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Abstract

Artificial Musical Intelligence is a subject that spans
a broad array of disciplines related to human cogni-
tion, social interaction, cultural understanding, and mu-
sic generation. Although significant progress has been
made on particular areas within this subject, the com-
bination of these areas remains largely unexplored. In
this paper, we propose an architecture that facilitates the
integration of prior work on Artificial Intelligence and
music, with a focus on enabling computational creativ-
ity. Specifically, our architecture represents the verbal
and non-verbal communication used by human musi-
cians using a novel multi-agent interaction model, in-
spired by the interactions that a jazz quartet exhibits
when it performs. In addition to supporting direct com-
munication between autonomous musicians, our archi-
tecture presents a useful step toward integrating the dif-
ferent subareas of Artificial Musical Intelligence.

Introduction

Artificial Musical Intelligence is a broad area of research
that uses Artificial Intelligence (AI) techniques to build
autonomous, interactive, musical systems (Collins 2006).
Hiller (1959) was one of the pioneers of combining Al and
music, building an application that generated musical com-
positions based on rule systems and Markov Chains. Later,
Cope’s (1992) “Experiments in Music Intelligence” used
symbolic Al techniques such as grammars to generate mu-
sical compositions. Readers interested in the history of Al
and music are encouraged to read Miranda’s (2013) survey.
We believe that the intersection of Al and music is an ideal
context for the study of computational creativity.
Computational Creativity is the use of autonomous sys-
tems to generate and apply new ideas that would be consid-
ered creative in different disciplines of social life, including
art, sciences, and engineering (Besold et al. 2015). In this
paper, we focus particularly on the creativity that is inherent
in collaborative, improvised, musical performance, and we
adopt Roads’s (1985) assertion that both composition and
performance can be usefully tackled using Al techniques.
Research and practical efforts that pursue these objectives
are commonly discussed under the title “Musical Metacre-
ation” (MuMe) (Eigenfeldt and Bown 2012), which can be
well thought of as a subfield of Computational Creativity.

Musical Metacreation

The study of MuMe techniques has been approached from
several different perspectives, which we roughly organize
into three subareas: Algorithmic Composition, Live Algo-
rithms, and Musical Multi-agent Systems.

Algorithmic Composition is a subarea of MuMe that
seeks to automate different aspects of musical composition,
including orchestration, score editing, and sound synthesis
(Ferndndez and Vico 2013). For example, STELLA (Taube
1993) is an automated music representation system that can
be used to edit musical scores.

Live Algorithms seeks to build autonomous systems that
can perform in a collaborative musical setting, sharing the
same privileges, roles, and abilities as a human performer.
For example, 1XI LANG (Magnusson 2011b) is an interpreted
programming language that produces musical events in re-
sponse to instructions typed in real-time — a practice known
as “coding live music” (Magnusson 2011a) or simply live
coding. Autonomy is a central concern when creating such
systems, meaning that the interaction between the musi-
cian and the system must be strictly collaborative; neither
should control the other. Elements of Algorithmic Composi-
tion, live electronics (e.g., IMAGINARY LANDSCAPE (Cage
1960)), and free improvisation are often combined to satisfy
this constraint (Blackwell 2009). While Algorithmic Com-
position aims to model different elements of the composition
task, Live Algorithms seeks to model the creative abilities
that can be observed when human musicians perform.

Musical Multi-agent Systems is a subarea of MuMe that
seeks to model the composition and performance of mu-
sic as a task that requires collaboration between multiple
agents. The general concepts of multi-agent systems can
been applied to MuMe in two ways: multiple agents can
be used to represent a single autonomous musician (e.g., a
composer and a performer) (Murray-Rust, Smaill, and Ed-
wards 2006), or the behaviour of multiple autonomous musi-
cians can be represented as a single multi-agent system (e.g.,
a string quartet) (Wulfhorst, Nakayama, and Vicari 2003;
Car6t, Krdmer, and Schuller 2006; Thomaz and Queiroz
2009). Ideas related to computer networking are often used
in this context, with communication protocols being defined
and used to deliver messages between interacting agents.

