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Abstract 

This paper reports on the theory, design, and implemen-
tation of an artistic computer colleague that improvises 
and collaborates with human users in real-time. Our 
system, Drawing Apprentice, is based on existing theo-
ries of art, creative cognition, and collaboration synthe-
sized into an enactive model of creativity. The imple-
mentation details of the Drawing Apprentice are pro-
vided along with early collaborative artwork created 
with the system. We present the enactive model of crea-
tivity as a potential theoretical framework for designing 
creative systems involving continuous improvisational 
collaboration between a human and computer.  

Introduction 
Creative technologies have come a long way in supporting 
human creativity in a variety of ways. Modern creativity 
support tools (CST) have been extremely effective at help-
ing users produce higher quality products by allowing them 
to explore creative possibilities, perform complex simula-
tions, and record and track ideas (Shneiderman 2007). 
However, with all their capabilities and features, popular 
creativity support tools like Adobe’s Photoshop are not yet 
able to generate original artistic contributions, such as new 
lines or brush strokes that add to the user’s artwork. Recent 
advances in artificial intelligence and computational crea-
tivity are beginning to change this by developing co-
creative computer colleagues to enrich the human creative 
process in a completely new manner through collaboration 
with a creative computer (Lubart 2005).   
 Computer colleagues can bridge the gap between CSTs 
that support a creative person and computers that generate 
creative products autonomously (see Figure 1). We hy-
pothesize collaboration with computer colleagues based on 
the enactive model of creativity can enrich the creative 
process like human collaboration (i.e. increase playful ex-
ploration, motivation, creative engagement) in open-ended 
creative domains such as non-representational visual art. 
We have designed and implemented a prototype of an ar-

tistic computer colleague using the enactive model of crea-
tivity (EMC) to test this hypothesis.  
 Our system, called Drawing Apprentice applies EMC to 
abstract improvisational art. This artistic domain was se-
lected for its open-ended, flexible and emergent art pat-
terns (Clouzot 1956). EMC synthesizes several cognitive 
science and creativity theories to model creativity as an 
enactive process that emerges through constant interaction 
with the environment and other agents within it. In this 
view, creative actions emerge through experimental inter-
actions with the environment based on simulations and 
perceived artistic affordances rather than executing a fully 
formed plan and artistic goal.  
 In the following sections, we first introduce co-creativity 
in the context of computational creativity and improvisa-
tional abstract art. Next, we provide some background on 
enactive cognition. Then, we present our enactive model of 
creativity and show how it helped us design an improvisa-
tional drawing agent. Finally, we consider evaluation met-
rics and show early artwork created with the system. 

	
  
Figure 1: Computer Colleagues Bridge the Gap Between CSTs 

and Computational Creativity 
	
  



Background 

Computational Creativity 
HCI researchers build creativity support tools that augment 
and extend the creative abilities of humans (Shneiderman 
2007), while AI researchers develop computationally crea-
tive systems that implement and sometimes elaborate on 
cognitive theories of creativity (Boden 2003; Colton 2008; 
Li et al. 2012). Enormous progress has been made in these 
two complementary pursuits; however, there is a gap in the 
research literature about blending humans and computers 
in a continuous and collaborative co-creative process 
(Lubart 2005). The field of computational creativity does 
not yet have a guiding paradigm or set of design principles 
to structure creative systems involving continuous real 
time improvisational collaboration between creative hu-
mans and creative agents (Lubart 2005).  
 Co-creativity is classified as multiple parties contrib-
uting to the creative process in a blended manner (Candy et 
al. 2002). It arises through collaboration where each con-
tributor plays an equal role. Cooperation, on the other hand 
can be modeled as a distribution of labor where the result 
only represents the sum of each individual contribution 
(Candy et al. 2002). Co-creativity allows participants to 
improvise based on decisions of their peers. Ideas can be 
fused, and built upon in ways that stem from the unique 
mix of personalities and motivations of the team members 
(Candy et al. 2002). Here, the creative product emerges 
through interaction and negotiation between multiple par-

ties, and the sum is greater than individual contribution. 
These interaction principles can be extended to include a 
sufficiently creative agent that can collaborate with human 
users in a new kind of human-computer creativity. 
 Some approaches that have yielded interesting examples 
of human-computer creativity include mimicry, structured 
improvisation, and using contextual clues to negotiate 
shared mental models. The improvisational percussion 
robot Shimon mimics human musicians by analyzing the 
rhythm and pitch of musical performances and generating 
synchronized melodic improvisations (Hoffman & Wein-
berg 2010). In practice, the human and robot develop a 
call-and-response interaction where each party modifies 
and builds on the previous contribution. Some co-creative 
agents use sensory input to construct mental models of 
agents, actions, intentions, and objects in the environment 
(Magerko et al. 2010). Mental models help agents effec-
tively structure, organize, interpret, and act on sensory data 
in real time, which is critical for meaningful improvisation.  

