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Abstract

We investigate the role of dynamic motions performed
by artists during the creative process of art generation.
We are especially interested modern artworks inspired
by the Action Painting style of Jackson Pollock.
Our aim is to evaluate and model the role of these mo-
tions in the process of art creation. We are using mathe-
matical approaches from optimization and optimal con-
trol to capture the essence (cost functions of an opti-
mal control problem) of these movements, study it and
transfer it to feasible motions for a robot arm. Addition-
ally, we performed studies of human responses to paint-
ings assisted by an image analysis framework, which
computes several image characteristics. We asked peo-
ple to sort and cluster different action-painting images
and performed PCA and Cluster Analysis in order to
determine image traits that cause certain aesthetic expe-
riences in contemplators.
By combining these approaches, we can develop a
model that allows our robotic platform to monitor its
painting process using a camera system and – based on
an evaluation of its current status – to change its move-
ment to create human-like paintings. This way, we en-
able the robot to paint in a human-like way without any
further control from an operator.

Introduction
The cognitive processes of generating and perceiving ab-
stract art are – in contrast to figurative art – widely unknown.
When processing representational art works, the effect of
meaning is highly dominant. In abstract art, with the lack of
this factor, the processes of perception are much more am-
biguous, relying on a variety of more subtle qualities. In this
work, we focus on the role of dynamic motions performed
during the creation of an art work as one specific trait that
influences our perception and aesthetic experience.

Action Paintings - Modern art works created by
dynamic motions
The term “action painting” was first used in the essay “The
American Action Painters” (Rosenberg 1952). While the
term “action painting” is commonly used in public, art his-
torians sometimes also use the term “Gestural Abstraction”.
Both terms emphasize the process of creating art, rather than
the resulting art work, which reflects the key innovation that

Figure 1: An action painting in the style of Jackson Pollock,
painted by “JacksonBot”

arose with this new form of painting in the 1940s to the
1960s. The style of painting includes dripping, dabbing and
splashing paint on a canvas rather than being applied care-
fully and in a controlled way. Art encyclopedias describe
these techniques as “depending on broad actions directed by
the artist’s sense of control interacting with chance or ran-
dom occurrences.” The artists often consider the physical
act of painting itself as the essential aspect of the finished
work. Regarding the contemplators, action paintings intend
to connect to them on a subconscious level. In 1950, Pol-
lock said “The unconscious is a very important side of mod-
ern art and I think the unconscious drives do mean a lot in
looking at paintings”(Ross 1990) and later, he stated “We’re
all of us influenced by Freud, I guess I’ve been a Jungian for
a long time”(Rodman 1961). Clearly, artists like Pollock do
not think actively about dynamic motions performed by their
bodies the way as mathematicians from the area of model-
ing and optimal control do. But for us, it is very exciting,
that one of the main changes they applied to their painting
style in order to achieve their aim of addressing the subcon-
scious mind has been a shift in the manner they carry out
their motions during the creational process.

Proceedings of the Fourth International Conference on Computational Creativity 2013 210



Understanding the perception and generation of
action paintings
Since a human possesses much more degrees of freedom
than needed to move, human motions can often be seen
as a superposition of goal directed motions and implicit,
unconscious motions. The assumption, that elements of
human motions can be described in this manner has been
widely applied and verified, particularly in walking and run-
ning motions (Felis and Mombaur 2012),(Schultz and Mom-
baur 2010), but also (very recently) regarding emotional
body language during human walking (Felis, Mombaur, and
Berthoz 2012). If we transfer this approach to an artist, the
goal-directed motions are those carried out to direct his hand
(or rather a brush or tool) to the desired position, the implicit,
unconscious motions are the result of an implicit solved op-
timal control problem with a certain cost function like max-
imizing stability or minimizing energy costs.