Although many useful advances have been made in each
of these three subareas, methods and architectures for com-



bining such advances remain largely unexplored. Recently,
Bown, Carey, and Eigenfeldt (2015) developed ‘“Musebot
Ensemble” — a platform for agent-based music creation in
which musical agents are developed individually and de-
signed to accomplish a specific role in a larger ensemble. In
their paper, the authors asserted that the agents in the ensem-
ble (called “Musebots’) must be able to communicate musi-
cal ideas through a set of predefined messages, toward sup-
porting collective performances that are analogous to those
of human musical ensembles.

While the Musebot Ensemble platform offers a basis for
integrating various MuMe techniques, its model of how
agents communicate can be improved. Specifically, it lacks
support for direct communication between agents, choos-
ing instead to allow only a special, centralized “Conductor”
agent to communicate directly with each Musebot. The re-
sult is that some agents can be left unaware of decisions that
are made by other agents, reducing their ability to perform
well (Eigenfeldt, Bown, and Carey 2015). Furthermore, di-
rect communication between agents is essential to certain
kinds of music, where the need for real-time coordination is
inherent to the musical style (e.g., small-group jazz (Bastien
and Hostager 1988)).

In this paper, we propose an architecture for Musical
Metacreation that offers two contributions. First, it extends
the Musebot Ensemble platform with a model of direct com-
munication between autonomous musicians. Second, it does
so in a way that facilitates integrating recent advances in
the MuMe subareas of Algorithmic Composition, Live Al-
gorithms, and Musical Multi-agent Systems.

The remainder of this paper is organized as follows. We
begin with a brief formulation of our challenge and follow
with an overview of related work, covering each of MuMe’s
subareas in turn. We then present our architecture in two
parts; we describe its overall structure and each of its com-
ponent parts, and then explain how the parts interact with
one another. We conclude by discussing our contributions
and offering some suggestions for future work.

Problem Formulation

The study of human cognition and how it can be modelled
has contributed to several improvements in our daily lives,
such as “smart systems” that use Al techniques to ease the
experiences of their users. Inspired by this perspective, we
view the study and emulation of human musical abilities as
an important avenue to explore in the pursuit of autonomous
musical systems. As we described in the Introduction, one
set of abilities that merits emulation are those that enable and
support direct communication between musicians, spanning
both verbal and non-verbal modes. Specifically, one’s abil-
ities to negotiate, synchronize, compose, and perform with
others are essential in the context of collaborative musical
improvisation (Walker 1997). Furthermore, from their case-
study observation of a jazz quartet’s peformance, Bastien
and Hostager (1988) concluded that such musicians engage
in direct verbal and non-verbal communication across three
distinct modes: instruction, cooperation, and collaboration.
In this work, we seek to extend the Musebot Ensemble
platform in a way that facilitates direct communication be-

tween autonomous musicians, while at the same time sup-
porting and demonstrating the integration of different tech-
niques from the three subareas of MuMe.

Related Work

The community of researchers studying MuMe has grown
over the years, with projects like the Musebot Ensemble
platform and research networks like Live Algorithms for
Music (LAM) seeking to encourage interest and integration
in the context of musical creativity. As a result, numerous
papers have been published in the MuMe subareas of Algo-
rithmic Composition, Live Algorithms, and Musical Multi-
agent Systems, and we consider several of them in the sub-
sections that follow. We will conclude our review of related
research by summarizing recent efforts to facilitate and pro-
mote integration across MuMe’s subareas.

Algorithmic Composition

Algorithmic Composition (AC) is an area of research that
has contributed to several technological advances in the mu-
sic industry, as many tools have been created to help musi-
cians automate their composition tasks. In this section, we
focus only on algorithms for composition that involve the
application of Al, and particularly on those that do not re-
quire any human intervention.