Abstract Improvisational Creativity 
Pablo Picasso’s work is the most well known example of 
the type of improvisational abstract art the system was de-
signed for. One of the defining features of abstract art is its 
ability to morph and transform throughout the creative 
process as the artist discovers, assigns, and re-interprets 
meaning in the artwork (see Figure 2 and Clouzot’s (1956) 
Le mystère Picasso for additional context).   
 In the cognitive science literature, this type of meaning 
re-assignment is referred to as a conceptual shift (Nersessi-
an 2008). Colloquially termed the Eureka! or Aha! moment, 
conceptual shifts occur when two separate knowledge do-
mains are connected in the mind (Boden 2003; Nersessian 
2008). It is often partially or wholly responsible for in-
sights that lead to creative discoveries and solutions.  
 Abstract art is particularly interesting for creativity re-
search because conceptual shifts and flexible meanings are 
its cornerstones. Its fluidity makes abstract art ideal for 
collaboration, as collaborators quickly and easily negotiate 
common ground and construct shared meaning in an art-
work. Abstract art contributions also cannot be ‘wrong’ in 
the same strict sense as representational art because accu-
rate representations are not the goal, which helps lower the 
barrier of entry for novices (both human and computer). 
 Improvisational creativity more closely resembles a dia-
logue where each party makes contributions that feed into 
an interactive creative process (Sawyer 2012). Jazz im-
provisation exemplifies artists working together to experi-
mentally negotiate creative strategies based on current mu-
sical themes, patterns, and the history of interaction (Saw-
yer 2012; Mendonça 2004).  
 Improvisational creativity is distinguished from other 
types of creativity because the product is usually ephemer-
al—the process is the product (Sawyer 2012). Computer 
colleagues can enrich the creative process by engaging 
artists in a fun and interesting collaborative art making 
experience. The final creative product could be thought of 
as merely a record of that collaborative experience.  

	
  
Figure 2: Time-lapse representation of Picasso's abstract art 

improvisation creative process reproduced from a film of 
Picasso painting in Clouzot (1956) 

	
  



Enactive Cognition 
Enactive cognition is an outgrowth of the embodiment 
paradigm in cognitive science. Embodiment claims cogni-
tion is largely structured by the manner in which our bod-
ies enable us to interact with the environment (Varela et al 
1991). This approach is contrasted with earlier cognitive 
theories that conceptualized the mind as a machine and 
cognition as a complex but disembodied manipulation of 
symbolic representations (Newell 1959). In particular, en-
action emphasizes the role that perception plays in guiding 
and facilitating emergent action (De Jaegher 2009). In the 
following sections, we describe how the enactive approach 
reframes perception into an active and dynamic process 
critical for participatory sense-making, i.e. negotiating 
emergent actions and meaning in concert with the envi-
ronment and other agents. Next, we examine the role of 
goals and planning in the enactive perspective. Finally, we 
review some sketching and design research to show evi-
dence that enaction plays a key role in the creative process 
when creative individuals ‘think by doing.’  
Enactive Perception In the enactive view, cognition is 
seen as a cycle of anticipation, assimilation and adaptation, 
all of which are embedded in and contributing to a contin-
uous process of perception and action. Perception is not a 
passive reception of sensory data, but rather an active pro-
cess of visually reaching out into the environment to un-
derstand how objects can be manipulated (Gibson 1986; 
Noë 2004). This type of enactive perception minimally 
involves a negotiation among the following factors: 1) The 
subject’s intentional state; 2) The skills and bodily capabil-
ities of the individual; and 3) Perceptually available fea-
tures of the environment that afford different actions such 
as size, shape, and weight (e.g. is it graspable, liftable, 
draggable, etc. as elaborated in Norman (1999)). Sensory 
data enters the cognitive system and irrelevant data is sup-
pressed and filtered (Gaspar 2014). Objects and details of 
the environment that relate to the subject’s intentional 
goals appear to conscious perception as affordances, which 
can grab, direct, and guide attention and action (Norman 
1999).  
 Each time the individual physically moves through the 
environment, or acts upon the environment, that action 
changes the perceptually available features of the environ-
ment, which can reveal new relationships and opportunities 
for interaction. For example, when a painter steps back 
from her painting, two things happen: (1) she disengages 
from her current painting activity, and (2) she changes the 
sensory input to her visual system. From this new perspec-
tive, the artist can evaluate global relationships between 
local regions in the painting and discover new themes and 
artistic goals that can guide her next artistic decisions once 
she re-engages the artwork.  

