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Abstract

We introduce a novel method for the formation of fictional
concepts based on the non-existence conjectures made by the
HR automated theory formation system. We further intro-
duce the notion of the typicality of an example with respect
to a concept into HR, which leads to methods for ordering fic-
tional concepts with respect to novelty, vagueness and stimu-
lation. To test whether these measures are correlated with the
way in which people similarly assess the value of fictional
concepts, we ran an experiment to produce thousands of defi-
nitions of fictional animals. We then compared the software’s
evaluations of the non-fictional concepts with those obtained
through a survey consulting sixty people. The results show
that two of the three measures have a correlation with hu-
man notions. We report on the experiment, and we compare
our system with the well established method of conceptual
blending, which leads to a discussion of automated ideation
in future Computational Creativity projects.

Introduction

Research in Artificial Intelligence has always been largely
focused on reasoning about data and concepts which have a
basis in reality. As a consequence, concepts and conjectures
are generated and evaluated primarily in terms of their truth
with respect to a given a knowledge base. For instance, in
machine learning, learned concepts are tested for predictive
accuracy against a test set of real world examples. In Com-
putational Creativity research, much progress has been made
towards the automated generation of artefacts (painting, po-
ems, stories, music and so on). When this task is performed
by people, it might start with the conception of an idea, upon
which the artefact is then based. Often these ideas consist of
concepts which have no evidence in reality. For example, a
novelist could write a book centered on the question “What
if horses could fly?’ (e.g., Pegasus), or a singer could write a
song starting from the question ‘What if there were no coun-
tries?” (e.g., John Lennon’s Imagine). However, in Compu-
tational Creativity, the automated generation and evaluation
of such fictional concepts for a creativity purposes is still
largely unexplored.

The importance of evaluating concepts independently of
their truth value has been highlighted by some cognitive sci-
ence research. Some of the notions that often appear in the
cognitive science and psychology literature are those of nov-
elty, actionability, unexpectedness and vagueness. Novelty

is used to calculate the distance between a concept and a
knowledge base. In (Saunders 2002), interestingness is eval-
uated through the use of the Wundt Curve (Berlyne 1960),
a function that plots hedonistic values with respect to nov-
elty. The maximum value of the Wundt curve is located in a
region close to the y-axis, meaning, as Saunders points out,
that the most interesting concepts are those that are “similar-
yet-different” to the ones that have already been explored
(Saunders 2002). The notions of actionability and unexpect-
edness were first introduced in (Silberschatz and Tuzhilin
1996) as measurements of subjective interestingness. Ac-
tionability evaluates the number of actions or thoughts that
an agent could undertake as a consequence of a discovery.
Unexpectedness is a measurement inversely proportional to
the predictability of a result or event. Finally, vagueness
is referred to as the difficulty of making a precise decision.
Several measurements have been proposed in the literature
for the calculation of this value, particularly using fuzzy sets
(Klir 1987).

The importance of generating concepts which describe
contexts outside of reality was underlined by Boden when
she proposed her classification of creative activity. In par-
ticular, Boden identifies ‘three ways of creativity’ (Boden
2003): combinational creativity, exploratory creativity and
transformational creativity. Transformational creativity in-
volves the modification of a search space by breaking its
boundaries. One reading of this could therefore be the cre-
ation of concepts that are not supported by a given knowl-
edge base; we refer to these as fictional concepts herein.
Conceptual blending (Fauconnier and Turner 2002) offers
clear methods for generating fictional concepts, and we re-
turn to this later, specifically with reference to the Divago
system which implemented aspects of conceptual blending
theory (Pereira 2007).

We propose a new approach to the formation and evalua-
tion of fictional concepts. Our method is based on the use of
the HR automated theory formation system (Colton 2002b)
(reviewed below), and on cognitive science notions of con-
cept representation. In particular, we explore how the notion
of typicality can improve and extend HR’s concept forma-
tion techniques. In the field of cognitive psychology, typi-
cality is thought of as one of the key notions behind concept
representation. Its importance was one of the main factors
that led to the first criticisms of the classical view (Rosch
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1973), which argues that concepts can be represented by a
set of necessary and sufficient conditions. Current cognitive
theories therefore take into account the fact that exemplars
can belong to a concept with a different degree of member-
ship, and the typicality of an exemplar with respect to a con-
cept can be assessed.