Generative grammars and Markov Models are some of
the first methods of Al that were used in AC (Rader 1974,
Roads and Wieneke 1979; Rueda, Assayag, and Dubnov
2006; Keller and Morrison 2007; Morris, Simon, and Basu
2008). Abdallah and Gold (2014) offer a detailed explana-
tion of grammar based models and Markov models, as well
as a comparison between them. Researchers were also inter-
ested in evolutionary methods, in which a subset of solutions
are generated from an initial set and then evaluated using a
fitness function to measure their quality (Coello et al. 2007).
Another method that is widely implemented in AC is Ar-
tificial Neural Networks, in which interconnected process-
ing units are typically used to accomplish a pattern recog-
nition task (Yegnanarayana 2009). For example, Goldman
et al. (1996) developed a hybrid system based on the com-
munication and cooperation of agents. These agents applied
heuristic rules to solve problems relevant to polyphonic mu-
sic composition, in real time. The melodies produced by
the system are generated by neural networks that predict the
expected value of each subsequent note in the melody. Al-
though Goldman et al. successfully modelled some aspects
of inter-agent communication (such as agreeing on which
notes to play together), other important aspects were not in-
cluded in the model (e.g., cueing transitions or negotiating
over necessary tasks). Furthermore, their system focused
primarily on modelling the cognitive processes of a human
musician and their individual capacity to undertake differ-
ent musical tasks (e.g., analyzing possible combination of
notes and performing them at the same time). Nishijima and
Watanabe (1993) used ANNSs to learn musical styles. An
overview and taxonomy of methods in AC is provided in
Fernandez and Vico’s (2013) survey.



Despite the capacity of AC to automate certain aspects of
music composition, it remains challenging to represent fea-
tures that are exclusively in the domain of communication
between agents, such as the ability to share musical ideas
with another musician.

Live Algorithms

Much research on the topic of Live Algorithms has focused
on the challenges of sound analysis and beat tracking, to-
ward allowing autonomous musicians to synchronize their
performance and effectively take turns with human musi-
cians. An example of such work is ANTESCOFO (Cont
2008), an anticipatory score-following system based on the
collaboration between two agents (an audio agent and a
tempo agent). These agents allow the system to synchro-
nize accurately with its musical partner. An interesting fea-
ture of this system is its capability to predict changes to
the structure of the music and follow those changes pre-
cisely in real time, providing an atmosphere of accompa-
niment with its partner. Similarly to ANTESCOFO, GEN-
JAM is capable of performing alongside a human musician.
GENJAM (Biles 2002) is a jazz improvisation system that
evolves musical ideas trained by a human mentor while
playing them interactively with a human performer. Biles
stressed that one of the most valuable features of his sys-
tem is its ability to “trade fours or eights” — a part of jazz
performance where soloists take turns improvising and ex-
changing musical ideas in a way that mimics human ver-
bal conversation. Blackwell (2003) suggested that the inter-
action between musicians in a musical ensemble could be
represented by the self-organization components of swarms.
Alternatively, Harrald (2007) discussed interactive improvi-
sation in musical ensembles using the game-theoretic con-
cept of the Prisoner’s Dilemma. Finally, members of the re-
search network “Live Algorithms for Music” have provided
an extensive description about of Algorithms, where they
classified the different attributes that a live algorithm must
have (Blackwell, Bown, and Young 2012).

While we believe that the study of Live Algorithms is es-
sential to the development of Artificial Musical Intelligence,
it has thus far only addressed the challenges of building au-
tonomous systems that can perform together with humans.
In contrast, our work seeks to understand and address the
challenge of having multiple autonomous systems perform
together, without any reliance on human participation.