Participatory Sense-Making The enactive view accentu-
ates the participatory nature of meaning generation, often 
called participatory sense making. Cognitive systems gen-
erate meaning by active transformational and not mere 
informational interactions with the environment (Varela et 

al. 1991; Gapenne and Di Paolo 2010). Each interaction 
with the environment can (and often does) reveal new 
goals, which leads to a circuitous rather than a linear crea-
tive process. Creative individuals engage in a dialogue 
with the materials in their environment (and other agents) 
to define and refine creative intentions (Schon 1992). This 
view is helpful in open-ended domains where goals are 
often discovered rather than explicitly defined.  
 In human daily interactions, for example, there is evi-
dence that some form of natural coordination takes place in 
the shape of movement anticipation and synchronization. A 
good example of participatory sense-making would be the 
familiar situation where you encounter someone coming 
from the opposite direction in a narrow passageway (De 
Jaegher 2009).  While trying to negotiate a safe and quick 
passage, both participants look toward their intended path 
(providing a social cue) while also trying to assess the pro-
jected path of other agents. Interaction then, in the form of 
coordination of movements, is the decisive factor in how 
quickly the individuals achieve their goal of passing each 
other.  
 Rather than adopting a plan with a fixed and concrete 
goal state to control locomotion, an enactive analysis 
would posit that individuals remain flexible throughout the 
situated action by dynamically accommodating the choice 
of the other agent. If the interaction cannot be settled by 
subtle perceptual negotiation, more intentional gestures can 
be recruited to communicate intention more precisely. If 
collision seems unavoidable, even after clear gestures to 
communicate intention are made, language may be recruit-
ed to settle the navigational issue with a solid plan, usually 
followed by a brief period of uncomfortable laughter (be-
cause we usually manage these situations without such 
extreme measures).  

Goals as Socially Negotiated, Dynamic, and Emergent 
Even at the level of social interaction with an intelligent 
agent, an enactive approach tries to avoid postulating high-
level cognitive mechanisms at the core of our intersub-
jetive skills. Enaction breaks away from traditional cogni-
tive science theories positing precisely formulated goals, 
detailed planning procedures, and robust internal represen-
tations of both (Newell 1959). The co-evolution of a com-
municative/creative process is seen here as a gradual un-
folding in real time of a dynamic system spanning a human 
subject, the environment, and agents within it. In this view, 
intentions emerge but are also transformed in and through 
the interaction with other agents and the environment.  
 One argument against a naïve planning approach in AI is 
that it takes a significant amount of cognitive effort to con-
struct mental simulations that provide the level of detail 
and granularity required to carefully plan every complex 
action humans engage in (De Jaegher 2009). There is con-
siderable evidence that demonstrates humans do, in fact, 
have a keen skill for visual thinking, but it still takes cogni-
tive resources to perform mental operations and inferences 
on images (Kosslyn 1980). It is often simply easier to act 
on the environment and experiment with how different 
interactions affect the system (Noë 2004).  



Thinking By Doing The literature on creativity supports 
the enactive perspective with research on ‘thinking by do-
ing.’ There is a multitude of evidence demonstrating how 
both representational and non-representational artists plan 
their artworks using sketches, studies, and other ways to 
simulate artistic alternatives (Mace 2002). Sketching re-
duces cognitive load and facilitates perceptually based rea-
soning (Schön 1992). Artists generate vague ideas and then 
use some form of sketch or prototyping activity to creative-
ly explore, evaluate, and refine artistic intentions (Davis 
2011). Sketching allows creative individuals to think by 
doing. When an action or idea is materialized in some way, 
the perceptual system is rewarded with richer data than 
pure mental simulations and abstract reasoning. Addition-
ally, cognitive resources that would have been used to sim-
ulate the action (i.e. consciously visualizing the situation) 
are now freed for other tasks such as interpretation and 
analysis (Shneiderman 2007).  