In the following sections, we discuss the methods and re-
sults obtained by introducing typicality values into HR. We
argue that such typicality measures can be used to evalu-
ate and understand fictional concepts. In particular, we pro-
pose calculations for three measures which might sensibly
be linked to the level of novelty, vagueness and stimulation
associated with a fictional concept. We generated definitions
of fictional animals by applying our method to a knowledge
base of animals and we report the results. We then compare
the software’s estimate of novelty, vagueness and stimula-
tion with data obtained through a questionnaire asking sixty
people to evaluate some concepts with the same measures
in mind. The results were then used to test whether there
is a correlation between our measurements and the usual
(human) understanding of the terms novelty, vagueness and
stimulation. We then compare our approach and the well es-
tablished methods of conceptual blending. Finally, we draw
some conclusions and discuss some future work.

Automated Theory Formation

Automated theory formation concerns the formation of in-
teresting theories, starting with some initial knowledge then
enriching it by performing inventive, inductive and deduc-
tive reasoning. For our purposes, we have employed the HR
theory formation system, which has had some success in-
venting and investigating novel mathematical concepts, as
described in (Colton and Muggleton 2006). HR performs
concept formation and conjecture making by applying a con-
cise set of production rules and empirical pattern matching
techniques respectively. The production rules take as input
the definition of one or two concepts and manipulates them
in order to output the definition of the new concept. For ex-
ample, the compose production rule can be used to merge the
clauses of the definitions of two concepts into a new defini-
tion. It could, therefore, be given the concept of the number
of divisors of an integer and the concept of even numbers
and be used to invent the concept of integers with an even
number of divisors. The success set — the collection of all
the tuples of objects which satisfy the definition — of the new
defined concept is then calculated. Once this is obtained, it is
compared with all the previously generated success sets and
used to formulate conjectures about the new concept. These
conjectures take the form of equivalence conjectures (when
two success sets match), implication conjectures (when one
success set is a subset of another), or non-existence conjec-
tures (when a success set is empty).

In domains where the user can supply some axioms, HR
appeals to third party theorem provers and model generators
to check whether a conjecture follows from the axioms or
not. HR follows a best-first non-goal-oriented search, dic-
tated by an ordered agenda and a set of heuristic rules used
to evaluate the interestingness of each concept. Each item in
the agenda represents a theory formation step, which is an

instruction about what production rule to apply to which ex-
isting concept(s) and with which parameters. The agenda
is ordered with respect to the interestingness of the con-
cepts in the theory, and the most interesting concepts are
developed first. Overall interestingness is calculated as a
weighted sum (where the weights are provided by the user)
of a set of measurements, described in (Colton 2002b) and
(Colton, Bundy, and Walsh 2000). These were developed to
evaluate non-fictional concepts, but some of them could be
modified to evaluate fictional concepts for our system, and
we plan to do this in future work. HR was developed to
work in mathematical domains, but different projects have
demonstrated the suitability of this system to work in other
domains such as games (Baumgarten et al. 2009), puzzles
(Colton 2002a), HR’s own theories (Colton 2001) and visual
art (Colton 2008).

Using HR to Generate Fictional Concepts

We are interested in the generation and evaluation of con-
cepts for which it is not possible to find an exemplar in the
knowledge base that completely meets the concept’s defini-
tion. Throughout this paper we use the term fictional con-
cepts to refer to this kind of concept. We use the HR system
for the generation of such fictional concepts. To do so, after
it has formed a theory of concepts and conjectures in a do-
main, we look at all the non-existence conjectures that it has
generated. These are based on the concepts that HR con-
structs which have an empty success set. Hence, the con-
cepts that lie at the base of these conjectures are fictional
with respect to the knowledge base given to HR as back-
ground information. For example, from the non-existence
conjecture:

3(x)(Reptile(x) & HasWings(x))
we extract the fictional concept:

Co(z) = Reptile(x) & HasWings(x)

To see whether typicality values can be used for the eval-
uation of these fictional concepts, we have introduced this
notion into HR. Typicality values are obtained by calculat-
ing the degree of membership of each user-given constant
(i.e., animals in the above example) with respect to every
fictional concept which specialises the concept of the type
of object under investigation (which is the concept of be-
ing an animal in this case). This is done by looking at the
proportion of predicates in a concept definition that are sat-
isfied by each constant. Hence, for each constant a; and
for each fictional concept C; in the theory, we will have
Typicality(a;,C;) = t, where 0 < ¢t < 1. For example,
for the concept definition:

