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Abstract

DARCI (Digital ARtist Communicating Intention) is a cre-
ative system that we are developing to explore the bounds
of computational creativity within the domain of visual art.
As with many creative systems, as we increase the auton-
omy of DARCI, the quality of the artifacts it creates and then
curates decreases—a phenomenon Colton and Wiggins have
termed the latent heat effect. We present two new metrics
that DARCI uses to evolve and curate renderings of images
that convey target adjectives without completely obfuscating
the original image. We show how we balance the two met-
rics and then explore various ways of combining them to au-
tonomously yield images that arguably succeed at this task.

Introduction
There has been a recent push in computational creativity to-
wards fully autonomous systems that are perceived as cre-
ative in their own right. One of the most significant problems
facing modern creative systems is the level of curation that is
occurring in these systems. If a system is producing dozens,
hundreds, or even thousands of artifacts from which a hu-
man is choosing a single valued artifact, then is the system
truly fully autonomous? Colton has argued that for a system
to be perceived as creative, it must demonstrate appreciation
for its own work (Colton 2008). A strong implication of this
is that the system must be able to do its own curation by
autonomously selecting an artifact for human judgment.

DARCI (Digital ARtist Communicating Intention) is a
creative system that we are developing to explore the bounds
of computational creativity within the domain of visual art.
DARCI is composed of several subsystems, each with its
own creative potential, and each designed to perform an inte-
gral step of image creation from conception of an idea, to de-
sign, to various phases of implementation, to curation. The
most complete subsystem, and the one that is the focus of
this paper, is called the image renderer. The image renderer
uses a genetic algorithm to discover a sequence of image
filters that will render an image composition (produced by
another subsystem) so that it will reflect a list of adjectives
(selected from yet another subsystem). After evolving a pop-
ulation of candidate renderings, the image renderer must se-
lect an interesting candidate that reflects both the original
image and the given adjectives—in other words, it must cu-
rate the finished artifacts.

Historically, DARCI has been successful at producing
such images when curation is a joint effort between DARCI
and a human (Norton, Heath, and Ventura 2011b; Heath,
Norton, and Ventura 2013). In these cases, DARCI selects
a number of artifacts, and a human chooses their favorite
from that selection. When DARCI curates on its own, the
results have been significantly less successful. This decrease
in quality is to be expected and is a phenomenon Colton and
Wiggins call the latent heat effect—“as the creative respon-
sibility given to a system increases, the value of its output
does not (initially) increase ...” (emphasis added) (Colton
and Wiggins 2012). Since we know DARCI is capable of
producing interesting images, we are interested in increas-
ing the value of the artifacts the system produces when cu-
rating alone, thus decreasing the latent heat effect.

DARCI’s image renderer uses a combination of two con-
flicting metrics as a fitness function to evaluate and assign
fitness scores to candidate artifacts. The fitness score not
only drives the evolution of artifacts using a genetic algo-
rithm, it is also used to curate the population of candidate
artifacts when evolution is complete. For this paper we have
made improvements to the fitness function in order to im-
prove the quality of artifacts DARCI produces.

Previously, the fitness function has been the combined av-
erage of an ad-hoc interest metric and an adjective matching
metric. In this paper, we will abandon the interest metric
in favor of a new similarity metric, and combine it with an
improved adjective matching metric. While we take mea-
sures to ensure that both metrics output real values in a sim-
ilar range, experience has shown that the two metrics are
not measuring attributes of equal quality. This has led to
the observation that if combining metrics with an average,
the algorithm will give disproportionate weight to the metric
that is easier to maximize. Thus, we will investigate differ-
ent means of combining these two metrics in an attempt to
more effectively balance the requirements put upon the im-
age rendering subsystem and decrease the latent heat effect.
We show the results of these new fitness functions in figures
curated strictly by DARCI.

Image Rendering
The image rendering subsystem uses a series of image filters
to render pre-existing images which we refer to as source
images. The subsystem has access to Photoshop-like filters



with varying parameters. It uses a genetic algorithm to dis-
cover the configuration and parameter settings of these im-
age filters so that candidate artifacts will reflect target adjec-
tives without over or under-filtering the source image (Nor-
ton, Heath, and Ventura 2011b; 2013). A genetic algorithm
is used because evolutionary approaches elegantly facilitate
the creation of artifacts through both combination and explo-
ration, two processes described by Boden for generating cre-
ative products (Boden 2004). Gero has also outlined how the
processes underlying evolution are ideal for producing novel
and unexpected solutions, a crucial part of creativity (Gero
1996). Finally, we have shown how evolutionary algorithms
approximate some aspects of the creative process in human
artists (Norton, Heath, and Ventura 2011a).

