melody note and its duration (see Figure 2).
When building the training set for voice model M; (with ¢
indexed from 0), £ = ¢ 4 2. So, after training, voice model
M; computes a function, M; : R3+8 — R3,

International Conference on Computational Creativity 2012

pitch(m),duration(m),
d(m,n;),d,(m,n,),duration(n,),

dfm,ny),
» M. W o
l duration(n,,,)

d(m,ny),d,(m,n,),duration(n,)

Figure 2: Training the voice models. For each melody note
m of each training piece, a training instance is created from
the melody note and the k + 1 closest neighboring notes
(n1,...nk+1). The k closest neighbors are used, along with
m as input, and, as training output, the (k + 1)th closest
neighbor is used. The melody note is represented as a pitch
and a duration. Each of the other notes is represented as a
3-tuple consisting of d;, dj, and duration, where d; and d,,
refer respectively to the differences in start time and pitch
between the neighbor note and the melody note.

Harmony Generation

The harmony generator is applied iteratively to add notes to
the composition. Each pass adds an additional voice to the
composition as follows. For the iteration 0, £ = 2 and voice
model M is used with the melody as input. Each note, in
turn, is used as the melody note, and it and it’s two nearest
neighbors are used as input to the model, which produces
an output note to add to the harmonizing voice. This does
not imply that each harmony note is produced to occur at the
same time as its associated melody note. For each melody
note the model produces as output values for d;, dp, and
duration; the harmony note will only start at the same time
as the associated melody note if d; = 0.

When all melody notes have been used as input, the ad-
ditional harmonic voice is then combined with the original
melody line and the first iteration is complete. For itera-
tion 1, £k = 3 and voice model M; is used with the new
two-voice composition as input, and the process is repeated,
with the following caveat. We use the “melody” notes of the
current piece (that is, the highest pitched notes) instead of
the original melody notes (along with their k neighbors) as
input to the model. This allows the melody notes to change
from iteration to iteration, since the system can output notes
that are higher than the (current) melody. The end result
is another harmonic voice that is combined with the two-
voice composition to produce a three-part musical composi-
tion (see Figure 3).

This process is repeated for v iterations, so that the final
composition contains v + 1 voices in total. Empirically, we
found that v = 3 resulted in the most pleasing outputs. With
v < 3 there was not enough variation to distinguish the out-
put from the original melody. For higher values of v, the less
musical and more cluttered the output became.

Post-processing

After the output piece has been composed, the composi-
tion is post-processed in two ways which we call snap-ro-
time and snap-to-pitch (and to which we refer collectively
as snap-to-grid).

161

Harmony Harmony
Generator Generator » e
using M, using M,

Figure 3: Adding voices. The harmony generator is ap-
plied iteratively over the melody line and generated harmony
lines, using successively complex voice models. These iter-
ations add successive voices to a composition.

Algorithm 1 Snap-To-Time. This algorithm adjusts note
start times in the final composition to compensate for lack
of uniform timing across input and training pieces. First,
Omin, the minimum difference in start time between any two
notes in the melody, is calculated. Each note is then shifted
so that its start time is an integer multiple of d,,,;, from the
start time of the composition’s initial note.

6min — 0
for all notes n; do
for all notes n, do
0 «— |onset(ny) — onset(ns)|
if § < d,nin, then
end if
end for
end for
for all notes n do
A — |onset(n)/dmin + .5] * Omin — onset(n)
onset(n)«—onset(n)+A
end for

Due to the beat-independent durations of the generated
notes, the note onsets in the composition can occur at any
time during the piece, which can result in unpleasant note
timings. To correct this, we implement a snap-to-time fea-
ture.

To do so, we first analyze the melody line to determine the
shortest time, d,,,;,,, between any two (melody) note onset
times. Then each composition note onset is shifted so that
it is an integer multiple of &,,;, from the onset of the first
note in the composition (see Algorithm 1). In other words,
each note is snapped to an imaginary time grid whose unit
measure is d,,;n,, With the result being music with a more
regular and rhythmic quality.

Because each voice is generated independently, there is
no explicitly enforced (chordal) relationship between notes
which occur at the same time. The voice models may pro-
vide some of this indirectly; however, this implicit rela-
tionship is not always strong enough to guarantee pleasing
harmonies—there exists the possibility of discordant notes.
To remedy this, we implement the snap-to-pitch algorithm.

If two notes occur at the same time, the difference in their
pitches is computed. The pitches are then adjusted until the
pitch interval between the notes is acceptable (here, for sim-

International Conference on Computational Creativity 2012

Algorithm 2 Snap-To-Pitch. The notes n; and ng start at the
same time. If the interval between them is not one of {major
third, perfect fourth, perfect fifth, major sixth}, snap-to-pitch
modifies the pitch of one of ny so that it is.
0 « pitch(ny) — pitch(nsg)
if § > 0 then
if 6 < 4 then
0=4
else
while § ¢ {4,5,7,9} do
d—d—-1
end while
end if
else if < 0 then
if § > —3 then
0=-3
else
while |0] ¢ {3,5,7,8} do
0—d+1
end while
end if
end if
pitch(ng) < pitch(ny) — §

plicity, acceptable means one of {major third, perfect fourth,
perfect fifth, major sixth}). See Algorithm 2.