Cy(z) = Mammal(x) & HasWings(zx)
& LivesIn(x, Water)

the typicality values for the constants in the set
{Lizard, Dog, Dolphin, Bat} are as follows:
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Typicality(Lizard, Cy) = 0;
Typicality(Dog, C1) = 0.3;
Typicality(Dolphin, Cy) = 0.6;
Typicality(Bat,C;) = 0.6;

We see that the constant ‘Dolphin’ has typicality of 0.6 with
respect to C because a dolphin is a mammal which lives in
water but which doesn’t have wings — hence it satisfies two
of the three predicates (=~ 66.6%) in the definition of C;.

It is important to note that for each fictional concept C'
there are at least n constants aq, ..., a, such that Vj, 0 <
Typicality(a;,C) < 1, where n is the number of predi-
cates in the concept definition. We refer to these as the atyp-
ical exemplars of fictional concept C, and we denote this
set of constants as atyp(C). The atypical exemplars of C
have typicality bigger than zero because they partly belong
to C, and less than one because the concept is fictional, and
hence by definition it doesn’t have any real life examples.
The number of atypical exemplars of a fictional concept is
always more than or equal to the number of predicates in
the concept definition because fictional concepts originate
from the manipulation of non-fictional concepts, and hence,
— given a well formed knowledge base — each predicate in a
fictional concept definition will correspond to a non-fictional
concept with at least one element in its success set.

Evaluating Concepts Based on Typicality

We explain here how typicality can be used to evaluate fic-
tional concepts along three axes which we claim can be sen-
sibly used to estimate how people will assess such concepts
in terms of vagueness, novelty and stimulation respectively.
This claim is tested experimentally in the next section. To
define the measures for a fictional concept C' produced as
above, we use F to represent the set of constants (exam-
ples) in the theory, e.g., animals, and we use N F' to denote
the set of non-fictional concepts produced alongside the fic-
tional ones. We use |C| to denote the number of conjunct
predicates in the clausal definition of concept C. We fur-
ther re-use atyp(C) to denote the set of atypical exemplars
of C' and the T'ypicality measure we introduced above. It
should be noted that the proposed methods of evaluation of
fictional concepts have not been included into the HR pro-
gram to guide concept formation.It is, however, our ambi-
tion to turn these measurements into measures of interest for
ordering HR’s agenda.

Using Atypical Exemplars

Our first measure, My, of fictional concept C, is suggested
as an estimate of the vagueness of C. It calculates the pro-
portion of constants which are atypical exemplars of C, fac-
tored by the size of the clausal definition of C, as follows:

|atyp(C)]
EEl

As previously discussed, vagueness is a measurement that
has been widely studied in the context of fuzzy sets. Klir
(1987) emphasises the difference between this measurement

My (C) =

and the one of ambiguity, and underlines how vagueness
should be used to refer to the difficulty of making a precise
decision. While several more sophisticated measurements
have been proposed in the literature, as explained in
(Klir 1987), we chose the above straightforward counting
method, as this is consistent with the requirement that if
concept C, is intuitively perceived as more vague than
concept Cy, then My (C,) > My (Cy). To see this, suppose
we have the following two concepts:

Cy(z) = Animal(x) & has(x, Wings)
Cy(x) = Reptile(x) & has(xz, Wings)

In this case, we can intuitively say that an animal with wings
is more vague than a reptile with wings, because for the first
concept, we have a larger choice of animals than for the sec-
ond. In terms of typicality, this can be interpreted as the fact
that C has a larger number of atypical exemplars than Co,
and it follows that My (Cy) > My (Cs).

Using Average Typicality

Our second measure, My, of fictional concept C, is sug-
gested as an estimate of the novelty of C. It calculates the
complement of the average typicality of the atypical exem-
plars of C, as follows:

My(C)=1- L (Z Typicality(a, C’))

latyp(C)| \ &

Novelty is a term largely discussed in the literature, and can
be attached to several meanings and perspectives. In our
case, we interpret novelty as a measurement of distance to
the real world, as inferred in previous work in computational
creativity research, such as (Saunders 2002). As an example
of this measure, given the concepts:

Cy(x) = Bear(z) & Furniture(z) & Has(z, Wings)
Cy(x) = Bear(z) & Furniture(z) & Brown(x)

then, in a domain where all the constants are either exclu-
sively bears or furniture (but not both), and assuming that
all the bears and all the furniture are brown, we calculate:

