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Abstract
Research on computational painters usually focuses
on simulating rational parts of the generative process.
From an art-historic perspective it is plausible to assume
that also an arational process, namely visual hallucina-
tion, played an important role in modern fine art move-
ments like Surrealism. The present work investigates
this connection between creativity and hallucination.
Using psychological findings, a three-step process of
perception-based creativity is derived to connect the
two phenomena. Insights on the neurological corre-
lates of hallucination are used to define properties nec-
essary for modelling them. Based on these properties
a recent technique for feature visualisation in Convolu-
tional Neural Networks is identified as a computational
model of hallucination. Contrasting the thus enabled
perception-based approach with the Painting Fool al-
lows to introduce a distinction between two distinct cre-
ative acts, sketch composition and rendering.
The contribution of this work is threefold: First, a com-
putational model of hallucination is presented and dis-
cussed in the context of a computational painter. Sec-
ond, a theoretic distinction is introduced that aligns re-
search on different strands of computational creativity
and captures the differences to current computational
painters. Third, the case is made that computational
methods can be used to simulate abnormal mental pat-
terns, thus investigating the role that “madness” might
play in creativity – instead of simply renouncing the
myth of the mad artist.

Introduction
Computational creativity research often stresses that the cre-
ative act is a rational process instead of a divine gift or the
byproduct of madness. But while it is certainly true that “one
does not need to be [. . . ] an ear-lopping manic-depressive to
be creative” (Veale 2012, p. 16), it is also the case that some
creative artefacts owe their uniqueness precisely to the work-
ings of a deranged mind. Self-reports indicate that visual
hallucinations were an important source of inspiration for
many artists. Some, like van Gogh, were involuntarily influ-
enced by the changes of perception inherent in their psycho-
logical disorders (van Gogh 1889). Others, like Joan Miró,
willingly induced hallucinations to draw creativity from the
arational (Phillips 1948). And while self-reports are not nec-
essarily reliable evidence, recent findings will be introduced

that also establish quantitative evidence for this connection.
Such findings can be seen as contradictory to a view that
rejects the arational as corroborating the myth of the “mad
genius”. By deriving a computational model of hallucina-
tion, and explaining how it can be used in a computational
painter, the present paper will illustrate how arational pro-
cesses can be employed as generative computational models
of creativity.

For this we will first present the mentioned art-historic
findings on the role of hallucination in creativity. Thus mo-
tivated, we will investigate from a psychological perspective
how a creative process based on perception (be it normal,
or aberrant) can be formulated. After having identified the
role of hallucination in such a process, we will descend one
level of abstraction to outline how hallucination is imple-
mented in the human brain. This will allow us to derive
functional properties that a computational model of halluci-
nation must posses. These properties will be used to argue
that a recently introduced technique for visualising features
of Deep Convolutional Neural Networks (ConvNets) can be
used to simulate hallucination. This argument will be par-
tially validated by demonstrating how three phenomena as-
sociated with hallucination can be modelled with this tech-
nique. Coming back to the introduced psychological process
of perception-based creativity we will present how such a
model of hallucination can be used to implement a compu-
tational painter, and discuss it in the context of the current
state of the art.

Taking all together, our goal is not just to present a com-
putational model of hallucination as a potential source of
inspiration, but also to broaden the scope of computational
creativity. By providing a case study on how to model a part
of creativity that is arational, we argue that accepting abnor-
mal mental patterns as potential sources of creativity does
not imply yielding to the myth of the “mad genius”.

Hallucinations in the Fine Arts
The role hallucination plays in the fine arts is most appar-
ent in modern art movements due to their departure from
the primacy of naturalistic depiction. Post-impressionist
artwork, for instance, is characterised by depictions of the
artists’ subjective impression of a scene – something that
can be influenced by perceptual disorders. Most notable in
this context is painter Vincent van Gogh, who increasingly
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suffered from psychotic episodes including visual halluci-
nations (Blumer 2002) and had to move to mental asylum in
1889. This development was accompanied by a noticeable,
qualitative change in his style, tending to wavy lines and
thick, intensive colouring. Van Gogh himself noted this con-
nection in a letter where he states that “some of my pictures
certainly show traces of having been painted by a sick man“
(van Gogh 1889). This can be backed by quantitative evi-
dence, as artwork from van Gogh’s psychotic phases appears
to capture mathematical properties of light-turbulences in a
way that artwork from healthy phases does not (Aragón et
al. 2008).