As a summary, Algorithm 3 gives a high-level overview
of the entire compositional process.

Results

Musical results are better heard than read. We invite the
reader to browse some of the system’s compositions at
http://removedforblindcopy.

In some cases the melody generator produces melody out-

Algorithm 3 Algorithmic Overview Of System. A melody
is generated by detecting pitch, onset, and duration of
“notes” in an inspirational audio sample. Additional voices
are added by creating increasingly complex voice models
and iteratively applying them to the composition. The entire
composition is then post-processed so that it incorporates a
global time signature of sorts and to improve its tonal qual-
ity.
composition — extractMelody (inspiration Audio)
for i =0tov do
k=1i+2
trainset <)
for all training pieces ¢ do
trainset — trainset U extractInstances(t, k))
end for
trainModel(M;, trainset)
composition — addVoice(M;, composition)
end for
composition — snapToTime(composition)
composition — snapToPitch(composition)

162

50 .]%

IN-H— oy

ﬁﬂwﬂw 1 .
1 TS
|
]H %

=
I -

ﬂ]] 30 f |
= I

20

0 * TIME

L L
o 3

Figure 4: Snap-to-grid. The first graph shows the layout of
an output composition based on CarSounds without snap-
to-grid post-processing. The second graph shows another
CarSounds output with snap-to-grid. Note the change in the
pitch scale that reflects the increase in pitch range which is a
result of adjusting concurrent notes to an aesthetically pleas-
ing interval.

puts which are readily identifiable with their inspirational
source audio files. Examples include compositions inspired
by a speech by President Obama and by a bird’s song. In
both cases, the resulting melody line synchronises nicely
with the original audio when both are played simultaneously.
In contrast, other compositions sound very different from
their inspirational source. Examples include a recording of
a frog’s repetitive croaking and a monotonous recording of
road noise in a moving car. In the case of the road noises
one would expect an output melody that is monotonous,
mirroring the humanly-perceived characteristics of the in-
put audio file. However, the melody generator composes a
low-pitched, interesting, and varied melody line when given
the road noise audio file, making it hard to identify how the
melody relates to its source.

In all outputs there is a general lack of traditional rhythm
and pitch patterns. This is, of course, not surprising given
that our audio sources for inspiration are not required to be
in any particular musical key or to follow traditional key
changes, nor do they have any notion of a time signature.
Additionally, we do not restrict our training sets in either of
these traditional ways. As a consequence, it is likely that
in any given training set there will be instances which are
in different keys and/or time signatures than the melody. In
light of these conditions, it is to be expected that the output
would not be traditional music.

International Conference on Computational Creativity 2012

Training w; w, Percent Chords

TwoDance 1 83
TwoDance 1 3 44
TwoDance 3 1 80
TwoBlues 1 1 67
TwoBlues 1 3 47
TwoBlues 3 1 71

Table 1: This table shows the effect of the weights w; and
wy,. The input was the FatFrog audio file and voice models
were trained using either two songs from the Dance genre or
two songs from the Blues genre. Generally, as w), increases
(with respect to wy), the number of chords produced in the
output composition decreases.

The snap-to-grid feature is helpful. We have posted audio
examples on the web comparing outputs with and without
snap-to-grid. An example graph of each is given for visual
comparison in Figure 4. Snap-to-time doesn’t significantly
change the landscape of the pieces, but it proves to be essen-
tial in synchronizing notes which were composed as chords
but are not easily recognized as such because of the high pre-
cision of start times. Snap-to-pitch has a dramatic effect on
the pitch of certain notes but is limited to those notes which
occur at the same time.

We explored several values for w; and w, (see Table 1),
and, as expected, when w, > w; there are less chordal
note events than single notes compared to when w, < w.
Interestingly, the baseline w; = w, = 1 for the case of
voice models trained with two Dance songs is slightly more
chordal even than w; = 3, w, = 1.

We could not detect any significant difference in effect
when using different genres or artists for training the voice
models. No distinguishable qualities of dance music were
discernible in the outputs composed using models trained
only on dance music. No distinguishable qualities of Styx
songs were discernible in the outputs composed using mod-
els trained only on songs by Styx. In short, each variable on
training input successfully introduced novel variations in the
output compositions in an untraceable way. Choice of train-
ing pieces did not produce a predictable pattern for aesthetic
quality. The fact that our (admittedly simple) voice mod-
els failed to capture the distinct qualities of certain artists
or genres suggests that our methods for encoding the musi-
cal qualities of training pieces are less effective at capturing
such information than they are at capturing interesting note
combinations and timings (see Figure 5).