My(Cy) =08
My(Co) =03

This is because for C, all exemplars will satisfy just one
of the three clauses (3) in the definition, hence this will be
their average typicality, and C; will score 1 — % = 0.6 for
Mp. In contrast, all exemplars will satisfy two out of the
three clauses in C5, and hence it scores 0.3 for M. Hence
we can say that C is more distant from reality, and hence
more novel, than C5. Consistent with the literature, and in
particular with the Wundt Curve (which compares novelty
with the hedonic value), we assume that the most interesting
concepts have an average typicality close to 0.5. Note that
this implies that fictional concepts whose definition contains
two conjuncts are always moderately interesting in terms of
novelty, as their average typicality is always equal to 0.5.
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Using Non-Fictional Concepts

Our final measure, Mg, of fictional concept C' is suggested
as an estimate of the stimulation that C' might elicit when au-
diences are exposed to it (i.e., the amount of thought it pro-
vokes). It is calculated as the weighted sum of all the non-
fictional concepts, r, in N F' that HR formulates for which
their success set, denoted ss(r), has a non-empty intersec-
tion with atyp(C'). The weights are calculated as the sum of
the typicalities over atyp(C) with respect to C. Mg(C) is
calculated as follows:

Ms(C)= >

r€NF \a€atyp(C)Nss(r)

Typicality(a, C)

This calculation is motivated by Ward’s path-of-least-
resistance model (Ward 2004). This states that when people
approach the task of developing a new idea for a particular
domain, they tend to retrieve basic level exemplars from that
domain and select one or more of those retrieved instances
as a starting point for their own creation. Having done so,
they project most of the stored properties of those retrieved
instances onto the novel ideas they are developing. As an
example, the fictional concept:

Cy(x) = Horse(x) & Has(x, Wings)

could lead to the following questions: Is it a mammal? Can
humans ride it? Does it live in a farm? Does it fly? Does it
lay eggs? Each of these questions can be derived from the
corresponding HR generated concepts which have in their
success set a large number of the atypical exemplars of C'.

Experimental Results

To evaluate our approach, we started with a knowledge base
of animals, based on similar inputs to those used for the con-
ceptual blending system Divago (Pereira 2007), which is de-
scribed in the next section. The concept map for a horse
was taken from (Pereira and Cardoso 2003) and reapplied
to each animal from a list of 69 animals reported in the Na-
tional Geographic Kids website!. The relations were main-
tained when relevant, and extended when necessary accord-
ing to the Generalized Upper Model hierarchy, as instructed
in (Pereira 2007). Figure 1 illustrates a small part of the in-
formation we provided as background knowledge for HR to
form a theory with.

To generate fictional concepts with HR, we used a
random-search setup and ran the system for 100,000 steps,
which took several hours. We limited the HR system to
use only the compose, exists and split production rules, as
described in (Colton 2002b). Extracting them from non-
existence conjectures, the system produced 4623 fictional
concepts, which were then automatically ranked in terms of
their My, My and Mg values, as described above. From
each of the ranked lists, a sub-list of 14 fictional concepts
was created. The fictional concepts were taken at regular in-
tervals so that they were evenly distributed numerically over
the sub-lists, from highest scoring to lowest scoring. For

'kids.nationalgeographic.co.uk/kids/animals/creaturefeature

Animals(x) BodyPart(x) Ability(x) Existence(x,y) Pw(x,y)

Horse Leg Flying Frog Forest Horse Leg

Frog Hoof Swimming Frog Grass Horse Hoof

Eagle Trunk Hunting Parrot Beak

Shark Tail Carrying isA(X,Y)

Bee Eye Food Horse Mammal HasAbility(x,y)
Eagle Bird Horse Run

Class(x) Place Purpose(x) Horse Carry

Mammal Ocean Walk HasPurpose(x,y) owl Fly

Fish Arctic Grab Leg Walk

Reptile Forest Eat Eye See

Bird Grass See Mouth Eat

Figure 1: Details from the knowledge base for animals.

the M sub-list, all the fictional concepts with two clauses
in the definition were first filtered out. For the My and
Mg sub-lists, all the fictional concepts with more than two
clauses in the definition were filtered out instead. The result-
ing sub-lists are given in tables 2, 3 and 4 of the appendix
respectively.