Musical Multi-agent Systems

While the common practice of collaborative music perfor-
mance is represented by musicians playing together in the
same physical space, Cardt, Kramer, and Schuller (2006)
provided a different perspective. In their paper, they dis-
cussed the challenges of network music performance, where
musicians perform collaboratively from separate physical
places, using the Internet as a communication channel. The
notion of a network music performance provides a com-
pelling abstraction for the study of Musical Multi-agent Sys-
tems, since interaction over a network requires a formaliza-
tion of communication protocols that provide rules to govern
the exchanges of messages between agents. For example,

Waulfthorst, Nakayama, and Vicari (2003) described a way
to implement multi-agent musical interaction while also de-
scribing the representation of cognitive musical agents. Re-
cently, various protocols have been designed by researchers
in Multi-agent Systems. Murray-Rust, Smaill, and Ed-
wards (2006) described an example of a protocol based on
speech acts, where two agents (a musician agent and a com-
poser agent) use a formal set of musical acts to establish an
accurate understanding between them. INMAMUSYS (Del-
gado, Fajardo, and Molina-Solana 2009) is a multi-agent
system that aims to create music in response to a user-
specified profile of emotional content. The system composes
a piece of music that attempts to meet the given emotional
profile (e.g., users can request a “happy” song).

While several efforts to create autonomous music systems
have used a multi-agent approach, the majority of them have
modelled each autonomous musician as a multi-agent sys-
tem, while saying little about how a group of such musi-
cians should coordinate or interact. Furthermore, the inte-
gration of a multi-agent system framework in the context of
the Musebot Ensemble platform (i.e. representing a Muse-
bot as a multi-agent system) remains unexplored, and we
believe that such work could benefit the interaction between
agents in the Musebot Ensemble platform.

Efforts Toward Integration

Workshops on MuMe are held annually in conjunction with
the International Conference on Computational Creativity
(ICCC), toward inspiring collaboration and integration be-
tween artistic and technological approaches. The Musebot
Ensemble platform arose as a result of this effort, with the
particular goal of promoting both collaboration and the eval-
uation of work done in the field (Bown, Carey, and Eigen-
feldt 2015). Eigenfeldt, Bown, and Carey (2015) presented
the first application of this platform, including specifications
for their Musebots, the architecture of the Musebot Ensem-
ble platform, and a discussion of its benefits and limitations.
They further asserted that the platform does not take prece-
dents from a human band, but in our view, the use of such
precedents holds great potential for advancing our knowl-
edge of musically creative systems (as we argued in the In-
troduction). Finally, Thomaz and Queiroz (2009) developed
a framework that aims to integrate several ideas from previ-
ous work (including pulse detection, instrument simulation,
and automatic accompaniment) in the context of Musical
Multi-agent Systems. While this framework offers a con-
venient layer of supporting functionality (eg., synchroniza-
tion), it does not support the kinds of direct communication
between agents that we pursue in this work.

General Architecture

Our goal is to extend the Musebot Ensemble platform in a
way that supports direct communication between Musebots
while simultaneously offering a clear avenue for integrating
recent advancements in MuMe’s subareas. We have chosen
to use the concept of a jazz quartet as a case study for this
work, since jazz is a genre of music that routinely requires
real-time coordination and improvisation from its players.



It thus serves as a suitable and convenient proving ground
for the techniques of Algorithmic Composition, Live Al-
gorithms, and Musical Multi-agent Systems. Furthermore,
jazz performance (among humans) has been studied from
the perspective of social science due to its inherent social in-
teractivity, providing us with a solid point of reference when
considering whether and how autonomous musicians can be
made to play jazz. We will base our discussion on the work
of Bastien and Hostager (1988), who presented a study of
how four jazz musicians could coordinate their musical ideas
without the benefit of rehearsal and without the use of sheet
music. In their study, the authors found that the musicians
communicated through a variety of different means, includ-
ing visual, verbal, and non-verbal cues. We aim to model
such communications between autonomous musical agents.