When looking at action paintings, we note, that this form
of art generation is a very extreme form of this superposition
model with a widely negligible goal-directed part. There-
fore, it is a perfect basis to study the role of (unconscious)
motion dynamics on a resulting art work. Jackson Pollock
himself expressed similar thoughts when he said “The mod-
ern artist... is working and expressing an inner world – in
other words – expressing the energy, the motion, and other
inner forces” or “When you’re working out of your uncon-
scious, figures are bound to emerge... Painting is a state of
being” (Rodman 1961).

However, the role of motion dynamics in the embodied
expression of artists has been poorly described so far, sup-
posedly due to the lack of an adequate method for the ac-
quisition of quantitative data. The goal of our project is to
use state-of-the-art tools from scientific computing to ana-
lyze the impact of motion dynamics both on the creational
and perceptual side of action-painting art works. Therefore,
we perform perception studies with contemplators and ex-
perimental studies concerning motion generation, which are
linked by a robotic platform as a tool that can precisely re-
produce different motion dynamics. Using this approach, we
want to determine key motion types influencing a painting’s
perception.

Models of art perception
The perception of art, especially abstract art, is still an area
of ongoing investigations. Therefore, no generally accepted
theory including all facets of art perception exists. There are,
however, different theories that can explain different aspects
of art perception. One example of a theory of art percep-
tion is the one presented in (Leder et al. 2004) (see figure
2). In the past, resulting from an increasing interest in em-
bodied cognition and embodied perception, there has been
a stronger focus on the nature of human motion and its dy-
namics regarding neuroscience or rather neuroaesthetics as
well as psychology and history of art. There are several re-
sults, showing that we perceive motion and actions with a
strong involvement of those brain regions that are responsi-
ble for motion and action generation (Buccino et al. 2001).
The mirror neurons located in these brain regions fire both,

Figure 2: Overview of the aesthetic judgment model by
(Leder et al. 2004)

when an action is actively performed and when the same ac-
tion is being observed. These findings support the theory,
that the neural representations for action perception and ac-
tion production are identical (Buxbaum, Kyle, and Menon
2005). The relation between perception and embodied ac-
tion simulation also exists for static scenes (Urgesi et al.
2006) and ranges even to the degree, where the motion is
implied only by a static result of this very motion. For ex-
ample, (Knoblich et al. 2002) showed, that the observation
of a static graph sign evokes in the brain a motor simulation
of the gesture, which is required to produce this graph sign.
Finally, in (Freedberg and Gallese 2007), it was proposed
that this effect of reconstructing motions by embodied sim-
ulation mechanisms will also be found when looking at “art
works that are characterized by the particular gestural traces
of the artist, as in Fontana and Pollock”.

Mathematical background

To perform mathematical computations on motion dynam-
ics, we first need to create models of a human and the robot
arm. Both can be considered as systems of rigid bodies,
which are connected by different types of joints (prismatic or
revolute). By “model”, we mean a mathematical description
in terms of differential equations of the physical characteris-
tics of the human arm an the robot accordingly. Depending
on the number of bodies and joints, we end up with an cer-
tain number of degrees of freedom. For each body, we get a
set of generalized variables q (coordinates), q̇ (velocities), q̈
(accelerations), and ⌧ (joint torques). Given such a model,
we can fully describe its dynamics by means of

M(q)q̈ +N(q, q̇) = ⌧ (1)

where M(q) is the joint space inertia matrix and N(q, q̇)
contains the generalized non-linear effects. Once we have
such a model, we can formulate our optimal control problem
using x = [q, q̇]T as states and u = ⌧ as controls. The OCP
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Figure 3: Interface for web-based similarity ratings

can be written in its general form as:

min
x,u,T

Z
T

0
L(t, x(t), u(t), p)dt+ �

M

(T, x(T ))

(2)
subject to:

ẋ = f(t, x(t), u(t), p)

g(x(t), p) = 0

h(t, x(t), u(t), p) � 0

Note, that all the dynamic computation from our model
is included in the RHS of the differential equation ẋ =
f(t, x(t), u(t), p). The first part of our objective func-
tion,