Enactive Model of Creativity 
An enactive model of creativity proposes creativity as an 
emergent negotiation between agents with intelligent per-
ceptual systems, exploratory interaction, and an environ-
ment rich with affordances. We first explain the visual 
conventions of the enactive model of creativity and de-
scribe how it can be applied to model creative cognition 
through time. Then, we introduce a new concept derived 
from our model called perceptual logic, which is a percep-
tual filter that highlights relevant affordances in the envi-
ronment while suppressing irrelevant affordances.  

Model Description 
 In the enactive model of creativity (see Figure 3), the 
awareness of the agent is represented by the vertical rec-
tangle situated on a spectrum of cognition, which means 
that the agent is ‘aware’ of what is perceived and its cur-
rent intention. Perception is constituted partly by the men-
tal model the agent has constructed for the current situation 
(top-down cognition) as well as the sensory input coming 
from the environment (bottom-up cognition) (Gibson 1988; 
Glenberg 1997; Varela et al. 1999; Stewart et al 2010; 
Gabora 2010).  

To get a sense of the intended dynamism of this model, 
imagine the entire ‘awareness’ rectangle (the central part of 
Figure 3) can shift to the left or right of the cognitive con-
tinuum as a function of the agent’s concentration. Routine 
actions only require minimal thought and a limited amount 
of highly relevant sensory data. The enactive (and tempo-
rally extended) model of routine actions, such as driving, 
would by visually depicted by having the awareness rec-
tangle resting at equilibrium in the center of the spectrum 
with small deviations to the left to update and revise strate-
gy, and deviations to the right to interactively evaluate 
those ideas in a perceive-act cycle (see Figure 4).  

If the agent is performing an unfamiliar task, however, 
cognitive resources are recruited to actively build a mental 
model of the situation, which requires performing experi-
mental interactions, closely examining the results in the 

environment, and then updating the mental model in a 
slower perceive-think-act cycle. As novices learn to filter 
irrelevant sensory details and operate effectively with min-
imum conscious supervision of a task, the perceive-think-
act cycle gradually tightens until expertise is achieved. 
Additionally, the agent can engage in pure reflection or 
pure interactive inspection, which would be described by 
tight cycles on either end of the spectrum (see Figure 4).  

To simulate working memory, the agent only has a lim-
ited amount of cognitive resources. These resources are 
used through a process of directed attention, i.e. concentra-
tion. During this simulated form of concentration, agents 
devote their attention to reflecting on the situation (build-
ing more detailed mental models, running complex mental 
simulations, etc.) and acting in a deliberate and interactive 
manner to inspect the world.  

Perceptual Logic 
The contents of perception vary based on an individual’s 

position on this continuum of cognition (Glenberg 1997). 
As individuals deviate from the equilibrium in the center of 
the spectrum, perception becomes partially ‘unclamped,’ 
which loosens semantic constraints on sensory input and 
memory (Glenberg 1997). In our model, different points on 
the cognitive spectrum result in a unique perceptual logic 

	
  
Figure 4: Cycles of cognition in the enactive model of 

creativity 

	
  
Figure 3: Enactive Model of Creativity 

	
  
	
  