We performed a survey of sixty people who were shown
these lists and asked to rank them from 1 to 14 with re-
spect to their own interpretations of the fictional concepts
and their values. The aim of the survey was to verify how
measurements My, My and Mg described above correlate
with respect to common (human) understanding of vague-
ness, novelty and stimulation respectively. The survey was
composed of four parts. The first three parts asked people
to rank the three sets of 14 concepts in terms of vagueness,
novelty and stimulation. We didn’t include an explanation of
our interpretation of these words in the questions, to encour-
age participants to use their own understanding of the three
terms. The fourth part of the survey asked for a qualitative
written definition of each of the three criteria of evaluation:
vagueness, novelty and stimulation. Tables 2, 3 and 4 in
the appendix report the three sub-lists of fictional concepts
and the ranking (1 to 14) that our software assigned to them,
along with the rankings obtained from the survey.

In order to establish whether our ranking and the survey
rankings are correlated, we calculated Pearson’s correlation,
r, between the system’s ranking and an aggregated ranking.
The aggregated ranking was calculated by ordering the fic-
tional concepts 1 to 14, according to the mean rank from the
participants. We then calculated the respective 95% Confi-
dence Intervals (CI) and p-values, using the alternative hy-
pothesis that the correlations are greater than zero. We ob-
tained the following results (quoted to 3 decimal places):

My Ivagueness: r = 0.552, p =0.020, 95% CI =[0.124, 1]
Mpy/movelty: r =0.697, p = 0.003, 95% CI = [0.350, 1]
Mg/stimulation: r = -0.029, p = 0.059, 95% CI =[-0.481, 1]

We can therefore conclude that there is strong and highly sta-
tistically significant correlation between the software rank-
ings given by My and the survey rankings for novelty. We
have similarly found a significant and moderate correlation
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Figure 2: Word clouds: vagueness, novelty and stimulation.

with the survey rankings for My . Hence it appears that
the novelty and vagueness measurements we suggested offer
sensible calculations for the general understanding of these
two terms for fictional concepts.

We found no correlation between the survey rankings for
the stimulation value and the software measure Mg. This
could be due to two reasons. Firstly, looking at the general
descriptions of the word ‘stimulating’ given by people in the
last section of the survey, they present a broader range of
meanings than the word ‘novel’ or ‘vague’. Moreover, these
meanings are often very distant from the interpretation of the
term ‘stimulation’ that we used in deriving the Mg measure.
In figure 2, we present word clouds obtained from the defini-
tions that people in the survey gave of the words vagueness,
novelty and stimulation respectively. We can see that the the
word cloud for vagueness includes words such as ‘descrip-
tion’, ‘unclear’ and ‘difficult’ as might be expected, and the
word cloud for novelty includes words such as ‘different’,
‘unusual’ and ‘original’, also as expected. However, the
word-cloud for ‘stimulation’ includes words such as ‘emo-
tion’, ‘exciting’ and ‘imagination’. This suggests a second
reason that could explain the lack of correlation: our mea-
sure Mg lacks factors to estimate emotions and surprising-
ness elements, which will be studied in future work.

To explore the question of stimulation further, we looked
at another measure of fictional concepts which might
give us a handle on this property. Table 1 portrays the
non-fiction concepts found (during the experimental ses-
sion with HR described above) to have examples over-
lapping with the atypical exemplars of this fictional con-
cept: Cp(A) = isa(A, equine), pw(A, wings) [noting that
pw(A, X) means that animal A has a body (p)art (w)ith as-
pect X]. These non-fiction concepts comprised the subset
of NF that was used to calculate Mg(C)). The non-fiction
concepts overlapping with C), are given along with a calcu-
lation which was intended to capture an essence of C), as the
likelihood of additional features being true of the fictional
animals described by C),. The calculation takes the sum of
the typicalities of the atypical exemplars of the fictional con-
cept which are also true of the non-fiction concept. We see
that it is more likely for the winged horse to have feath-
ers than to have claws, as pw(A, feathers) scores 10, while
pw(A,claws) scores just 1. In future, we plan to use these
likelihood scores at the heart of new measures. For instance,
we can hypothesise that the inverse of average likelihood
over all the associated non-fiction concepts might give an in-

CONCEPT: isanimal(A horse), pw(A,wing)

