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Abstract

A creative robot autonomously produces a behavior that
is novel and useful for the robot. In this paper, we exam-
ine creativity in the context of interactive robot learning
from human demonstration. In the current state of inter-
active robot learning, while a robot may learn a task by
observing a human teacher, it cannot later transfer the
learned task to a new environment. When the source
and target environments are sufficiently different, cre-
ativity is necessary for successful task transfer. In this
paper we examine the goal of building creative robots
from three perspectives. (1) Embodied Creativity: How
may we ground current theories of computational cre-
ativity in perception and action? (2) Robot Creativity:
How should a robot be creative within its task domain?
(3) Human-Robot Co-Creativity: How might creativity
emerge through human-robot collaboration?

Introduction

Robotics provides a challenging domain for computational
creativity. This is in part because embodied creativity on a
robotic platform introduces a dual-focus on agency and cre-
ativity. This is also partly because the robot’s situatedness in
perception and action in the physical world makes for high-
dimensional input and output spaces. This results in several
new constraints on theories of computational creativity: au-
tonomous reasoning that responds to high-dimensional, real-
world perceptual data to produce executable actions exhibit-
ing a creative behavior. Additionally, it requires the robot
to exhibit creativity in its reasoning as well as physical cre-
ativity due to its embodiment.

This distinction from other problems of computational
creativity is especially evident in a robot that needs to trans-
fer tasks learned in a familiar domain to novel domains.
Each rask consists of a series of task steps which are com-
pleted in sequence in order to produce the fask goal. The
goal of task transfer is to reuse the learned task steps in a
manner that achieves the corresponding task goal in the new
environment.

The topic of interactive robot task learning has been stud-
ied extensively (Argall et al. 2009; Chernova and Thomaz
2014). A common method for task learning involves the
teacher providing the robot with a demonstration of the task,
during which the teacher physically guides the robot’s arm to

Figure 1: Interactive Task Demonstration

complete the task (as shown in Figure 1) (Argall et al. 2009;
Akgun et al. 2012). The robot learns from this demon-
stration by recording the state of each degree-of-freedom in
its arm at each time interval, recording the trajectory of its
movement in order to train a model which can be used to re-
peat the task at a later time. Provided that a robot only learns
of the task via a demonstration, its representation of that task
is initially at the level of perception and action, and does not
contain information about the high-level goals or outcomes
of that task.

While a robot can learn to complete a task from demon-
strations, it cannot immediately transfer the learned task
model to perform the task in a new environment. For ex-
ample, if objects in the new domain (referred to as the target
domain) are configured differently than those in the original
domain (the source domain), the robot may be able to apply
the learned task model to the target domain if it has been pa-
rameterized according to the perceived locations of objects.
However, if objects have been replaced in the target environ-
ment, the model is no longer parameterized based on the cor-
rect objects, and the robot cannot transfer the learned model.
While a robot can be provided with additional demonstra-
tions so that it generalizes over multiple instances of the
task, this is a tedious and time-consuming task for the hu-
man teacher.

We address this problem of task transfer: transferring a
task learned from one demonstration so that it can be reused
in a variety of related target environments. As the previ-
ous example demonstrates, the difficulty of the task transfer
problem increases as the source and target environments be-
come more dissimilar. We propose the use of human-robot
co-creativity to address difficult task transfer problems that



require the robot to perform a novel behavior. Just as creativ-
ity is evident in collaboration between humans (e.g. collab-
orating to assemble a structure out of blocks), human-robot
co-creativity involves the coordination of novel, physical ac-
tions to achieve a shared goal. We present three perspectives
on creative transfer: embodied creativity, robot creativity,
and co-creativity. In doing so, we argue that:

e A robot exhibits creativity by (i) reasoning over past task
knowledge, and (ii) producing a new sequence of actions
that is different from the taught behaviors.

e For sufficiently difficult task transfer problems (in which
the robot must produce an action that is different than that
originally taught), creativity is necessary for the robot to
perform task transfer successfully.

e Co-creativity occurs when the robot collaborates with the
human teacher to perform task transfer, and is necessary
in order to maintain autonomy while addressing a variety
of transfer problems.