that is used to intelligently perceive affordances in the en-
vironment. The enactive approach in cognitive science 
describes the ‘intelligence’ of perception in a theoretical 
sense, but operationalizing the theory required explaining 
the implicit black box mechanism that makes perception 
‘intelligent.’ The mechanism basically serves to to filter all 
possible affordances and present only relevant affordances 
to conscious perception. Perceptual logic is our proposed 
method for developing ‘intelligent’ perception in an agent.  
 The enactive approach proposes that perceptual intelli-
gence arises through the formation of percept-action pair-
ings that are chunked and internalized for quick retrieval 
(Noë 2004). Perceptual logic is a proposed cognitive 
mechanism that filters sensory data, identifies relevant per-
cept-action pairings, and presents these percept-action pair-
ings as affordances to perception. Perceptual logic per-
forms a similar role as the ‘simulator’ in Perceptual Sym-
bol Systems (Barsalou 1999). The simulator activates all 
the associated information related to a percept, including 
the various ways it can be interacted with based on experi-
ential knowledge and physical characteristics.  
Clamping Perception Research indicates that perception 
filters irrelevant sensory input to reduce distractions and 
facilitate everyday cognition (Gasper 2014). When the 
agent is engaged in a routine task and following well estab-
lished affordances, sensory data is ‘clamped’ to filter out 
unnecessary details and un-conventional ways of seeing 
objects (Glenberg 1997). Everyday cognition is represent-
ed in EMC by situating the awareness rectangle in the cen-
ter of the spectrum of cognition, creating a point of equilib-
rium. Shifting either to the left or right on this spectrum 
requires the agent to concentrate on either the details of her 
mental model or closely inspect details in the environment. 
At equilibrium, EMC proposes that perception is clamped 
to a combination of sensory input and cognitive input that 
optimizes routine interactions. When minor problems arise, 
such as small improvisational adjustments to the action 
based on environmental feedback, this equilibrium is 
slightly perturbed. The agent could generate various alter-
native actions by thinking (moving slightly left on the 
spectrum) and explore various ideas by interacting with the 
environment (moving slightly right on the spectrum).  
Unclamping Perception If there is a severe disruption to 
the current task (e.g. a great new idea, distraction, or some 
kind of failure), it might become necessary to disengage 
from the current task to re-evaluate the situation (Dourish 
2004). When an individual ‘disengages’ from a task, per-
ception becomes ‘unclamped’ and attention shifts to think-
ing and simulating solutions (moving far left on spectrum) 
and closely examining the detail of the environment to 
discover new affordances (moving far right on the spec-
trum). The degree of concentration devoted to thinking 
about or acting on the environment determines how far, in 
either direction, awareness is situated on the spectrum of 
cognition. At the extreme left of the continuum (thinking) 
would be closing one’s eyes to try to think deeply about a 
topic, which removes sensory input from perception alto-
gether. At the extreme right of the continuum (inspecting) 

would be an individual fully concentrated on acting skill-
fully, carefully, and deliberately on the environment. 
 Modulating Semantic Constraints During these peri-
ods of disengaged evaluation, EMC proposes that the se-
mantic constraints for recalling associated ideas from 
memory and interpreting elements in the environment be-
come ‘unclamped’ to enable re-conceptualization. Un-
clamping semantic constraints helps overcome functional 
fixedness, which is a phenomenon where individuals have 
trouble dissociating objects from their entrenched meaning 
during insight problem solving (Adamson 1952).  
 Interestingly, this model identifies an important role for 
distraction in the creative process. Distraction is one way 
to prompt an individual to disengage from everyday cogni-
tion. In abstract art, for example, unfinished segments of 
the artwork (or unexpected contributions from a collabora-
tor) may distract the artist while they are drawing. These 
newly discovered areas might not align with the artist’s 
current intention. As a result, the artist might want to re-
solve that tension by drawing additional lines, which can 
catalyze the creative process. However, too many distrac-
tions might frustrate an artist. 
 EMC accounts for meaning negotiation by describing 
how perception employs different types of perceptual logic 
to filter affordances in the environment. Applying a differ-
ent perceptual logic changes the manner in which sensory 
inputs are processed, organized, and made sense of. It 
therefore reveals different affordances in the environment, 
which can help the individuals discover new creative uses 
for objects that are relevant to goals.  

Drawing Apprentice System Design 
The enactive model of creativity informs the Drawing Ap-
prentice’s cognitive architecture, and collaborative drawing 
and jazz improv informs the turn-taking strategies (Men-
donça & Wallace 2004; Pressing 1984). Figure 5 shows the 

	
  
Figure 5: Apprentice Software Architecture 

	
  
	
  



system architecture of Apprentice. The creative dialogue 
begins as the human inputs a line. All current lines from 
the canvas are sent to the perceptual logic module. The 
perceptual logic module consults the creative trajectory 
monitor to determine what perceptual logic to apply to its 
current data set. The planned creative trajectory monitor 
has a coarse grained record of the previous drawing behav-
ior based on the time between the user’s lines (i.e. longer 
periods of rest represent reflection, which is categorized as 
global perceptual logic, and short and rapid detail strokes 
are categorized as local perceptual logic). The creative 
trajectory monitor then averages the last 10-15 seconds of 
user drawing behavior and selects the dominant perceptual 
logic of the user. The average creative trajectory is adopted 
by the system to determine what layer of perceptual logic 
to apply in the current interaction.  