Non-fictional concept Likelihood
isa(A,bird) 6.5
isa(A,bug) 3.0
isa(A,mammal) 1.0
pw(A,lung) 8.5
pw(A,mane) 0.5
pw(A,tail) 7.0
pw(A,claws) 1.0
pw(A,teeth) 1.0
pw(A,eye) 10.5
pw(A,legs) 10.5
pw(A,fur) 1.0
pw(A,feathers) 10.0
pw(A,beak) 10.0
pw(A,hoof) 0.5
pw(A,claw) 5.5
existence(A,mountain) 2.5
isa(A,bug) 3.0
isa(A,bird) 6.5
isa(A,mammal) 1.0
hasAbility(A,carry) 1.0
hasAbility(A,hunt) 1.5
hasAbility(A,flying) 8.0

Table 1: Non-fiction concepts with success sets overlapping
with atypical exemplars of the given concept, along with
their actionability.

dication of how thinking about C), could lead to less likely,
more imaginative and possibly more stimulating real world
concepts.

A Comparison with Conceptual Blending

We compare our system to the well-established concep-
tual blending technique, as this technique performs fictional
concept formation and evaluation, as defined above. We
therefore present a comparison of our system with Divago
(Pereira 2007), which is a conceptual blending system im-
plemented on the basis of the theory presented in (Faucon-
nier and Turner 2002). It applies the notions suggested by
this theory in order to combine two concepts into a stable
solution called a blend. Blends are novel concepts that de-
rive from the knowledge introduced via the inputs, but which
also acquire an emerging structure of their own (Pereira
2007).

Divago has been successfully tested in both visual and lin-
guistic domains (Pereira 2007). It is comprised of six differ-
ent modules: the knowledge base, the mapper, the blender,
the factory, the constraints module and the elaboration mod-
ule. The knowledge base contains the following elements:
concept maps that are used to define concepts through a net
of relations; rules that are used to explain inherent causali-
ties; frames that provide a language for abstract or compos-
ite concepts; integrity constraints that are used to assess the
consistency of a concept; and instances that are optional sets
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of examples of the concepts. The mapper takes two random
or user selected concepts and builds a structural alignment
between the two respective concepts maps. It then passes
the resulting mapping to the blender, which produces a set
of projections. Each element is projected either to itself, to
nothing, to its counterpart (the elements it was aligned with
by the mapper), or to a compound of itself and its counter-
part. The blender therefore implicitly defines all possible
blends that constitute the search space for the factory.

The factory consists of a genetic algorithm used to search
for the blend that is evaluated as the most satisfactory by
the constraints module. The algorithm uses three reproduc-
tion rules: asexual-reproduction, where the blend is copied;
crossover, where two blends exchange part of their lists of
projections; and mutation, where a random change in one of
the projections in a blend is applied. The factory interacts
both with the elaboration module and the constraints mod-
ule. The elaboration module is used to complete each blend
by applying context-dependent knowledge provided by the
rules in the knowledge base. The constraints module is used
for the evaluation of each blend. It does this by measuring
its compatibility with the frames, integrity constraints, and a
user-specified goal (Pereira 2007).

The first high-level difference between Divago and our
system derives from the motivations behind their implemen-
tations. Divago was constructed to test the cognitive plau-
sibility of a computational theory of conceptual blending,
and hence their aims were to construct complete and stable
concepts, i.e., the blends. Details of the system’s reason-
ing process, used for the formation and elaboration of such
concepts, are therefore presented in the final output. Our
system was instead constructed to generate fictional ideas of
value. These are concise concepts which are purposely left
in a simple and ambiguous form. The aim is in fact to find
the concepts that stimulate the highest amount of thought
and interest in an audience. The system’s reasoning process
is hence hidden from the outputs, and used only for evalua-
tion purposes.

In the following paragraphs, we describe the parallels be-
tween Divago’s modules and the different components of
our system. In doing so, we identify the consequences of
using each methodology. The first comparison that can be
made is between the structures of the user-provided knowl-
edge bases. In HR, the knowledge base is used only to define
a set of concepts. It is hence equivalent in functionality to
Divago’s concept maps. The rules, frames and integrity con-
straints that need to be user-specified in Divago, are instead
automatically learned in HR. They take the form of conjec-
tures, non-fictional concepts and function specifications re-
spectively. On one hand, this implies that HR has a greater
degree of autonomy. On the other hand, HR is more prone
to errors, as the constructed conjectures, non-fictional con-
cepts and functions may not be relevant for the construction
of fictional concepts.