Related Work

Creativity in robotics is often discussed in the context of
a robot performing behaviors that typically requires human
creativity. Gemeinboeck & Saunders (2013) suggested that
the embodiment of a robot lends it to be interpreted in the
context of and in terms of human behaviors. The robot’s
enactment in human environments creates meaning to the
observer. Gopinath & Weinberg (2016) explore the creative
domain of musical robots and propose a generative model
for a robot drummer to select natural and expressive drum
strokes that are indistinguishable from a human drummer.
Schubert & Mombaur (2013) model the motion dynamics
that enables a robot to mimic creative paintings.

These are all examples of behaviors that appear novel to
human observers and thus manifest social creativity. Bird &
Stokes (2006) propose a different set of requirements of a
creative robot: autonomy and self-novelty. The robot’s so-
lutions are novel to itself, regardless of their novelty to a
human observer, thus manifesting personal creativity. Saun-
ders, Chee, & Gemeinboeck (2013) address robot control
in embodied creative tasks. In such domains, emphasis is
placed on the result of the system, particularly how it enables
co-creative expression when a human user interacts with it.
Kantosalo & Toivonen (2016) propose a method for alternat-
ing co-creativity, in which the creative agent interacts with
a teacher during a task, iteratively modifying the shared cre-
ative concept. Davis et al. (2015) describe Drawing Appren-
tice, which takes turns with a human artist to make drawings.

Colin et al. (2016) describe a creative process for rein-
forcement learning agents. Rather than focus on producing
a creative output, they address the process of creativity by
introducing a hierarchy of problem spaces, which roughly
represent different abstractions of the original reinforcement
learning problem. Vigorito & Barto (2008) also address cre-
ativity as a matter of creative process, rather than creative
outcome. They address creative reasoning via a process that
emphasizes (i) sufficient variation and (ii) sufficient selec-
tion of candidate policies. In addressing the first, they pro-
pose variation by representing the problem at multiple levels

of abstraction. They propose that new behaviors can only be
discovered by representing the learning problem (and thus
the search space) at a sufficient abstraction such that steps
through the space explore a range of variations. By step-
ping through the search space at one of many levels of ab-
straction, solutions can be explored which would not be ac-
cessible by searching through the space at a lower level of
abstraction.

We build off this distinction between creative robots
which (i) produce novel output, and/or (ii) reason creatively.
Particularly, we argue that a robot which suitably addresses
the problem of creative transfer must exhibit creativity in
both regards, while also meeting a third criteria of auton-
omy: performing task transfer with as little input from the
human teacher as necessary.

Case-based reasoning provides one conceptual
framework for exploring task transfer in interac-
tive robotics (Kolodner 1993; Goel and Diaz-Agudo
2017).  Analogical reasoning provides another, more
general framework (Gentner and Markman 1997,
Falkenhainer, Forbus, and Gentner 1989;
Gick and Holyoak 1983; Thagard et al. 1990). In
analogical reasoning, the difference between source and
target problems may lie on a spectrum of similarity (Goel
1997). At one end of this spectrum, the target problem
may be identical to the source problem so that memory
of the source problem directly supplies the answer to the
target. At the other extreme of the similarity spectrum, the
target problem is so different from the source problem that
transfer between the two is not feasible. In between the two
extremes, transfer entails problem abstraction where the
level of abstraction may depend on the degree of similarity
between the source and target problems (Goel and Bhatta
2004). Olteteanu & Falomir (2016) describe a method for
object replacement, enabling creative improvisation when
the original object for a task is unavailable. Fauconnier &
Turner (2008) introduced conceptual blending: a tool for
addressing analogical reasoning and creativity problems,
obtaining a creative result by merging two or more concepts
to produce a new solution to a problem. Abstraction is
enabled by mapping the merged concepts to a generic space,
which is then grounded in the blend space by selecting
aspects of either input solution to address each part of the
problem. Applied to a robotic agent which uses this creative
process to approach a new transfer problem, the robot may
combine aspects of several learned tasks to produce a new
behavior.