In this section we will describe in detail the two metrics
used in this paper: adjective matching and similarity.

Adjective Matching
The adjective matching metric is the output of a learning
subsystem of DARCI called the Visuo-Linguistic Associator
(VLA). The VLA is a collection of artificial neural networks
(ANN) that learns to associate image features with adjec-
tives through backpropagation training. The original VLA
has been described in detail previously (Norton, Heath, and
Ventura 2010). Here we introduce an improved VLA.

While DARCI is designed to function as an online sys-
tem, the original VLA required subsystem resets whenever
it was time to introduce new training data, essentially learn-
ing in batch. Thus, in order for DARCI to adapt, human
intervention was needed at regular intervals. The new VLA
uses an approach closer to incremental learning to better fa-
cilitate the desired autonomous online functionality. Addi-
tionally, the new VLA uses a more accurate and complete
approach to predicting additional training data. In this sec-
tion we will describe the new VLA without any assumptions
that the reader is familiar with the previous system.

Training Data Training data for DARCI is contained in
a database. Each data point consists of an adjective (the
label), the sentiment toward the adjective (positive or neg-
ative), the image features associated with the adjective (the
image), and a time stamp. In our research, the term adjec-
tive always refers to a unique adjective synset as defined in
WordNet (Fellbaum 1998). Hence, different senses of the
same word will belong to different synsets, or adjectives.

Data points are added to the database as they are submit-
ted by volunteers using a training website (Heath and Norton
2009). Whenever the training algorithm is invoked, new rel-
evant data points are introduced to the learner one at a time
in the submitted order. The learner consists of a series of
binary ANNs, one for each relevant adjective. An adjective,
and any corresponding data point, is considered relevant
once there are at least ten distinct positive and ten distinct
negative instances of the adjective in the database. Here, dis-
tinct means occurrences of the adjective with unique sets of
image features (i.e. if an adjective is used to label the same
image multiple times it only counts as one occurrence). At
the moment the learner is invoked, a new neural network is
created for any new adjectives that have become relevant.

Table 1: Image features used to train neural networks.

Color & Light:
1. Average red, green, and blue
2. Average hue, saturation, and intensity
3. Saturation and intensity contrast
4. Unique hue count (from 20 quantized hues)
5. Hue contrast
6. Dominant hue
7. Dominant hue image percent

Shape:
1. Geometric moment
2. Eccentricity
3. Invariant moment (5x vector)
4. Legendre moment
5. Zernike moment
6. Psuedo-Zernike moment
7. Edge direction histogram (30 bins)

Texture:
1. Co-occurrence matrix (x4)

1. Maximum probability
2. First order element

difference moment
3. First order inverse element

difference moment
4. Entropy
5. Uniformity

2. Edge frequency (25x vector)
3. Primitive length

1. Short primitive emphasis
2. Long primitive emphasis
3. Gray-level uniformity
4. Primitive uniformity
5. Primitive percentage

The reason we only create and train the learner on relevant
data points is a matter of practicality. There are over 18000
adjective synsets in WordNet, and at the time of this writ-
ing more than 6000 adjective synsets in DARCI’s database.
However, most of the adjectives in DARCI’s database are
rare with only one or two positive data points. This is not
enough data to successfully train any learner in a complex
domain such as image annotation. Since performance speed
is important for DARCI, accessing 6000 neural nets, most
of which would be insufficiently trained, to annotate an im-
age is impractical. As of this writing, DARCI has 237 rel-
evant adjectives, a much more useful and manageable num-
ber. Taking synonyms into consideration, these relevant ad-
jectives cover most standard adjectives.

The learner’s neural networks are trained using standard
back propagation with 102 image features as inputs. These
image features are widely accepted global features for con-
tent based image retrieval, and most of them are available
through the DISCOVIR (DIStributed COntent-based Visual
Information Retrieval) system (King, Ng, and Sia 2004;
Gevers and Smeulders 2000). A summary of the features
we use can be found in Table 1. These features describe the
color content, lighting, textures, and shape patterns found
in images. Specific to the art domain, several researchers
have shown that such features are useful in classifying im-
ages according to aesthetics (Datta et al. 2006), painting
genre (Zujovic, Gandy, and Friedman 2007), and emotional
semantics (Wang, Yu, and Jiang 2006). As many of these re-
searchers have found color to be particularly useful in clas-
sifying images, we added four color-based features inspired
by Li’s own colorfulness features (Li and Chen 2009) to
those contained in DISCOVIR. In Table 1 these colorfulness
features are “Color & Light” numbers 4-7.