To extend the Musebot Ensemble platform in a way that
supports direct communication between Musebots, we pro-
pose a two-level agent architecture in which, unlike previous
work, each Musebot is itself comprised of multiple interact-
ing agents. Figure 1 shows a graphical representation of our
architecture, using part of Bastien and Hostager’s jazz quar-
tet as an example (a saxophonist and a pianist).

—| MUSICIAN |

l SYNCHRONIZER |

MUSEBOM— I

| ENSEMBLE ASSISTANT |

—| COMPOSER |
—| MUSICIAN |

—| SYNCHRONIZER |
MUSEBOT (PIANO)
| ENSEMBLE ASSISTANT |

| —

Figure 1: An example of our Musebot agent architecture.
Each Musebot represents an autonomous musician and is a
multi-agent system composed of four agents: a musician, a
synchronizer, an ensemble assistant, and a composer.

COMPOSER |

At the top level (on the left of the figure), each Muse-
bot represents a single autonomous musician such as a sax-
ophonist or a pianist. At the lower level (on the right of the
figure), each Musebot is made up of four different agents
(musician, synchronizer, ensemble assistant, and composer)
which are designed to distribute the various tasks that a
Musebot should perform.

Agents at the lower level share a common goal: to help
the Musebot perform appropriately as part of the Musebot
Ensemble, including communicating and interacting effec-
tively with other Musebots. To achieve this goal, a num-

ber of actions are executed by the agents based on the role
that this Musebot has been given within the musical en-
semble. For example, common roles in a jazz quartet are
“leader/soloist” and “accompanist”, and their actions could
include the leader requesting an accompanist to play an in-
troduction for the next song. We describe each of the agents
separately in the subsections that follow, and then explain
how they interact thereafter.

We modeled our agents using finite state machines, simi-
larly to Barbuceanu and Fox’s (1995) prior work in the con-
text of industrial manufacturing. Barbuceanu and Fox mod-
eled the communication between intelligent agents along a
supply chain, using a framework based on a coordination
language to represent different levels of coordination. This
language allowed them to model a variety of interactive con-
versations using a variety of different finite state machines.

Musician Agent

In our architecture, the Musician agent is the primary com-
ponent of a Musebot. It is responsible for carrying out the
Musebot’s role in the ensemble (e.g., soloist or accompa-
nist), and in doing so, it interacts with the rest of the agents in
the architecture. The behaviour of this agent is represented
by the finite state machine shown in Figure 2. After regis-
tering with a service that tracks the set of musicians in the
current ensemble, the Musebot that is designated the leader
(e.g., by an external user) will retrieve the structure of the
song, which is set prior to the performance by an external
user. Then, the leader will share the structure with the rest
of the musicians. Next, it will negotiate the introduction to
the song by requesting for another Musebot to agree to play
an introduction. In case every Musebot refuses or fails to
play the introduction, the leader will continue trying to find
someone that wants to cooperate. From there, it will remain
ready to improvise a solo whenever it feels appropriate. Fi-
nally, it will either request an ending to the song (similarly
to how it requested an introduction) or it will pass the lead-
ership to another musician, supporting the new soloist from
then on as an accompanist. For Musebots that are initially
designated as accompanists, registration is followed by re-
ceiving the structure of the song from the leader and either
accepting or rejecting the leader’s request of play the intro-
duction. From then on, it will play an accompaniment to
the song (following the given structure) while waiting for a
request to either end the song or become the next soloist.

Synchronizer Agent

One of the functions of the Synchronizer agent is to store
information about events that happen during the progression
of a song. For instance, when a Musebot’s musician agent
is ready to perform an introduction, it will inform its syn-
chronizer of the time at which it started to play, along with
the expected duration of the introduction. This information
will then be stored by the synchronizer and kept available
for sharing with the rest of the agents through an interaction
protocol. This mechanism allows any agents that ignore this
information to request and calculate the time at which the in-
troduction will be finished, toward knowing when they must
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Figure 2: The Musician agent’s finite state machine. Shaded states are involved in the example from Figure 3.

play their part of the song. This agent also provides a point
of integration for recent advances in Live Algorithms.