Even more relevant is surrealist artwork, which is charac-
terised by the drive to capture the subconscious. This can be
taken quite literally, since one group of surrealists intended
their art to be an “exact transcription of personal hallucina-
tion” (Frey 1936). In fact, Frey emphasizes that in this ap-
proach hallucination is to be considered “antecedent” to the
painting, which, in turn, is just a means for “immediate fix-
ation of the violent [. . . ] images that haunt the brain”. Con-
sequently, healthy surrealists resorted to artificial means for
inducing hallucinations, like Joan Miró, who painted from
hunger hallucinations: “I began gradually to work away
from the realism I had practiced [...] until, in 1925, I was
drawing almost entirely from hallucinations” (Miró, qtd. in
Phillips 1948). A qualitative analysis suggests that also Max
Ernst was influenced by visual hallucination, as all spatial
properties of hallucinatory phenomenology were identified
in his artwork (Keeler 1970).

A thorough analysis of art-historic material is outside of
the scope of this paper. However, what we have shown is
that (1) hallucination can be systematically related to mod-
ern art agendas, that (2) artistic self-reports support such the-
oretic conceptions and that (3) qualitative and quantitative
evidence corroborate artists’ claims.

Perception-based Creativity
Psychological inquiry on the artistic use of hallucination can
be found in a discussion of the role of perception in creativ-
ity, which identified two relevant types of mental processes
(Flowers and Garbin 1989): The first type are executively
controlled perceptual processes like mental imagery or se-
lective attention. These processes can be used to generate
novel mental representations by effortful construction. In-
dividuals with superior control of such faculties derive their
creative abilities from the scope and complexity of available
mental operations. Processes of the second type, on the other
hand, are involuntary because they are based on the percep-
tual organisation of input data, which is performed automat-
ically by the visual system. Individuals whose perceptual
organisation operates less deterministically, or fundamen-
tally divergent from what is typical, can derive novel mental
representations straight from their percept. Their creativity
stems literally from seeing things in an unusual way. Cre-
ative behaviour usually results from a combination of both
types, with the emphasis shifting from one individual to the
other. The role of hallucinations can be identified as one
possible source of “loose” perceptual organisation.

Because “common mental resources are used in executive
control of mental representations and processing of corre-
sponding forms of sensory data” (Flowers and Garbin 1989)
the authors state that interference effects can occur when
processes of different types happen to coincide temporally.
This will become relevant later, when we show that such be-
haviour can actually be observed in the proposed computa-
tional model. Flowers and Garbin furthermore point out that
conceiving a creative artefact includes selection processes
in order to identify if a mental representation is novel and
valuable. This can be especially hard for individuals with a
loose perception, since it involves hypothesizing about the
judgement of non-aberrant perceivers.

A widely accepted psychological model of creativity
(Csikszentmihalyi 1997) postulates a five steps process:

1. preparation: gathering knowledge and values of the rele-
vant domain,

2. incubation: subconscious combination, consolidation and
re-organisation of knowledge,

3. insight: unexpected event, the surfacing of an idea,
4. evaluation: deciding weather the idea is novel and valu-

able,
5. elaboration: detailed concretisation and implementation

of the idea.

The process is not linear bur rather recursive in nature, and
especially the last three steps can reoccur iteratively thereby
informing each other.

The first two steps of this process can not be linked to
the account of Flowers and Garbin directly, however, prepa-
ration and incubation could be mapped to the maturation
and knowledge acquisition of the visual system, most promi-
nently during infancy, which must be an implicit precondi-
tion for any perception-based account. An actual creative
process would thus start with the insight phase. In the con-
text of Flowers and Garbin this can be taken to be the gener-
ation of an unconventional percept by a loose perception-
process; the characteristic phenomenology of an insight-
event is attributable to the involuntariness of sensory organ-
isation. The evaluation step can be connected to Flower’s
selection processes, while elaboration, taken to be the most
effortful step, maps well to Flower’s description of execu-
tively controlled construction. We thus arrive at an itera-
tive, perception-based process of creativity: (1) loose per-
ceptual organisation, (2) selection and (3) executively con-
trolled construction.