When training neural networks in batch, back propaga-
tion requires many epochs of training to converge. During
each epoch, all of the training data is presented to the neural
network in a random order. To imitate this with incremental
learning, each new data point is introduced to the appropri-
ate neural network along with a selection of previous data
points. Along with this recycled data, additional data points



are predicted from the co-occurrences of adjectives with im-
ages. By including predicted data we are able to augment
the limited data we do have. Similar, but less complete, ap-
proaches to augmenting training data have been successful
in the past (Norton, Heath, and Ventura 2010).

Recycling Data For each new data point presented to a
neural network for a given adjective, a, n positive data points
from the set of all previous positive data points for the given
adjective,Da+, and n negative data points from the set of all
previous negative data points for the given adjective, Da−,
are selected. The data points are selected with replacement
according to the probability P (rank(d)) where d ∈ Das,
s is the sentiment of the set (− or +), and rank(d) is the
temporal ordering of element d in Das. The most recent
element has a rank of |Das| and the oldest element has a
rank of 1. The equation for P (rank(d)) is as follows:

P (rank(d)) =
rank(d)
|Das|∑
i=0

i

(1)

The value for the number of previous data points chosen,
n, is defined by n = min(r, |Da+|, |Da−|) where r is a
parameter setting the maximum number of data points to
recycle each time a new data point is introduced. For the
experiments in this paper, this value is set to 100.

Informally, every time a new data point is presented to a
neural network, an equal number of positive and negative
data points are selected from the previous data points for
that neural network. These are selected randomly but with a
higher probability given to more recent data.

Predicting Data To augment the training data we collect
from DARCI’s website, we analyze the co-occurrence of rel-
evant adjectives to predict additional data points. Here we
say that two adjectives co-occur whenever the same image is
labeled with both adjectives at least once—these labels can
be negative or positive. As each new data point is introduced
to the learner, co-occurrence counts (distinct images) are up-
dated for all pairings of relevant adjectives across all four
combinations of sentiment. For example, as of this paper,
‘scary’ has 26 co-occurrences with ‘disturbing’ (or ‘scary’
co-occurs with ‘disturbing’ in 26 distinct images) and 0 co-
occurrences with ‘not disturbing’, while ‘not scary’ has 5 co-
occurrences with ‘disturbing’ and 32 co-occurrences with
‘not disturbing’.

Once the co-occurrence counts have been updated, they
are used to predict m positive and m negative data points to
augment the new data point. m is calculated as bpnc where
p is a prediction coefficient and n is defined above. For this
paper, p is set to 0.3. These predicted data points are not
added to the database.

To predict new data points for the given adjective, a, the
system first calculates each of the likelihoods that an image
will be labeled with a or ¬a given that the image is labeled
positively or negatively with each of the adjectives, ai, in A,
the set of all relevant adjectives. Likelihood is calculated as:

L(a|ai) =
co(a, ai)

supp(ai)
(2)

where co(a, ai) is the co-occurrence count for a and ai, and
supp(ai) is the support of ai (i.e. number of distinct images
labeled with ai).

Predicted data points for a are chosen using two probabil-
ity distributions created from the above likelihoods, one for
positive data points and the other for negative. The positive
probability distribution is created by choosing the set of like-
lihoods, Λ+, that is the set of all likelihoods described with
L(a|ai) and L(a|¬ai) that are greater than some threshold,
γ, and less than 1. In this paper, γ is set to 0.4. A likelihood
of 1 is omitted because it is guaranteed that there will be no
new images to predict with label a. The positive probability
distribution is then created by normalizing Λ+. The negative
probability distribution is created in the same way except us-
ing the set of all likelihoods, Λ−, described with L(¬a|ai)
and L(¬a|¬ai) satisfying the same conditions.

For each data point to be predicted, a likelihood distri-
bution from either Λ+ or Λ− is selected using the above
probability distributions. Then an image is selected, using
a uniform distribution, from all those images with the like-
lihood’s label (either ai or ¬ai) that are not labeled with a.
The label for the new predicted data point is a, the sentiment
is the sentiment of the distribution Λ, and the features are the
image features of the selected image.

Informally, data points are predicted by assuming that im-
ages labeled with adjectives that frequently co-occur with a
given adjective, can also be labeled with the given adjective.