Ensemble Assistant Agent

This agent serves as an intermediary between the Muse-
bot Conductor (which is required by the Musebot Ensem-
ble platform) and each Musebot. The Musebot Conductor
provides a way for external users to control the ensemble
(e.g., varying tempo, volume, or which Musebots are in-
volved) (Eigenfeldt, Bown, and Carey 2015).

Composer Agent

The goal of this agent is to compose melodies, chord pro-
gressions, and/or solos at run-time. Each composition will
depend on the role of the agent’s “parent” Musebot and the
instrument that it is playing (e.g., a string bassist would be
less likely to play chords than a pianist). Coordinated with
the help of the synchronizer, our implementation constructs
each composition using JMusic, a Java library that encodes
music as a symbolic representation analogous to CPN (Com-
mon Practice Notation) and plays it using the JAVA MIDI
soundbank. This agent provides a point of integration for
recent advances in Algorithmic Composition.

Interaction Between Agents

The interaction between agents in our architecture is man-
aged by two different mechanisms: the Musebot Ensemble
platform and a variety of interaction protocols. The interac-
tion required by the Musebot Ensemble platform is defined
by a specific set of messages (Eigenfeldt, Bown, and Carey

2015), which are exchanged between the Musebot Conduc-
tor and the Musebots. The messages are human-readable
and classified into categories. For example, the message
“/mc/time” is broadcasted by the Musebot Conductor to ev-
ery Musebot in the ensemble, conveying the tempo of the
composition for use in synchronizing the agents. Similarly,
“agent/kill” is a message that indicates that the particular
agent receiving this message should stop performing. In our
architecture, this interaction mechanism is handled by the
Ensemble Assistant agent; its principal task is to interpret
these messages and transmit them to the multi-agent system.

Interaction Protocols

We developed our Musebots using JADE (Java Agent Devel-
opment Framework) an agent-oriented framework designed
in compliance with FIPA specifications. FIPA (Foundation
for Intelligent Physical Agents) is an organization that pro-
vides an agent communication language along with stan-
dards for a number of interaction protocols (FIPA 2002).
These interaction protocols are represented as sequences of
messages (based on speech acts) for handling different ac-
tions between agents such as agreements, negotiation, and
others (Bellifemine, Poggi, and Rimassa 1999). An exam-
ple of a FIPA interaction protocol that we have implemented
is shown in Figure 3.

We used the FIPA Contract Net Interaction Protocol to
model part of the interaction between musicians that Bastien
and Hostager (1988) described in their work. Specifically,
prior to performing a song, the jazz quartet took some time
to discuss which musician should play an introduction to the
song. The Contract Net Interaction Protocol provides all of
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Figure 3: One of the agent interaction protocols that we im-
plemented to support communication in our agent architec-
ture (the FIPA Contract Net Interaction Protocol).

failure

4

the necessary elements to represent this negotiation. The
Musebot designated as the leader becomes the initiator of
the conversation while the rest of the Musebots become re-
sponders. The initiator will send a call for proposal to the
responders, proposing that one of them should play an in-
troduction. Each responder will then reply with a proposal
to play the introduction or a refusal to play it. The initiator
will evaluate the received proposals, accepting one of them
and rejecting the others. Once the proposal is accepted by
the initiator, the responder will compose and play the intro-
duction to the song and inform the initiator that the action
was successfully completed. In case of failure by the re-
sponder, the initiator will repeat the conversation until the
introduction gets played. While this example describes an
interaction between agents at the top level of the architec-
ture (e.g., a saxophonist interacting with a bassist, a drum-
mer, and a pianist) other conversations are carried out inter-
nally by the agents at the lower level. For instance, there is
a constant communication between the musician agent and
the synchronizer agent each time a piece of the composi-
tion is planned to be played. Furthermore, the components
of the different Musebots can also communicate one to an-
other. One case where this occurs is between the synchro-
nizer agents, which collectively share their information to

ensure that every Musebot’s musician agent will be able to
coordinate timings with the others. For example, the pianist
might need to know when a section of the chorus (played by
all musicians) will be finished, so that it can be ready to play
a solo at that time.