As described, the standard system uses the k + 1 closest
neighboring notes of each melody note for training the voice
models, and this works. However, as a variation on this ap-
proach, randomly sampling k£ 4 1 notes from the 4% closest
notes adds some extra variation in the composition and can
lead to more aesthetically pleasing outputs.

Snap-to-grid proved to be very useful for contributing
to the aesthetic quality of the compositions. Compositions
without snap-to-grid have more atonal and discordant chords
which play at undesirable intervals. Using snap-to-grid al-
lows a compromise between the uniqueness of the compo-

163

o S ira i

RN

Figure 5: Composition sample. These two measures are
taken from one of the compositions produced by our sys-
tem. The system produces interesting rhythms with varying
chordal texture.

e

N
PRy

sy
e
i
e

e

sitional style and regular timing intervals and chordal struc-
ture.

Future Work

At this point, our system is quite simple and many of the
techniques it employs are somewhat naive musically. Some
of this naiveté is for convenience at this early stage of sys-
tem development, and some of it is design decisions that
allow for greater variety in system output. The snap-to-grid
processing is a post-hoc attempt to impose some level of
musical “correctness” on the system’s output. Given the un-
constrained nature of the inspirational input, it is an inter-
esting question to ask how one might naturally incorporate
useful aspects of music theory directly in the melody gen-
eration process while still allowing significant effect from
the source. Also, it is natural to suggest incorporating more
traditional and mature harmonization schemes for the gen-
erated melodies. Finally, to this point, only the melody
has been (directly) affected by the inspiring piece; it would
be interesting to develop methods for using the inspira-
tional source to directly influence other musical characteris-
tics such as harmonization, style, texture, etc. However, all
of these necessary improvements are relatively minor com-
pared to the real open issues.

The first of these is the development of an evaluation
method for judging aesthetic and other qualities of the com-
positions. To this point, our measure of “interestingness”
has been only our own subjective judgment. The develop-
ment of more principled, objective metrics would be useful
as a filtering mechanism, and, at a more fundamental level,
as feedback for directing the system to modify its behavior
so that it produces better (novel, interesting, and surprising)
compositions. In addition, such results may also be vetted in
various kinds of human subject studies.

The second of these is the development of a mechanism
for autonomously choosing which inspirational sources the
system will use as input. This requires the development
of some type of “metric” for inspiration. Or, perhaps an-
other way to think about this problem is to ask the question,
“what makes a sequence of sounds interesting (or pleasing,
or arousing, or calming, or ...)?” Is this quantifiable or at
least qualifiable in some way? Some potential starting points
for this type of investigation might include work on iden-
tifying emotional content in music (Li and Ogihara 2003;
Han et al. 2009) as well as work on spectral composition
methods (Esling and Agon 2010).

International Conference on Computational Creativity 2012

This, in turn, introduces further considerations, such as
in which quality or qualities the system might be interested
and how those interests might change over time. An addi-
tional consideration is that of a second level of inspiration —
rather than the system being inspired by the aural qualities
of the input alone (as it is at present), is it possible to con-
struct a system that can be inspired by metaphors those aural
qualities suggest? And is it then possible for the system to
communicate the metaphor to some degree in its output?

References

Allan, M., and Williams, C. K. 2005. Harmonising chorales
by probabilistic inference. In Advances in Neural Informa-
tion Processing Systems 17, 25-32.

Ames, C. 1989. The Markov process as a compositional
model: A survey and tutorial. Leonardo 22(2):175-187.

Chuan, C. H., and Chew, E. 2007. A hybrid system for au-
tomatic generation of style-specific accompaniment. In Pro-
ceedings of the 4th International Joint Workshop on Compu-
tational Creativity.

Conklin, D., and Witten, I. H. 1995. Multiple viewpoint sys-
tems for music prediction. Journal of New Music Research
24:51-73.

Cope, D. 1992. Computer modeling of musical intelligence
in EMI. Computer Music Journal 16(2):69-83.

Esling, P, and Agon, C. 2010. Composition of sound mix-
tures with spectral maquettes. In Proceedings of the Inter-
national Computer Music Conference, 550-553.

Han, B.; Rho, S.; Dannenberg, R. B.; and Hwang, E. 2009.
SMERS: Music emotion recognition using support vector
regression. In Proceedings of the 10th International Confer-
ence on Music Information Retrieval, 651-656.

Li, T., and Ogihara, M. 2003. Detecting emotion in music.
In Proceedings of the 4th International Conference on Music
Information Retrieval, 239-240.

Papadopoulos, G., and Wiggins, G. 1999. AI methods for
algorithmic composition: A survey, a critical view and fu-
ture prospects. In Proceedings of the AISB Symposium on
Musical Creativity, 110-117.

164