This synthesis could in principle serve as the basis of
a computational model of hallucination based creativity.
However, while there is work on computational accounts
that might be dubbed effortful construction (Cohen-Or et al.
2006; Bhattacharya, Sukthankar, and Shah 2010) and aes-
thetic selection (Li and Chen 2009; Luo, Wang, and Tang
2011; Yao et al. 2012), to the best of our knowledge, no
work has been done on computational models of the sensa-
tion of visual hallucination-based loose perception. In order
to devise such a model we first need to understand how vi-
sual hallucinations are implemented in the brain.
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Neurological Correlates of Hallucination
Visual sensory information is ambiguous. Thus in order to
generate a stable, unambiguous percept, and perform higher-
order tasks like object recognition, a processing of the input
data has to take place in the visual cortex (Teufel et al. 2015).
The primate visual cortex is comprised by a hierarchical sys-
tem of specialised brain areas. Lower areas are responsive to
primitive visual features like oriented gratings, while higher
areas use information from lower layers, and are responsive
to complex features like e.g. faces, houses or landscapes
(Zeki et al. 1991; Felleman and Van Essen 1991). The visual
system thus combines bottom-up sensory input processing
with top-down predictions based on prior-knowledge of the
environment.

Hallucinations occur when the balance in information
processing shifts to prefer this knowledge over sensory evi-
dence (Teufel et al. 2015; Mocellin, Walterfang, and Velak-
oulis 2006). Mocellin and colleagues take hallucination to
be a “sensory perception that has the compelling sense of
reality of a true perception but that occurs without stimula-
tion of the relevant sensory organ”. Functional imaging has
shown that visual hallucinations (at least within the Charles
Bonnet Syndrome1) correlate with increased cerebral activ-
ity in specialised visual cortex areas: “colour hallucinations
[are] accompanied [by] increased activity in cortex special-
ized for colour; face hallucinations, increased activity in cor-
tex specialized for faces [. . . ] and so forth.” (Santhouse,
Howard, and Ffytche 2000). A recent study by Mégevand
et al. (2014) was actually able to induce complex visual hal-
lucinations (CVH) of outdoor scenes in non-psychotic sub-
jects, by applying direct electrical stimulation to the parahip-
pocampal place area. This implies a causative connection
between increased activity of specialised areas and halluci-
nations.

For our purpose we can sum up hallucinations to be the
product of the visual cortex where the processing balance
between input and prior knowledge shifted towards the lat-
ter, for instance due to an artificial increase of activity in
a specialised brain area, resulting in a percept that is not
rooted in sensory information. Abstracting away from the
neurological implementation in humans, this would mean a
system that (1) performs visual processing, is (2) comprised
by specialised subsystems, and where (3) increasing a sub-
system’s activity leads to the generation of a visual repre-
sentation that has no correlate in the input image but in the
knowledge encoded in the respective subsystem. We thus
have derived three properties that a system needs to demon-
strate in order to be taken to model hallucinations.

A Computational Model of Hallucination
The state-of-the-art approach to many computer vision prob-
lems are Deep Convolutional Neural Networks, a specific
type of the Multilayer Perceptron (MLP) that is informed by

1The Charles Bonnet Syndrome describes visual hallucinations
correlating with a partial loss of vision (Burke 2002). Mocellin et
al. argue that the distinction between CBS and lesion-based hallu-
cinations is not clear. Thus these findings might generalise.

the workings of the mammalian visual cortex (LeCun et al.
1998).

Simple-cells in the primary visual cortex are sensitive to a
small part of the retinal image, the so called receptive field.
Neighbouring cells are processing neighbouring parts of the
retinal image and have overlapping receptive fields which re-
sults in a topographical map of the input. This is beneficial
due to the specific statistical properties of natural images,
specifically the strong spatially-local correlations. Analo-
gously, units in the convolutional layer of a ConvNet are
only connected to a small subset of neighbouring units from
the previous layer, instead of being dependent on all the units
of the input, like it is the case in the fully connected layers of
conventional MLPs. Because of this, the filters computed by
each unit are not responsive to variations outside of their re-
spective receptive field – they are just responsive to spatially
local patterns. However, stacking several convolutional lay-
ers allows the receptive fields of units from deeper layers to
become bigger with respect to the input image, and facili-
tates the detection of more complicated, global patterns.