Discussion

We have presented an architecture for Musical Metacreation
(MuMe) that pursues the goal of integration across MuMe’s
subareas and extends the capabilities of the Musebot Ensem-
ble platform. At the time of writing, our implementation of
this architecture is well underway, with completion expected
within the next two months.

Compared to previous approaches, our architecture of-
fers certain benefits. By extending the Musebot Ensem-
ble platform rather than attempting to replace it, it supports
some cross-compatibility with different implementations of
the platform. For example, given an ensemble made up of
Musebots defined using our architecture, adding an arbitrary
other Musebot into the ensemble (i.e., one which does not
implement our architecture) should result in as viable a per-
formance as the Musebot Ensemble platform allows. How-
ever, since the new Musebot’s abilities to communicate with
the others would be effectively reduced (because it lacks our
architecture), the resulting ensemble performance might be
impaired. Testing these hypotheses with a variety of differ-
ent Musebots remains as future work.

The second benefit offered by our architecture is its ability
to represent direct communication between Musebots using
standardized protocols (e.g., the FIPA Contract Net Interac-
tion Protocol). Eigenfeldt, Bown, and Carey (2015) claimed
that there is no need for conversations between the agents in
the Musebot Ensemble, since everything can be handled by
passing messages through the Conductor. However, having
conversations based on interactive protocols allows Muse-
bots to negotiate, coordinate, and plan autonomously in a
peer-to-peer fashion, which is a closer representation of how
human musicians perform.

The third benefit of our architecture is that the multi-agent
design of each Musebot offers convenient points of integra-
tion for recent advances in both Live Algorithms (in the
Synchronizer Agent) and Algorithmic Composition (in the
Composer Agent). In addition to the precedence offered by
prior work, our choice to model each Musebot as a multi-
agent system has some support from the field of Neuro-
science. Specifically, Zatorre, Chen, and Penhune (2007)
measured the activity of different areas of the brain dur-
ing music performance, finding relationships between mo-
tor function and auditory interaction. While we do not claim
that the specific agents in our architecture represent an op-
timal design or the true operation of the human brain, we
have found that utility can be gained from having a multi-
agent representation for each autonomous musician.

Finally, a fourth benefit of our architecture is that it al-
lows Musebots to mimic two modes of communication that
are used commonly when (human) musicians perform, Non-
verbal cooperative modes (e.g., visual and musical cues) are
mimicked when our Musebots attempt to pass the lead to an-
other Musebot, and non-democratic instructive modes (e.g.,



sharing information about the next song) are mimicked when
our Musebots share the structure of the song with the other
Musebots in the ensemble.

Conclusions and Future Work

There is still much to accomplish in the pursuit of Artificial
Musical Intelligence and the goals of Musical Metacreation.
We view our architecture as a step toward this direction,
since it offers both an extension to existing, related work
and a convenient basis for integrating other recent advances.
Future development of the architecture will involve imple-
menting techniques from Algorithmic Composition in the
Composer Agent and from Live Algorithms in the Synchro-
nizer Agent, as well as an analysis of the communicative
behaviours in the architecture. We plan to study these be-
haviours by analyzing detailed transcripts of the simulations
performed by our Musebot Ensembles, to identify the mu-
sical and communicative events that happen during the pro-
gression of the song and compare them to similar analyses
of human musical performances. It would also be interest-
ing to apply our model of communication in a jazz quartet
to different genres of music, both with and without addi-
tional Musebots that do not implement our architecture. Fi-
nally, we hope that our integrated, communication-focused
approach will encourage and support further collaborative
work in Musical Metacreation.
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