For example, given an appropriate knowledge base, HR
could construct the concept of an animal being amphibious,
which is defined as an animal that lives in water and lives on
earth. The same frame can be manually defined and used in
Divago. However, HR will simultaneously construct other

similar concepts. For example, the concept of animals that
live in water and are red; or the concept of animals that live
on earth and have four legs. If we assume that these concepts
could be used for the evaluation of fictional concepts (as we
plan to do in the future), then there is currently no way to dif-
ferentiate between them in terms of the relevance they might
have on the definition of a fictional concept (i.e., the system
couldn’t itself determine that an amphibian is more relevant
than a water-living red animal). Moreover, HR is not ca-
pable of constructing all the rules, frames and constraints
that Divago uses, but we believe that a similar functionality
could be achieved through the use of typicality-based exem-
plar membership, and we plan to explore this possibility.

Despite the evident differences between their internal
mechanisms, we can make a comparison between the blends
produced by Divago’s mapper and blender modules, and
HR’s non-existence conjectures. The first observation re-
gards the range of the potential outputs. For HR, we only
consider the concepts that are empirically known to be fic-
tional. Divago’s blends could instead be fictional, non-
fictional, or exact copies of the two initial inputs. Moreover,
Divago focuses only on one of the possible bijections be-
tween the elements in the concept maps. Pereira recognises
that this restriction narrows the creative potential of the sys-
tem (Pereira 2007, p. 117). HR is instead able to consider all
possible structural alignments. Furthermore, Divago works
on the blend of two randomly selected or user specified con-
cepts, while HR can consider multiple concepts at once.

A component to develop and elaborate on HR’s fictional
concepts is still missing from our system, which we are plan-
ning to implement soon. In order to do so, we will take
inspiration from Divago’s factory and elaboration modules,
while also taking into consideration the typicality values dis-
cussed above. However, as explained before, in our case this
reasoning module will be used to calculate the potential rea-
soning that can originate from a fictional concept. In Di-
vago, the factory and elaboration modules are instead used
for the completion of a blend. Finally, Divago’s constraints
module can be compared with measures My, My and Mg
introduced above. Divago’s constraints module aims to eval-
uate a completed blend, while our system rates fictional con-
cepts. Nevertheless, a correspondence between the evalua-
tion methods can be noted. For example, the fopology con-
straint used in Divago measures the novelty of a blend, like
the My measure for fictional concepts investigated above,
and the integration constraint used in Divago measures how
well-defined a blend is, which is similar to the My, measure-
ment we have found is correlated with vagueness.

Conclusions and Further Work

We have proposed a method for generating and evaluating
fictional concepts, using the HR theory formation system en-
hanced with typicality values. With the experiments above,
we have shown that it is possible to create fictional con-
cepts by using this process and that it is possible to meaning-
fully order the fictional concepts in terms of interestingness-
oriented measurements. We have compared the automati-
cally achieved evaluations with a ranking obtained through
the analysis of a survey consulting sixty people. This
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showed that our My, and M measures are correlated pos-
itively with common understandings of vagueness and nov-
elty respectively. Finally, we compared our approach to the
one based on conceptual blending in the Divago system,
which placed our work in context and highlighted compar-
isons which will inform future implementations.

Our system is still at the developmental stage. The exper-
iment above, however, indicates that it is capable of creating
fictional concepts that could be of interest to an audience.
Moreover, this ideation process could be used at the heart
of more sophisticated artefact generation systems, e.g., for
poems or stories.

As previously discussed, the methods used to rank such
fictional concepts have been shown to be useful, but also
present some issues. Our next steps will therefore be to re-
fine our current approach and implement new measures to
estimate the interestingness of fictional concepts. To start
this process, we will take inspiration from the notions anal-
ysed in (Colton, Bundy, and Walsh 2000) and used in the
HR system, and modify them as appropriate. We will also
look at other measurements suggested and used in Computa-
tional Creativity literature, such as Ritchie’s criteria (Ritchie
2007). These, for example, could be used to assess the nov-
elty of a fictional concept with respect to other fictional con-
cepts.

We will then refine our measurement of typicality. To do
so we hope to take inspiration from the theories proposed in
cognitive science on the evaluation of the prototype theory
and the weighting of category features. Each feature will
be given a value called salience, used to indicate how im-
portant it is for the concept’s definition. The salience values
will then be used to calculate the typicality values with more
accuracy.