Artificial Neural Networks Once recycled and predicted
data points for a particular incoming data point are selected,
they are shuffled with the incoming data point and given as
inputs into the appropriate neural network. The incoming
data point then immediately becomes available as historical
data for subsequent training data. This process is repeated
for each new data point introduced to the learner. Assuming
that there is sufficient data, each new data point will be ac-
companied by a total of 2n + 2m data points. In the case
of this paper, that’s 260 recycled or predicted data points
evenly balanced between positive and negative sentiments.

As previously mentioned, one binary artificial neural net-
work is created for each relevant adjective. These neural
networks have 102 input nodes for the image features pre-
viously described. For this research, based on preliminary
experimentation, the neural networks have 10 hidden nodes,
a learning rate of 0.01, and a momentum of 0.1.

When the VLA is accessed for the adjective matching
metric, the candidate artifact being evaluated is analyzed
by extracting the 102 image features. These features are
then presented to the appropriate neural network and the
output is used as the actual metric. Thus, as Baluja and
Machado et al. have done previously, we essentially build
and use a model of human appreciation to guide the cre-
ation process so that we will hopefully produce images that
humans can value (Baluja, Pomerleau, and Jochem 1994;
Machado, Romero, and Manaris 2007). Unlike Baluja and
Machado however, our model associates images with lan-
guage and meaning (adjectives), an important step in build-
ing a system that communicates intention with its artifacts.



Similarity
The similarity metric borrows from the growing research on
bag-of-visual-word models (Csurka et al. 2004; Sivic et al.
2005) to analyze local features rather than global ones as we
have done previously (Norton, Heath, and Ventura 2011b).
Typically, these local features are descriptions of points in
an image that are the most surprising, or said another way,
the least predictable. After such an interest point is iden-
tified, it is described with a vector of features obtained by
analyzing the region surrounding the point. Visual words
are quantized local features. A dictionary of visual words
is defined for a domain by extracting local interest points
from a large number of representative images and then clus-
tering them (typically with k-means) by their features into
k clusters, where k is the desired dictionary size. With this
dictionary, visual words can be extracted from any image
by determining to which clusters the image’s local interest
points belong. A bag-of-visual-words for the image can then
be created by organizing the visual word counts for the im-
age into a fixed vector. This model is analogous to the bag-
of-words construct for text documents in natural language
processing. These fixed vectors can then be compared to
determine image similarity.

For the similarity metric used in this paper, we use the
standard SURF (Speeded-Up Robust Features) detector and
descriptor to extract interest points and their features from
images (Bay et al. 2008). SURF quickly identifies inter-
est points using an approximation of the difference of Gaus-
sians function, which will often identify corners and distinct
edges within images. To describe each interest point, SURF
first assigns an orientation to the interest point based on sur-
rounding gradients. Then, relative to this orientation, SURF
creates a 64 element feature vector by summing both the
values and magnitudes of Haar wavelet responses in the hor-
izontal and vertical directions for each square of a four by
four grid centered on the point.

We build our visual word dictionary by extracting these
SURF features from more than 2000 images taken from the
database of images we’ve collected to train DARCI. The re-
sulting interest points are then clustered into a dictionary of
1000 visual words using Elkan k-means (Elkan 2003).

Similarity is determined by comparing candidate artifacts
with the source image. We create a normalized bag-of-
visual-words for the source image and each candidate ar-
tifact using our dictionary, and then calculate the angular
similarity between these two vectors. Angular similarity be-
tween two vectors, A and B, is calculated as follows:

similarity = 1−
cos−1( A·B

‖A‖‖B‖ )

π
(3)

This metric effectively measures the number of interest
points that coincide between the two images by comparing
the angle between vectors A and B. In text analysis, cosine
similarity (the parenthetical expression contained in Equa-
tion 3) is typically used to compare the similarity of doc-
uments. With this metric, as the sparseness of vectors in-
creases, the similarity between arbitrary vectors approaches
0. In our case, as vectors are quite sparse, artifacts that

are even slightly different from the source would have low
scores using this measure. Nevertheless, creating renderings
that are very similar to the source image is trivial as it re-
quires simply using fewer and less severe filters. Thus, de-
spite encountering low scores from only small differences,
the genetic algorithm would be able to easily converge to
near perfect or even perfect scores. This interplay between
a harsh similarity metric and relative ease of convergence
would place too much weight on the similarity metric. In
fact, auxiliary experiments have shown that when using co-
sine similarity, the adjective matching metric is almost ig-
nored in artifact production.