Transfer as a Creativity Problem

In Related Works, we have identified two criteria commonly
applied to creative robots: (i) autonomy, and (ii) production
of novel output, and/or utilization of a creative reasoning
process.

Autonomy Rather than rely on receiving a new demon-
stration of the entire task, an autonomously creative robot
must reason about the task using the representation it has
previously learned, while also minimizing its reliance on the
human teacher. We claim that this criteria does not preclude



the robot from deriving new information from human inter-
action, provided that (i) the robot does not require a full re-
demonstration of the task, and (ii) the robot reasons over
what information is needed from the teacher and how to re-
quest that information. We refer to a robot that meets these
two criteria while collaborating with a human teacher as ex-
hibiting partial-autonomy.

Novel output The robot learns to complete a task with re-
spect to the locations of relevant objects (e.g. pouring is
an action which is completed with respect to the location of
a bowl and a scoop). By parameterizing the skill models
(learned from the demonstration) based on object locations,
simple adjustments can be made to objects’ locations with-
out altering the skill model itself. However, once a trans-
fer problem requires significant changes to the skill model
(either in constraints of the model, or a replacement of the
model entirely), it no longer produces the same action. The
revised model is reflective of a behavior that is both novel
to the human teacher (since it is different than what was
taught), and novel to the robot (since it is distinct from the
output of other skill models the robot may have recorded).

Creative reasoning A robot may need to derive additional
information about the task in the target environment. By in-
teracting with a human teacher to request additional task in-
formation, the robot would leverage co-creativity in which
the robot and human teacher collaborate to produce a novel
result. As an alternate approach, a robot can address a tar-
get environment by combining aspects of its previous ex-
periences. For example, a robot may know how to pour a
mug, and separately, how to pick up a bowl. Knowledge of
these two tasks may be combined in order to address a new
problem, such as the robot needing to pour a bowl. By per-
forming conceptual blending in this way, the robot would
leverage a creative reasoning process.

Perspectives on Creative Transfer

We now introduce three perspectives on the problem of cre-
ative transfer: embodied creativity, robot creativity, and co-
creativity. Each of these perspectives highlights a different
challenge of the creative transfer problem.

Embodied Creativity

Systems of embodied creativity, such as the creative robot
we have discussed, introduce challenges as a result of their
embodiment. Specifically, the input that is available to the
embodied agent and the output that must be produced are at
a level of detail that reflects how the agent can perceive or
act in the physical world.

Input and Output Requirements An example of this
type of input is an agent’s perception of its environment us-
ing a 3D RGBD camera. This provides the agent with a
point-cloud representation of its environment, and can be
segmented to identify features of each object (e.g. dimen-
sions, location, color histogram) using methods such as de-
scribed in (Trevor et al. 2013). Figure 3 depicts an overhead
view of a robot’s table-top environment, and the correspond-
ing object segments observed by the robot.

In an robot which learns from task demonstrations, the hu-
man teacher manually guides the robot’s hand (end-effector)
to complete a task. During this demonstration, it may record
both (i) the position of each joint in its arm, and (ii) the 6D
cartesian pose (X, y, z, roll, pitch, yaw) of its end-effector.
These recordings are measured at each time interval, result-
ing in a trajectory of the robot’s arm or end-effector positions
over time.

A skill model can then be trained on this trajectory,
such that a similar motion can be repeated at a later time.
Many skill models have been proposed which encode the
task demonstration and are used to plan a motion trajec-
tory reproducing the task at a later time (Chernova and
Thomaz 2014; Argall et al. 2009; Akgun et al. 2012;
Pastor et al. 2009; Niekum et al. 2012; Bruno, Calinon, and
Caldwell 2014). Should the robot receive multiple demon-
strations of the task, the skill model provides a generaliza-
tion over the full set of demonstrations. Object locations are
used to parameterize the skill model, so that differences in
object locations in the target environment can be accounted
for by using segmented object features as parameters.

The agent’s embodiment also enforces a specific output
type: a motion trajectory which reproduces the task in the
target environment. This trajectory must indicate the posi-
tion of each joint at each time interval, over the entire course
of the task.