Ultimately, we aim to introduce the notion of the distor-
tion of reality. This measurement will serve to calculate how
many real world constraints a fictional concept breaks. We
will start by studying two methods for the calculation of val-
ues related to this. The first method is inspired from (Pease
2007) and will be based on the number of conjectures that
each atypical exemplar of a fictional concept breaks. The
second method is based on the scale of the distortion that an
ontology would be subject to in order to include a fictional
concept. We will also implement further methods for rea-
soning with fictional concepts. These methods will be used
to estimate actionability; for the elaboration of fictional con-
cepts; and for potential renderings of ideas in cultural arte-
facts such as poems and stories. We also plan to study how
the different methods of measurement could be related to a
rendering choice and vice versa. For example, non-vague
concepts could be suitable for paintings, while actionable
concepts might be more suitable for storytelling. We hope
that such studies will help usher in a new era of idea-centric
approaches in Computational Creativity as we hand over the
creative responsibility for ideation to our software and ad-
dress high level issues such as imagination in software.
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Appendix

Lo o0 =
S5 =g » £
EE 9S82 9 52
22 EfT LSt
Concept Definition B hOKE neH
An animal that has a body-part with 1 1 4.88
which it can both see and eat
A mammal with feathers 2 4 7.11
A dolphin that lives on grass 3 11 7.89
A bird with tentacles 4 3 6.89
A bird with a trunk 5 10 7.58
A pig which is a bug 6 2 5.85
A fish with a trunk 7 7 7.37
An animal that lives both under 8 8 7.52
freshwater and in the arctic
A fox which is an amphibian 9 9 7.54
A cow with tentacles 10 12 8.43
A fish which is also an otter 11 6 7.14
A salmon with feathers 12 13 9.82 © 20 0 e
A bat which is also a zebra 13 5 7.12 SE BRE Tt
A gecko with spines 14 14 988 E% £fE LEf
Concept Definition BE ROE BeK
Table 2: Fictional concepts sorted from highest scoring to A fish with lungs 1 13 9.98
lowest scoring with respect to the software ranking for mea- An angn?l tgé}i h?; eyes with which 2 3 5.88
: it can defend itse
sure My, compared with the survey values for vagueness. A fish that can walk 3 7 799
An arachnid which is a mammal 4 11 8.85
A tiger with wings 5 2 5.85
g g o g . = An animal that lives under the 6 5 6.22
g % “E_‘g‘ % “E g% ocean and that humans can ride
. 28 =2=&8 =538 A wolf that can fly 7 4 5.97
Concept Definition AE NOK A A horse that lives under freshwater 8 10 8.27
A mammal that lives in the ocean 1 1 3.93 A predatory bird with fins 9 12 9.19
that can fly A chicken that lives in the arctic 10 14 10.27
A mammal that lives in the ocean 2 3 6.18 A dolphin which is also an arachnid 11 8 7.33
with wings A chicken which is also a shark 12 1 53
A mammal with wings that can be 3 2 3.94 An animal that has a body-part with 13 9 8.02
ridden by humans which it can both see and eat
A bird that lives in a forest thatcan 4 4 6.81 An animal with trunk with whichit 14 6 6.68
swim under water can fly
An invertebrate with legs that can 5 5 7.39
Zwl;rzrgnmd;r‘:i’?ﬁe&mgs thatcanhunt 6 7 311 Table 4: Fictiona.I concepts sorted from the highest sporing
A mammal that lives under fresh- 7 13 9.36 to the lowest scoring with respect to the software ranking for
water and with fins measure Mg, compared with the survey values for stimula-
A mammal that lives both under 8 14 9.5 tion.
freshwater and under the ocean
A mammal with fins that can hunt 9 12 9.24
An animal that lives both under 10 6 8.09
freshwater and in a forest and that
has wings
An animal that lives both under 11 8 8.13
freshwater and in a forest and that
has a fur
A bird that lives under freshwater 12 9 8.35

and that can swim underwater

A bug that lives in a forest and has 13 11 9.14
claws

A mammal with a tail that can fly 14 10 8.36

Table 3: Fictional concepts sorted from the highest scoring
to the lowest scoring with respect to the software ranking for
measure My, compared with the survey values for novelty.
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