Since the bag-of-visual-word vectors can only contain
positive values, using angular similarity instead of cosine
similarity naturally constrains the output to between 0.5 and
1.0. This smaller spread in potential scores significantly
reduces the negative impact of sudden jumps in similarity
score due to small changes in the candidate renderings. It
should be noted that in cases where a candidate artifact has
no detected interest features (‖B‖ = 0), the similarity will
default to 0. This is the only case where the similarity score
can be below 0.5 as the metric cannot make a comparison.

Experimental Design
Six fitness functions are explored in this paper. They are
referred to as similarity, adjective, average, minimum, alter-
nate, and converge. Similarity and adjective are the simi-
larity and adjective matching metrics in isolation. The other
four combine these two conflicting metrics in different ways.
Average is the approach we have used in the past. With this
approach, the two metrics are averaged together with equal
weight. With minimum, the fitness function is the minimum
of the metrics. Alternate uses one metric at a time for the
fitness function, but it alternates between the two every gen-
eration beginning with adjective matching. Finally, converge
also uses one metric at a time; however, it alternates every
20 generations also beginning with adjective matching.

The two conflicting metrics result in a process that is ar-
guably transformational in nature, at least to a limited de-
gree. Boden describes transformational creativity as that
which transforms the conceptual space of a domain (Boden
1999). While the space of possible artifacts cannot change
(the filters available for rendering images do not change), the
evaluation of the artifacts does change through the interplay
of the two metrics. This interplay occurs organically in the
minimum fitness function by forcing the system to empha-
size the metric that it is struggling to optimize at any given
epoch during the evolutionary algorithm. The interplay of
divergent metrics occurs more mechanically in the alternate
and converge fitness functions by scheduling the emphasis;
however, the sudden shift in metric could result in more
unexpected results, a criterion of creativity emphasized by
Maher (Maher 2010; Maher, Brady, and Fisher 2013). The
scheduled approaches were inspired by Dipaola and Gab-
ora’s work with “Evolving Darwin’s Gaze”, an installation
that also evolves images under two shifting criteria (DiPaola
and Gabora 2009). Their criteria are a pixel matching met-
ric comparing artifacts to a specific portrait of Charles Dar-
win, and an artistic heuristic. We anticipate that our less



Figure 1: The three source images used in all experiments.
Images A and C have resolutions of 1600x1200. Image B
has a resolution of 1920x1200.

restrictive metrics will ultimately allow for even more sur-
prise and variation in artifacts, while also communicating
meaning (adjectives).

Each of the above fitness functions except for similarity
was run on three source images across five adjectives for
a total of fifteen experiments per approach. Similarity was
only run once for each source image since no adjective was
needed. For algorithmic efficiency, the artifacts produced in
the experiments were scaled down to a maximum width of
800 pixels. Each experiment ran for 100 generations.

The five adjectives used were ‘happy’, ‘sad’, ‘fiery’,
‘wet’, and ‘peaceful’. These were chosen because they were
well represented in our adjective matching training data and
because they depict a range of distinct meanings and emo-
tional valence. The three source images (referred to as im-
ages A, B, and C) are shown in Figure 1 with their corre-
sponding resolutions.

As mentioned previously, optimizing to the similarity
metric alone is trivial for the genetic algorithm since it need
only remove filters to do so. However, there is no such triv-
ial approach to optimize to the adjective metric. Historically,
near perfect similarity scores are common, while near per-
fect adjective matching scores are non-existent. In order to
balance the quality of the two metrics in our experiments,
the source images were not scaled down to match the resolu-
tion of the artifacts. A source image and its otherwise unal-
tered counter part will yield similar but not identical visual-
bags-of-words when analyzed for the similarity metric. This
means that the genetic algorithm will no longer be able to
trivially achieve perfect similarity. The similarity scores of
each source image compared to the scaled down version of
itself are, for images A, B, and C respectively: 0.826, 0.739,
and 0.843 with an average score of 0.803. This means that
for our experiments, the range of similarity is now more or
less between 0.5 and 0.803—with a now soft ceiling. This is
much closer to the range we have seen from adjective match-
ing in auxiliary experiments: 0.144 to 0.714.

Results
In this section we will discuss DARCI’s artifact selection
for each experiment. While all interpretations of the images
themselves are clearly subjective, we attempt to be conser-
vative and consistent in our observations. We will discuss
the artifacts in terms of the objectives of the image render-
ing subsystem: to depict the source image and adjective to-
gether in an interesting way. By interesting we specifically

Figure 2: Sample ‘sad’ images from training data.

mean that extensive filtering (more than basic color filtering
or use of inconspicuous filters) has occurred without remov-
ing all trace of the source image. Any hint of the source
image will be considered acceptable in attributing interest to
an artifact.