Layers of Perceptual Logic 
 EMC suggests that each layer of perceptual logic should 
generate unique artistic affordances from the same input, 
such as shading a circle, intersecting it, and replicating it. 
Each logic layer sends its algorithms different amount of 
lines and different features for discriminating lines. There 
are several critical points that each perceptual logic filter 
can use in different ways, such as inflection points, start 
point, end point, segments between inflections, and corners. 
Moreover, gestalt groupings (e.g. proximity, similarity, 
closure, etc.) provide additional features to generate unique 
affordances building relationships between lines, groups of 
lines, regions, and patterns (Arnheim 2001). 

 There are three layers or types of perceptual logic in 
EMC (local, regional, and global) determined by the posi-
tion of awareness on the spectrum of cognition (see Figure 
7 for an explanation of the categories of perceptual logic). 
We are implementing the EMC in steps with one layer of 
perceptual logic implemented per step. Each successive 
layer of perceptual logic considers a larger portion of the 
drawing at a higher level of conceptual abstraction (global 
being the most complex), which presents additional tech-
nical hurdles. Layering our implementation strategy allows 
a practice-based approach that encourages iterative testing 
with artists to ensure a meaningful artistic tool.  
 With only the first two layers (partly) implemented, the 
system can receive line input from the user, analyze it and 
generate an improvised response line based on the visual 
features of the input line and surrounding region. Table 1 
and Figure 6 display the first five types of drawing algo-
rithms we implemented in the prototype.  
 Local perceptual logic considers the visual features of 
one line. These drawing algorithms perform simple math-
ematical transformations on the input line and then redraw 
it, such as translation, reflection, scaling, and sketchify (see 
Figure 6). Local perceptual logic essentially mimics the 
creative input of the user by repeating the user's action with 
a small variation. 
 Regional perceptual logic, on the other hand, segments 
recent line inputs into line groups, regions, and containers 
based on principles of gestalt grouping, such as proximity, 
similarity, common fate, and continuity (Arnheim 2001). 
The system then generates a line that builds relationships 
between objects in the same region or container. Intersec-
tion-connection is the first regional algorithm that analyzes 
an input line into critical regions to respond to the actual 
shape of the line (shown in Figure 6).  
 Global perceptual logic (not yet implemented) considers 
the artwork as a whole. These algorithms are more ‘intelli-
gent’ than regional and local perceptual logic algorithms 
because they consider how the different regions of the 
drawing balance to form an overall composition. When this 
perceptual logic is applied, the system may decide to com-
pletely decouple its contribution from the human’s recent 
input, i.e. it can select non-active regions of the artwork on 
which to operate if it presents more rewarding artistic op-
portunities. Global perceptual logic is the highest level of 
cognitive functioning and will eventually include semantic 
knowledge such as how to draw a dog, cat, person, etc.  

System Evaluation  
While creativity support tools typically help users pro-

duce a more polished product in less time, computer col-
leagues aim to support the creative process by increasing 
playful exploration, motivation, and creative engagement. 
Evaluating computer colleagues therefore involves analyz-
ing and measuring creative engagement in the co-creative 
process rather than judging the creativity of the final prod-
uct.  
 Figure 8 shows an early practice-based art study of an 
expert artist (the first author) collaborating with the Draw-

	
  
Figure 6: Local (top row) and regional (bottom row) per-
ceptual logic drawing algorithms in system prototype. 