Pattern-detectors that are useful in one part of the input-
image are likely to be of use in other parts as well. This
is exploited by ConvNets by employing parameter sharing.
Each convolutional layer is organised in planes, consisting
of units whose combined receptive fields cover the complete
input-layer. The same parameters are used to compute the
activation of each unit of a plane, which results in the same
filter being applied on each patch of the input. Since the ac-
tivation of units from a plane indicates the presence of the
encoded pattern in the respective patch of the input, the out-
put of each plane is referred to as a feature-map. Mathemat-
ically this operation can be described as a convolution of the
filter-function with the input image. Usually, each convolu-
tional layer is comprised by several different feature-maps.

The precise positions of a detected pattern is not as im-
portant as its position relative to other features. This al-
lows ConvNets to perform a sub-sampling of the feature-
maps computed by the convolutional layers by using pool-
ing layers. These layers split the input into non-overlapping
regions and compute a function (usually max) over the ac-
tivation of all the units of each region. Thus the feature-map
of a pooling-layer encodes the information whether a pat-
tern was detected in a certain region of the image, without
storing its precise position.

These three architectural idiosyncrasies significantly re-
duce the number of parameters involved in training Conv-
Nets, as compared to conventional MLPs. This allows to
create much deeper networks, which is quite beneficial if
we consider that with each additional layer more complex,
position-invariant features can be detected. Nevertheless, a
significant amount of data is required to train a ConvNet,
with state of the art approaches leveraging over one million
of labeled images (Szegedy et al. 2015).

Investigations have been performed on the nature of the
feature-representations learned by ConvNets. As it turns
out, the features are not random and even interpretable
(Zeiler and Fergus 2014). The first convolutional layer,
seems to consistently learn to be responsive to (among oth-
ers) oriented gratings (Zeiler and Fergus 2014; Krizhevsky,
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Figure 1: Pictures produced by deep dream. Left-top corner: Original image. From left to right and from up to down the target-
layers were changed from lower-level to higher-level layers while keeping all other parameters constant. Enhanced features
rise in complexity accordingly. It should be noted how especially in the last two exemplars the enhanced features are integrated
into the scene. Also of interest is the fact that the enhanced animals appear to be hybrids. This is presumably the result of
maximizing several units in one layer, which are specialised in recognizing different animals. Given this interpretation, the
hybrids can be considered concept-blends. Best viewed on screen using zooming.

Sutskever, and Hinton 2012), which, incidentally, is also the
case in the first mammalian visual cortex. Zeiler and Fer-
gus have also shown, that features from higher levels exhibit
many interpretable properties like compositionality and in-
variance to spatial operations like mirroring. Effectively it
seems that features from lower layers represent properties
of image appearance, while higher layers represent more
and more abstract notions of the image content (Mahendran
and Vedaldi 2015). If higher-level features are used to re-
construct an image they “invert back to a composition of
parts similar but not identical to the ones found in the orig-
inal image” (Mahendran and Vedaldi 2015). This all indi-
cates that layers in ConvNets are indeed hierarchical, and
that higher-level layers are specialised: they identify com-
plex, interpretable objects like e.g. houses or faces. Thus,
they exhibit the first two properties of a model of halluci-
nation. What is lacking is a way to generate interpretable,
visual representations by increasing the activity of the spe-
cialised layers.

Exactly that is accomplished by deep dream, a third ap-
proach to understand ConvNet feature representations, that
focuses on visualising what was learned by individual lay-
ers (Mordvintsev, Olah, and Tyka 2015): An input image is
forward-propagated through a fully-trained network. Start-
ing from the layer to be analysed, back-propagation is per-
formed in a way as to maximize the Euclidean Norm of acti-
vations in the target layer. However, unlike in usual training,
the parameters of the network remain unchanged and a gra-
dient ascent step is instead applied to the input image. Ba-
sically, the input-image is trained to maximize target-layer
activation. To achieve better visibility of the changes in the

image, Mordvintsev, Olah, and Tyka iteratively repeat this
step several times while regularly increasing the scale of the
input image. This results in a visual enhancement, as well as
adaptation, of features that were already present in the input,
and the produced pictures have been described as “trippy”
and “visually pleasing” (Koch 2015). What type of features
are affected depends on the choice of target layer (see fig.
1). When lower-level layers are targeted, primitive features
like oriented gratings are enhanced. Mid-level layers en-
hance simple objects like eyes and geometric forms, while
high-level layers enhance complex objects like buildings or
animal-blends in a pareidolia-like fashion.