This definition of interesting is derived from two com-
monly proposed requirements for creativity applied to the
specific goal of DARCI’s image rendering subsystem. These
two requirements are, as defined by the American Psycho-
logical Association, functionality and originality; or, as Bo-
den described them for the domain of computation, quality
and novelty (Boden 1999). Since the purpose of the im-
age renderer is to alter a source image, elimination of the
source image would not be functional. Ritchie describes a
related requirement that is also applicable here—that of typ-
icality (Ritchie 2007). Ritchie defines typicality as the extent
to which an artifact is an example of its intended class. In
our case this would be a rendering of a source image as op-
posed to an entirely new image. The second requirement,
novelty, requires that the image renderer produce renderings
that are distinctive. Thus, minor or no changes to a source
image would clearly suggest a failure at novelty. In an at-
tempt to reduce the amount of subjectivity in our analysis,
DARCI’s artifacts are either interesting by this definition or
not. There is no attempt to rate the degree of interest.

In addition to being interesting, DARCI’s artifacts must
match the intended adjective. In order to be as objective
as possible, we will compare DARCI’s artifacts to images
from the VLA training data for each given adjective. These
images are representative of the types of images one would
find if searching google images for a specific adjective. Ex-
amples of these images can be found in Figures 2-6. Since
DARCI is rendering, as opposed to composing, and due to
the limitations of DARCI’s image analysis features (and in-
deed the limitations of the entire field of computer vision),
we will be looking for similarities in color, light, and texture
as opposed to similar object content.

The ‘sad’ training images (Figure 2) tend to be desatu-
rated, even black and white, and/or dark with an empha-
sis on dull colors. The ‘happy’ training images (Figure 3)
trend towards bright and colorful, often containing a full
spectrum of colors. The ‘fiery’ training images (Figure 4)



Figure 3: Sample ‘happy’ images from training data.

Figure 4: Sample ‘fiery’ images from training data.

usually have distinct flame textures, are bright, and most are
monochromatic—typically orange. The ‘wet’ training im-
ages (Figure 5) consist of cool colors, usually blue, and have
frequent specular highlights and/or wavy patterns. Finally,
the ‘peaceful’ training images (Figure 6) contain a variety of
soft or pastel colors with a lot of smooth textures.

Ideally, the most fit artifact discovered by the genetic al-
gorithm should be the one that best satisfies the objectives
for object rendering outlined above. Thus, for most of the
fitness functions, we used this method of selection. How-
ever, we anticipated that for two of the fitness functions, al-
ternate and converge this would not be an appropriate ap-
proach. The reason for this is that both of these fitness func-
tions only use one metric at a time, meaning that the most
fit artifact discovered could only have been optimized for a
single metric. The expected result would be the same as a
selection from one of the control fitness functions—not an
ideal balance of metrics.

We will first discuss the results of the fitness functions
that use the most-fit selection process: similarity, adjective,
average, and minimum. Later we will discuss alternate and
converge using a different selection criteria. We will evalu-
ate each selection process by the proportion of artifacts that
meet the interest and adjective matching requirements.

Figure 5: Sample ‘wet’ images from training data.

Figure 6: Sample ‘peaceful’ images from training data.

Most Fit Selection
The most fit artifact discovered for each source image in the
similarity control experiments is shown in Figure 7. The
most fit artifact discovered in each of the other experiments
is shown in Figures 8-12.

First looking at the similarity results (Figure 7), we see
that with the exception of image A, DARCI did not select
nearly identical images as we might have expected. This
illustrates the effect of not scaling the source images. The
chosen artifacts actually had slightly higher fitness scores
than the strictly scaled down source images demonstrated
earlier. For comparison, the fitness score of each of these
artifacts is, for artifacts produced from images A, B, and C
respectively: 0.836, 0.762, and 0.860 with an average score

Figure 7: The most fit artifacts for each indicated source
image discovered using the similarity fitness function.



Figure 8: The most fit artifacts for each indicated source
image and fitness function for the adjective ‘happy’.

of 0.820. That being said, these artifacts are still quite close
to the source images, and any resemblances to any of the
specified adjectives are obviously happenstance.