R
T

0 L(t, x(t), u(t), p)dt is called the Lagrange term,
�

M

(T, x(T )) is called the Mayer term. The former is used
to address objectives that have to be evaluated over the
whole time horizon (such as minimizing jerk), the latter is
used to address objectives that only need to be evaluated
at the end of the time horizon (such as overall time). In
our case, we will often only use the Lagrange term. To
solve such a problem numerically, we apply a direct mul-
tiple shooting method which is implemented in the software
package MUSCOD-II. For a more detailed description of
the algorithm, see (Bock and J. 1984; Leineweber et al.
2003).

Experimental Data
Perception experiments
We performed two pre-studies to find out, whether human
contemplators can distinguish robot paintings from human-
made paintings and how they evaluate robot paintings cre-
ated by different mathematical objective functions.

In the first study, we showed nine paintings to 29 partici-
pants, most of whom were laymen in arts and only vaguely
familiar with Jackson Pollock. Seven paintings were orig-
inal art works by Jackson Pollock and two paintings were
generated by the robot platform JacksonBot. We asked the
participants to judge, which of the paintings were original
paintings by Pollock and which were not, but we inten-
tionally did not inform them about the robotic background
of the “fake” paintings. As might be expected, the orig-
inal works by Pollock had a higher acceptance rate, but,

Figure 4: Interface for web-based sorting studies

very surprisingly, the difference between Pollock’s and Jack-
sonBot’s paintings was not very high (2.74 + / � 0.09 vs.
2.85 + /� 0.76, on a scale of 1 - 5).

In the second study, the participants were shown 10 paint-
ings created solely by the robot platform, but with two oppo-
site objective functions (maximum and minimum overall an-
gular velocity in the robot arm) in the optimal control prob-
lem. The participants easily distinguished the two different
painting styles.

Since the pre-studies were only conducted to get a rather
rough idea on this aspect, we developed a more sophisticated
web-based platform for further, more detailed investigations
on this subject. The data obtained from this tool can be used
to enhance the robot’s ability to monitor its painting process.

The set of stimuli used for our studies consists of original
action-art paintings by Pollock and other artists and images
that were painted by our robot platform.

In the first task, contemplators are presented three ran-
domly chosen paintings1 and asked to arrange them on the
screen according to their similarity (see figure 3). If they
want, they are free to add a commentary to indicate their
thoughts while arranging the paintings. As a result, we ob-
tain for every set of two paintings a measure for their sim-
ilarity in comparison with any other set of two paintings2.
Using standard procedures from statistics like cluster analy-
sis, we can determine which paintings are overall rated more
“similar” than others.

In the second task, people are asked to perform a standard
sorting study, i.e. they are asked to combine similar paint-
ings in groups and to give some information on why they
formed specific groups. The results of this task are used to
validate the information obtained by the previous one and,
additionally, they are used to gain more information about
the attributes and traits, people seem to use while grouping.
Therefore, the set of possible tags for the formed groups is
limited and chosen by us. Is includes very basic image char-
acteristics like colour as well as more interesting character-

1more precisely, the paintings are not chosen purely random
but there is a slight correction to the probability of each painting to
be presented in order to get many different correlations even when
participants only complete few repetitions

2Note that we do not use the absolute values of “similarity” but
quotients of these in order to avoid offset problems
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Figure 5: recorded acceleration data for a 3sec motion

istics like associated emotions.

Motion capture experiments
In order to study the way real human artists move during
action-painting, we chose to do motion-capture studies with
our collaborating artist. As a first approach, we used three
inertia sensors to record dynamic data D

capture

. For each of
the three segments of the artist’s arm (hand, lower arm, up-
per arm), we recorded accelerations, angular velocities and
the rotation matrix3 using three Xsens MTw inertial motion
trackers. The sensors were placed directly above the calcu-
lated center of mass of each arm segment. Figure 5 shows an
example of the raw data output obtained from the sensors.