Applying deep dream to a ConvNet results in a hierar-
chical system for visual processing, where increasing the
activity of a layer results in input-data augmentations that
are related to the knowledge encoded in the respective layer.
It thus displays all three properties of a functional model
of hallucination, and we argue that the images generated by
deep dream can be considered computational hallucinations.
Indeed Koch reports that a remarkable resemblance between
the produced images and hallucinations induced by LSD has
been widely noted on the internet. Details on how to af-
fect the visuals created by the model, and how to simulate
several phenomena that are related to hallucination, will be
discussed in the next section.

Discussion
The following results were all achieved using Berkley Vi-
sion and Learning Center’s open-source reimplementation2

2https://github.com/BVLC/caffe/tree/master/models/bvlc googlenet
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Figure 2: Effect of different scale and iteration settings.
Rows (from up to down): 1, 3, 5 and 7 scales. Columns
(from left to right): 1, 10 and 19 iterations. Each image was
produced by an individual run with the given parameters and
the target-layer inception (4c). Best viewed on screen using
zooming.

of GoogLeNet (Szegedy et al. 2015), one of the winning
models of the ILSVRC 2014 classification challenge (Rus-
sakovsky et al. 2014). The architecture is a ConvNet with 22
layers. It employs convolutional layers of varying filter-sizes
alternating with pooling-layers for spatial down-sampling.
The last layer is a fully-connected soft-max classifier, that
follows a 40% dropout layer (Hinton et al. 2012) to pre-
vent overfitting. Furthermore, rectified linear activation
(Krizhevsky, Sutskever, and Hinton 2012) is used. Like the
original network, the reimplementation was trained on the
1.2 million labeled training-images of the ILSVRC 2014
dataset. For details, especially on the combined convolu-
tional layers called inception and introduced by GoogLeNet,
please refer to the original publication.

Parametrization
From the several knobs and levers afforded us by the deep
dream algorithm the most relevant for visual appearance
were identified as the target layer, the number of iterations
per scale and the number of scales. Most importantly, the
target layer influences the complexity of the generated hal-
lucinations. For instance the second image of fig. 1 was gen-
erated using the second convolution layer and the enhanced
features are colourful, oriented gratings. The last image of
fig. 1, on the other hand, was generated using the tenth con-
volutional layer (inception 5a) and the enhanced features are
hybrid fish-like creatures. As noted earlier, intermediate lay-
ers enhance features of varying, but rising complexity. No
regularities could be identified between images generated
from layers that share a type (like for instance the max-pool
layers) but differ in their respective position in the network.

Figure 3: Picture produced by applying deep dream on
a white-noise image. The employed parameters were: 8
scales, 50 iterations per scale and 100 repetitions of the al-
gorithm; the target-layer was inception (5a). Several dis-
tinct creatures emerged despite a complete lack of statisti-
cal structure in the input. This effect simulates the shift in
processing balance from input-data to prior-knowledge that
happens during hallucinations. Best viewed in colour.

As for the two other parameters, a larger number of itera-
tions increases the intensity of the enhanced features, while
a larger number of scales increases the size, number and
detail-grade of the enhanced features (see fig. 2).

Simulating Hallucination-Related Phenomena
Apart from following our definition for a functional model
of hallucination, and producing qualitatively plausible out-
puts, the deep dream system is capable of modeling several
hallucination-related phenomena:

One is that hallucinations can be induced by sensory de-
privation, be it artificial (Merabet et al. 2004) or due to a
medical condition (Burke 2002). This can be simulated by
repeatedly applying the deep dream procedure to a white-
noise image, while significantly increasing the number of
scales and propagation steps (see fig. 3). Although a
noise-input provides no structure for the ConvNet to detect,
network-internal noise nevertheless results in layer activa-
tion. This random activation is propagated to the input im-
age and results in discernible but random effects. The sta-
bilisation to a distinct structure is due to a complete shift in
processing balance from input data to prior-knowledge en-
coded in the network.