For the average fitness function, arguably all three of the
‘happy’ images convey their adjective by applying bright
colored filters (Figure 8). All three of the ‘sad’ images
are made more sad by converting them to dark black and
white images (Figure 9). Two out of the three ‘fiery’ images
are fiery by primarily coloring with oranges and reds (Fig-
ure 10). Image B also looks bright and molten in texture,
and some of the buildings in the background of image C al-
most look on fire. All three ‘wet’ images are debatably wet,
mostly by implementing blue filters (Figure 11). Although,
Image B actually looks like it is being viewed through a win-
dow soaked during a downpour. None of the ‘peaceful’ im-
ages look any more peaceful than their sources; and very
little if anything has changed (Figure 12). With the odd ex-
ception of the ‘peaceful’ images, average does quite well at
conveying adjectives; however, most of the images don’t use
much more than simple color filters to do so. In our estima-
tion, for the average artifacts, ‘happy’ B and C, ‘fiery’ B and
C, and ‘wet’ B satisfy the objectives for object rendering as
outlined earlier.

For the minimum fitness function, two of the ‘happy’ im-
ages, A and C, are made happy by incorporating many bright
colors. Image A looks kaleidoscopic and image C has some
rainbow effects. Image B seems out of place, though close
inspection will reveal that it may have received a high fitness
because of many bright colors as well. While perhaps diffi-
cult to notice at first, both image A and B maintain the pres-
ence of the source image. All of the ‘sad’ images are quite
dark, suggesting sadness. Image A and C may look like they
have eliminated the source images, but the vague shape of
the fish is visible within the squiggles of image A, and close
inspection of image C will reveal many of the city lights be-
hind the heavy distortion. The three ‘fiery’ images could be
considered ‘fiery’. Image A literally looks on fire and im-

Figure 9: The most fit artifacts for each indicated source
image and fitness function for the adjective ‘sad’.

age C looks molten. All three ‘wet’ images appear wet; as
with average, this is primarily accomplished by making the
images blue. Image B does look like the image is now re-
flected off of a lake, and image C is a bit bleary and wavy
giving it ever so slightly the look of being underwater. With
the exception of image A, the ‘peaceful’ images aren’t even
recognizable, nor do they look peaceful in the way ‘peace-
ful’ is reflected in the training images. We’re beginning to
get a sense of how DARCI interprets ‘peaceful’ though. In
our estimation, of the minimum images, ‘happy’ A and C, all
‘sad’ and ‘fiery’ images, and ‘wet’ B and C satisfy the objec-
tives for object rendering. While ‘happy’ B and ‘peaceful’
A are interesting representations of the source image, they
do not convey the adjective properly.

In the case of the adjective fitness function, we see that
with three exceptions (‘happy’ A, ‘sad’ A, and peaceful ‘C’),
the source image is undetectable. ‘Happy’ A and ‘sad’ A do
fit their adjectives, but ‘peaceful’ C does not. Interestingly,
in our estimation adjective does not depict the given adjec-
tives as well as average or minimum. This can be attributed
in part to the system exploiting the VLA’s neural networks
with extreme and unnatural image features.

With all three of these fitness functions, we have seen
unsatisfactory performance with ‘peaceful’. However, this
poor performance goes beyond DARCI’s strange interpre-
tation of what makes an image ‘peaceful’ (apparently be-
ing purple and noisy). That can be attributed to inadequate
learning by the VLA, perhaps because of limited available
training data. One could even make the case for it being a
creative expression of ‘peaceful’. The other problem here is
the fact that for ‘peaceful’ artifacts, the three average arti-
facts were virtually unmodified from the source image, and
that two of the minimum artifacts completely obfuscated the
source image. This issue can be explained by a problem-
atic interaction between the similarity and adjective match-
ing metrics for ‘peaceful’.

The ‘peaceful’ neural network output has very low vari-



Figure 10: The most fit artifacts for each indicated source
image and fitness function for the adjective ‘fiery’.

ance compared to the other neural networks, and a mean
slightly under 0.5. The variance is so low that the highest
‘peaceful’ neural network outputs encountered are not much
higher than the lowest similarity score possible (0.5). Thus,
the minimum fitness function is effectively acting like the
adjective fitness function for ‘peaceful’. In the case of av-
erage, the variance is so low that the smallest changes in
similarity still overshadow any changes in adjective match-
ing. This example illustrates that despite our best efforts to
balance the two metrics, incongruities between the two can
still occur. Thus, for future work, a dynamic solution that
takes into consideration certain statistics about each metric
may be in order.

Selection After Last Shift
As indicated earlier, the alternate and converge fitness func-
tions need a different selection method than that used above.
As suspected, using most-fit selection resulted in artifacts
that were either similar to those in Figure 7 or completely
abstract like the images produced with adjective. The as-
sumption with alternate and converge is that even though
only a single metric is in effect at each generation, the ge-
netic algorithm will not be able to converge to either because
of constant shifts in the metric, and will instead find an in-
teresting and unexpected solution.