We asked the artist to create different paintings and to de-
scribe her creative ideas as well as her thoughts and emo-
tions during the process with her own words. That way,
we can correlate identified objective functions with specific
emotions or creative ideas.

Robot painting experiments
For first experiments, we created paintings with our robot
platform. In order to compute the robot joint trajectories
necessary to move along a desired end effector path, we use
an optimal control based approach to solve the inverse kine-
matics problem. Using our first robotic platform, we created
several paintings using different cost functions in the opti-
mal control problem. Two of them – maximizing and mini-
mizing the angular velocities in the robot joints – resulted in
significantly different paintings. These paintings were used
in the pre-study mentioned earlier.

Data Analysis
Motion reconstruction
To fit the record dynamic data D

capture

to our 9 DOF model
of a human arm that is based on data from (De Leva 1996),
we formulated an optimal control problem which generates
the motion x(t) = [q(t), q̇(t)]T and the controls u(t) = ⌧(t)
that best fit the captured data with respect to the model dy-
namics f .

min
x,u

1

2
||D

capture

(t)�D

Simulated

(t)||22 (3)

subject to:
ẋ(t) = f(t, x(t), u(t), p)

g(x, p) = 0

h(x, p) � 0

3recording the euler angles is not sufficient due to potential sin-
gularities in the reconstruction process

Figure 6: Computed trajectories for joint angles (left) and
comparison of computed (lines) and measured (dots) accel-
erations (right).

The constraints in this case are given by the limited angles
of the human arm joints and torque limitations of the arm
muscles. The computed states and the fit quality of the ac-
celeration data can bee seen in figure 6. Note that the angle
approach to the joint limitations is plausible for this type of
motion.

In the next step, we will use the motion capture data ob-
tained from experiments with our collaborating artist not
only reconstruct the motion, but use an inverse optimal con-
trol approach (like successfully used in a similar case in
(Mombaur, Truong, and Laumond 2010)) to retrieve the un-
derlying objective functions of these motions. To do so,
we will use an approach developed by K.Hatz in (Hatz,
Schlöder, and Bock 2012). This process is illustrated in fig-
ure 7.

Conclusion and Outlook
We introduced a new way to analyze the creative process
of action painting by investigating the dynamic motions of
artists. We developed a mathematical model, which we
used to succesfully reconstructed an artists’ action-painting-
motions from inertia measurements. We used state-of-the-
art optimal control techniques to create new action-painting-
motions for a robotic platform and evaluated the result-
ing painting. Even with “artificial” objective functions, we
were able to create action paintings that are indistinguish-
able from human-made action paintings for a human con-
templator.

In the next step, we will use an inverse optimal control ap-
proach to go one step further from reconstructing an artist’s
motions to identifying the underlying objective functions of
motion dynamics. That way, we will be able to generate spe-
cific painting motions corresponding to specific intentions as
formulated by the artist.

Since several studies, e.g. (Haak et al. 2008), have shown
that aesthetic experiences and judgments can – up to a cer-
tain degree – be explained by analyzing low-level image
features, we chose to develop an image analysis software
tool based on OpenCV that uses a variety of different fil-
ters and image processing tools that are related to aesthetic
experience. Amongst other features, our tool analyzes the
paintings considering its power spectrum, different symme-
tries, color and fractal analysis (Taylor, Micolich, and Jonas
1999). We will include the information obtained from our
online perception studies in this tool and use it as feedback
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Figure 7: Transfer of human motion objectives to a robot
platform (schematic overview)

for the robot platform. That way, we will enable it to paint
autonomously with feedback only from an integrated cam-
era monitoring the process.

The presented approach of capturing the essence of dy-
namic motions using inverse optimal control theory is not
limited to the investigation of action paintings but can be
used to analyze human motions in other art forms like dance
or even in daily life by analyzing human gestures or full-
body motions.
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