Another phenomenon is that CVH usually follow a lim-
ited number of typologies (Santhouse, Howard, and Ffytche
2000; Mocellin, Walterfang, and Velakoulis 2006), e.g. dis-
embodied, distorted faces or small figures in costumes. The
same holds for images produced by the deep-dream system
which display some patterns like eyes or dog-shaped crea-
tures more often then others, which is suggestive of basins
of attraction.3 The type of these basins is dependent on the
dataset used for training the ConvNet and favours features

3As discussed in https://github.com/google/deepdream
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Figure 4: Picture produced by guided dreaming at a
high-level layer, an effect that can be taken to simulate
the interference of temporally coincident perception- and
manipulation-processes operating on the same type of data.
Bottom-right corner: guiding image. The employed param-
eters were: 6 scales, 20 iterations per scale and the target-
layer was inception (5a). Best viewed in colour.

that were over-represented.
A last phenomenon is connected to perception-based sys-

tems in general, and was reported in the section on loose
perception: Flowers and Garbin state that interference ef-
fects should occur when processing of sensory input coin-
cides with the active manipulation of mental representations
of the same type. This can be simulated using a technique
called guided dreaming. For that, in a preparatory step, a
guiding image is forward-propagated through the ConvNet
and the layer-activity is noted. In the deep dreaming proce-
dure the optimization objective is then changed to maximiz-
ing the dot product of input-image activation and guiding-
image activation at the target layer. In that way only features
that were detected in both images are enhanced, which es-
pecially at higher-level layers result in a spilling-over effect
from the guide to the output image (see fig. 4).

While not directly relevant for the simulation of human
phenomena, it shall be noted that our model allows the com-
bination of guided dreaming with input-deprivation. This
produces an interesting, artistic effect where shapes and fea-
tures from the guide are transfered and randomly reassem-
bled in the output image, resulting in a “colorful, free im-
provisation on the theme of the guide” (see fig. 5).

Role in Computational Painting
Of course a computational model of hallucination alone
is not sufficient for a computational painter. There are
two possibilities of incorporating the introduced model in
the broader context of the previously outlined model of
perception-based creativity. One is to rigidly define all pa-
rameters that influence the visual properties of generated im-
ages, which seems an obvious approach considering that it
corresponds to something we would call perceptual disorder
in a human. The other option is to leave these parameters
(especially the target-layer for each iteration) variable, and

Figure 5: Picture produced by combining guided dreaming
with input-deprivation using the target-layer inception (4a).
Bottom-right corner: guiding image. Best viewed in colour.

allow them to change depending on the results of the selec-
tion step. This creates a feedback-loop and potentially al-
lows for the emergence of a particular style. This approach
is less plausible from a psychological perspective since it
seems to imply the volitional adaptability of perceptual dis-
orders. From a computational perspective, however, it is
a more promising option since it hands over more creative
freedom to the system. In order to compare both approaches
an implementation of the whole process needs to be realised.

Several options for implementing selection-processes can
be explored. This includes training classifiers based on art-
theoretic high-level features (Li and Chen 2009) or a re-
cently introduced creativity-score that is a measure for a
painting’s “abstraction in shape and form” as well as its
“texture and pattern” (Elgammal and Saleh 2015). Ap-
proaches for implementing executively controlled construc-
tion include colour harmonisation (Cohen-Or et al. 2006),
composition-enhancement (Bhattacharya, Sukthankar, and
Shah 2010) and style-imitation (Gatys, Ecker, and Bethge
2015). It seems promising to use video-input instead of in-
dividual scenes, because this provides the selection system
with a variety of perspectives to choose from. This not only
appears to be a more natural context for a perception-based
system but also transfers more artistic responsibility to the
software. Such an implementation is currently in progress.

Related Work
Other attempts have been made to create computational
models of hallucination (Jardri and Denève 2013). However
these models focus on simulating cortical activity at differ-
ent levels of abstraction. Our approach, on the other hand,
does not claim to make predictions about structural prop-
erties of hallucination. Instead it operates on a functional
level, by modeling the effect of visual hallucination. To the
best of our knowledge this work is the first computer model
that can simulate the sensation of visual hallucination.

Our overall goal was to discuss the role of visual halluci-
nation in creativity. Several systems exist that are concerned
with the computational accounts of the fine arts. One of
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the earliest is called AARON and has been maintained for
over 40 years by artist Harold Cohen (McCorduck 1991).
AARON differs from our proposed system in two major
ways: First, while it is definitely more than a mere artistic
tool, it was not designed to function independently from Co-
hen, who actively takes part in its creative process. Second,
AARON is mainly concerned with figurative and abstract art
and does not draw inspiration from real-world scenes.