	
  
Figure 7: Layers of perceptual logic. Local perceptual 
logic mimics the last input line without any model of 
the artwork. Regional perceptual logic analyzes recent 
input lines into gestalt groupings to build on regional 
relationships. Global perceptual logic analyzes all lines 
in the agent’s mental model of the artwork to evaluate 
overall composition and identify opportunities. 



ing Apprentice over a period of 2 hours. Drawings 1 & 2 
demonstrate short turn taking collaboration between the 
artist and the Drawing Apprentice (computer lines are 
blue). Without the regional and global perceptual logic 
layers, the system only has minimal knowledge of the art-
work. It knows what each of the line inputs are, but noth-
ing about their relationship or the overall composition of 
the artwork. In future work, the regional perceptual logic 
layer will group line inputs into regions and containers to 
enable the system to learn and modify entire shapes (rather 
than individual lines). However, even without regional 
perceptual logic, the system was able to achieve complex 
(and artistically valuable) outputs in drawings 3-6 because 
the human starts defining themes and creating complex 
artistic patterns by drawing many lines per turn in rapid 
succession. The basic mimic functions of the Drawing Ap-
prentice leveraged this complexity to achieve equally de-
tailed output. The final product is shown in all black (as the 
artist saw it) in drawing 9. 
 To capitalize on the emergent nature of creativity in im-
provisation, our development efforts focus on building 
more sophisticated methods of perceiving, analyzing, and 
understanding drawn human input in such a way that it can 
be intelligently and creatively re-used by the system. This 
involves teaching the system how to recognize line groups 
(regional perceptual logic), how to define relationships 
between those line groups (global perceptual logic), and 
when it is appropriate to use them for generating artistic 
contributions (creative trajectory monitory).  
 In practice, the current prototype appears like a clumsy 
novice because it can achieve continuous improvisation, 
but it cannot detect patterns, make abstractions about the 
artwork, or understand any user intentionality. This limita-
tion means that many of the system’s contributions acci-
dently disrupt things the user intentionally drew, such as a 
face or a nice curve. This creates tension for the artist and 
can serve as a creative catalyst or as a source of frustration 
if the disruptions are too severe or frequent. Skilled artistic 
collaborators are typically quite flexible and can integrate a 
wide variety of unexpected line contributions into their 
drawings with one key exception: completing the drawing.  
 When the artist was ready to complete the drawing by 
perfecting and refining each major line (drawings 7 & 8), 
the system kept blindly mimicking each line input, which 
effectively produced more work for the artist because each 
computer contribution was an unpolished line that required 
refining. This process eventually became frustrating be-
cause the artist wanted to stop but was never satisfied with 
the precision of the lines. Without global perceptual logic, 
the drawing as a whole cannot be evaluated to determines 
its level of completion.  
 With only the local and part of regional perceptual logic 
implemented, the Drawing Apprentice is able to maintain 
continuous collaboration with an expert artist, which is a 
milestone for the project. In addition to continuous collab-
oration, the final prototype will be successful if: (1) It pro-
vides similar benefits as a human collaborator (i.e. playful 
exploration, motivation, and creative engagement) (Carroll 

2009); (2) Users find collaboration meaningful and valua-
ble (Candy and Edmonds 2002); and (3) Implementing 
additional parts of the EMC increases creative engagement 
(Candy and Edmonds 2002).  
 Our research agenda includes a user study to evaluate 
the system. The study is a controlled experiment that com-
pares collaborating with the Drawing Apprentice to human 
collaboration and a random control. Participants are asked 
to perform three collaborative drawing sessions on a tablet 
computer with an unknown 'player' as the computer col-
laborator (e.g. Apprentice, human, or random lines). After 
each drawing session, the participant will be interviewed 
and complete the Creativity Support Index to measure 
playful exploration, motivation, and creative engagement 
(Carroll et al. 2009).  

Conclusions 
This paper described a cognitive model of enactive creativ-
ity that is useful for designing continuous improvisational 
collaboration in creative systems. We built an artistic com-
puter colleague called the Drawing Apprentice to test our 
enactive model of creativity (EMC). The Drawing Appren-
tice embodies the principles of EMC using increasingly 
complex layers of perceptual logic to analyze and react to 
user input in real time improvisation. We hypothesized 
collaboration with computer colleagues based on the enac-
tive model of creativity can enrich the creative process like 
human collaboration (i.e. increase playful exploration, mo-
tivation, creative engagement) in open-ended creative do-
main such as non-representational visual art. We presented 
the theory, design, prototype details, and early collabora-
tive artwork generated with Drawing Apprentice, the co-
creative drawing partner.  

	
  

 
Figure 8: Time-lapse image of expert artist collaborating with 

the Drawing Apprentice (computer lines are blue).  
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