With this in mind, the selection criteria that we use here
is to pick the most fit artifact from the last shift in metric.
This is the point at which we would expect to find the most
surprising artifacts. We define a shift in the metric as the
changing from the similarity metric to the adjective match-
ing metric or vice versa. For alternate this is the shift from
similarity to adjective matching at generation 100 which we
will call alternate-adjective, and for converge it is the shift
from adjective matching to similarity also at generation 100
which we will call converge-similarity. Since the direction
of the shift may strongly effect the outcome, we have also
selected the most fit artifact from generation 99 for alter-

Figure 11: The most fit artifacts for each indicated source
image and fitness function for the adjective ‘wet’.

nate (adjective matching to similarity) and generation 80 for
converge (similarity to adjective matching). We will call
these two approaches respectively alternate-similarity and
converge-adjective.

The results of these experiments are in Figures 13 to
15. In the interest of space, we do curate these images
by only showing those artifacts that are neither over nor
under-filtered (i.e. interesting) based on observations sim-
ilar to those made for the earlier experiments. In the case
of alternate-similarity, there were no artifacts produced that
weren’t under-filtered. Most had tinting or small distortions,
but none were interesting.

Figure 13 shows interesting artifacts that were selected
with alternate-adjective. This particular fitness function and
selection criteria yielded the most numerous interesting ar-
tifacts of the four configurations. In this case, all but one of
the not-shown artifacts were too abstract. Of the remaining
interesting artifacts, all but the unusual ‘peaceful’ images
arguably convey the intended adjectives.

Next, Figure 14 shows interesting artifacts selected with
converge-adjective. Most of the other artifacts selected ob-
fuscated the source image too much. Here, with the excep-
tion of ‘fiery’ A and perhaps ‘fiery’ B, the images convey
the intended adjectives.

Finally, Figure 15 shows the interesting artifacts selected
with converge-similarity. While the images shown are ade-
quately interesting, we don’t consider them as distinguished
as those in the previous two examples. All of the other arti-
facts were too similar to the source image to warrant display.
All of the displayed artifacts do convey the given adjectives.

Filter Sequence Length
Functionally, much of the quality of an artifact can be at-
tributed to the length of the artifact’s genotype. The geno-
type is the “genetic” encoding of the artifact, and in the im-
age rendering subsystem is a sequence of image filters. The
more filters used to render a source image, the more likely



Figure 12: The most fit artifacts for each indicated source
image and fitness function for the adjective ‘peaceful’.

the artifact will become abstract. The fewer filters used, the
more likely the artifact will not deviate from the source im-
age. Figure 16 shows the average genotype length (in num-
ber of filters) for each fitness function explored in this paper
over the 100 epochs of evolution. The top performing fitness
functions show a comfortable balance between too many and
too few filters. Minimum does this the best.

Conclusions
The motivation behind this work has been to improve
DARCI’s ability to independently curate its own artifacts.
All of the artifacts displayed in this paper were fully curated
by DARCI under various selection criteria, with only a few
indicated exceptions for space.

We show that DARCI is autonomously able to consis-
tently create and select images that reflect the requested ad-
jective with four out of five adjectives. This demonstrates
the quality of the new adjective matching metric. We also
demonstrate that the similarity metric functions as intended.

We explored a variety of fitness functions combining two
metrics with varying degrees of success. Each method of
combining the metrics had its own biases but, from our
analysis, the minimum fitness function performed the best.
Over half of the artifacts selected with this fitness func-
tion satisfied the goals of the image rendering subsystem—
arguably a significant step in decreasing the latent heat effect
in DARCI. We attribute the success of minimum to the fact
that it allows the genetic algorithm to naturally shift evolu-
tionary focus to the metric that is suffering the most.

We are confident that the improvements made to the im-
age rendering subsystem in this paper will significantly de-
crease the latent heat effect in DARCI. We intend to test
this theory in the future by conducting a thorough online
survey comparing this improved version of DARCI to other
versions, and perhaps even to humans. To further improve
the image rendering subsystem described in this paper, we
also intend to pursue more adaptable variations of the met-

Figure 13: Artifacts selected for the indicated source images
and adjectives for the alternate-adjective fitness function.

Figure 14: Artifacts selected for the indicated source images
and adjectives for the converge-adjective fitness function.

rics outlined here. Metrics that will adapt their output in
response to the features of other metrics.
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