Our work shares the spirit of the currently most promi-
nent computational painter, Colton’s Painting Fool (Colton
2012). Colton’s goal is to create “an automated painter
which is one day taken seriously as a creative artist in its
own right”. His work was mostly concentrated on enabling
the system to create painterly renditions of photographs sim-
ulating different natural media, and on choosing the most
appropriate style to do so (Colton, Valstar, and Pantic 2008).
This was criticised by artist Faure-Walker as a lack of imag-
ination and creative intent (Colton 2012). The approach
proposed here is, on the contrary, concerned with modify-
ing the input in a meaningful way by changing its content
and composition based on a systematic misperception. It
thus addresses Faure-Walker’s criticism by drawing imagi-
nation from an unconventional way of perception and mak-
ing its intention one of sharing this unique type of impres-
sion, much in the fashion of modern artistic movements like
Post-Impressionism.

Based on this analysis we propose to differentiate be-
tween two creative acts: sketch-composition (what to draw)
and rendering (how to draw it). These two differ signifi-
cantly in the involved problems (e.g. composition, colour-
ing, symbol-language or intention in the first case and ma-
terial, stroke-type, colour-palette and level of detail in the
latter) as well es in the intended outputs (a mental sketch
or idea in the first case and an artistic artefact in the lat-
ter). A similar distinction is already successfully employed
in computational storytelling (Gervás 2009), where creative
systems are concerned with creating fabula (what is told)
or discourse (how it is told). Thus our proposal helps to
align research in different strands of computational creativ-
ity by drawing out the differences between the conception
of a work of art, and its implementation. It also helps to dis-
entangle research on computational painting, since such a
division is for instance applicable to recent advances on the
Painting Fool, because the system judges its rendered arte-
fact by comparing them with previously generated sketches
(Colton et al. 2015).

With the distinction between sketch-composition and ren-
dering in mind, a combination of the system proposed here
and the Painting Fool becomes plausible. The former can se-
lect appropriate scenes and generate a sketch based on loose
perception and effortful construction, potentially grounded
in art theory. The latter can select an appropriate rendering
style and render the sketch accordingly, thus resulting in a
more complete model of a human painting process.

Conclusion
Starting from the observation that some painters, especially
from modern art movements, drew inspiration from natu-
ral or artificially induced perceptual disorders we performed

an investigation of the role of visual hallucination in cre-
ativity. For that the neurological correlates of hallucina-
tions were outlined and criteria were derived that a compu-
tational model must meet in order to be considered a func-
tional model of hallucination. Subsequently we argued that
deep dream, a technique for ConvNet feature visualisation,
meets all the necessary criteria and can be functionally com-
pared to inducing hallucinations by electrically stimulating
specialised brain areas. This conclusion was further corrob-
orated by showing how several phenomena connected with
hallucination can be simulated using deep dream. On a tech-
nical level this might be a straightforward exploration of the
deep dream tool. What is relevant here, however, is not how
deep dream changes images, but rather what these changes
constitute. The significance of this exploration is on a con-
ceptual, rather then a technical level, by partially validating
the proposed model.

Just having hallucinations does not necessarily make an
artist. Based on psychological research on the role of per-
ception in creativity we derived a three-step process that
illustrates how hallucinations can be used for creative in-
sight. Taking this as a framework we then outlined possible
avenues for implementing a misperception-based computa-
tional painter. Contrasting this implementations with current
work on computational painters allowed us to introduce the
distinction between sketch-composition and rendering, two
distinct creative acts that are both necessary for a successful
painter but involve very different processes.

Thus the contribution of the present work is threefold.
First, it demonstrates an algorithm that allows computational
painters to draw inspiration from systematically misperceiv-
ing input scenes. By that it, second, makes the case for
a broader approach to creativity that, instead of renounc-
ing the myth of the mad artist, uses computational meth-
ods to simulate abnormal mental patterns to further under-
stand the role that madness might play in creativity. Third,
it introduces a theoretic distinction, which helps disentangle
different processes involved in implementing computational
painters, and aligns research on computational painters and
computational storytellers.
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