Role of Embodiment in Creativity We propose that the
role of embodiment in creativity can be expressed on a spec-
trum. At one end of the spectrum, embodiment plays no
role in the creative process until the creative result is to be
executed on the robot. Systems which perform in a creative
domain (e.g. Schubert and Mombaur 2013) typically operate
at this level, where the emphasis is on engaging in creative
domains that exist in the physical world (and thus must be
executed by an embodied agent). At the other end of the
spectrum, the embodiment is an integral element of the cre-
ative model. Creative reasoning is performed with respect to
the constraints of embodiment. Intermediate methods have
been proposed, where the embodiment is modeled along-
side, but separately from, the creative task (e.g. Gopinath
and Weinberg 2016).

In previous work (Fitzgerald, Goel, and Thomaz 2015),
we have defined the Tiered Task Abstraction (TTA) repre-
sentation for tasks learned from demonstrations. This rep-
resentation is intended to perform creative transfer by inte-
grating the agent’s embodiment into the task representation
itself. The TTA representation contains the following ele-
ments:

e Skill Models: The task demonstration is segmented into
task steps, each of which is represented by a separate skill
model. These models are parameterized in terms of a start
and end location, while maintaining the trajectory “shape”
of the demonstrated action.

e Parameterization Functions: These reflect constraints
which guide the start and end position of each task step as
an offset from an object location. For example, scooping
ends with the robot’s end-effector 5 cm above the pasta
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Figure 2: Spectrum of Similarity Between Source and Target Environments

Figure 3: An overhead view of a table-top environment (left)
and the segmented point cloud representation (right)

bowl, before continuing with the next task step. The cor-
responding parameterization function is: <oy, 04,0, +
5>, where o is a reference to the relevant object (in this
case, the location of the pasta bowl).

e Object Labels: These are the labels which are uniquely
associated with each object instance identified in the en-
vironment. Each labeled object represents a single object
which is consistent over a range of feature values.

e Object Features: These are the feature values associated
with each object label. While the label represents a static
object, the specific feature values may differ depending
on the environment, e.g. object locations, color (based
on lighting conditions), spatial configurations, and prop-
erties.

Note that each element is parameterized by the next; by
omitting one or more elements from the task representation,
the resulting representation is one that is abstracted. In do-
ing so, a task can be represented at a level of abstraction
which is common to both the source and target environ-
ments. However, once a representation is abstracted, it must
be grounded in the target environment in order to produce
an output which is executable by the robot. In an embodied
system, grounding refers to parameterizing a representation
based on perception in the physical world. A representa-
tion is grounded in a target environment when each of its
elements (skill models, parameterization functions, object
labels, and object features) are present and defined based
on information derived in the target environment (either by
perception or interaction in the target environment). This
challenge of abstraction and grounding is at the core of em-
bodied creativity.

Robot Creativity

Related to an embodied, creative agent, a creative robot
must also account for issues of embodiment (e.g. input from
real-world perception and output as an executable trajec-
tory). We now address additional challenges which result

from robot domains, particularly the types of tasks which a
robot may be expected to perform. Given enough demon-
strations of a task, a robot can learn a model which general-
izes across them, enabling it to address target environments
which are similar to the source environments it has observed.
However, this introduces several constraints:

1. The human teacher must be able to provide several
demonstrations of the task, which can be time-consuming
and tedious.

2. The teacher must know what target environments the

robot is likely to address, so that similar source environ-
ments can be selected for demonstrations.

3. Therobot is still limited to addressing target environments

which are closely similar to the observed source environ-
ments.

While providing more demonstrations does increase the
model’s generalizability, these constraints still apply. This
precludes many opportunities for addressing realistic trans-
fer problems, in which the robot needs to make broader gen-
eralizations. Examples of such tasks include stacking plates
after learning to stack wood blocks, or pouring a coffee pot
after learning to pour a cup. Without a representation of
the relation between objects in the source and target envi-
ronments, the robot is unable to parameterize its task model
based on the correct objects in the target environment. Fur-
thermore, more difficult transfer problems are also plausible,
such as tasks in which new constraints are added in the tar-
get environment which could not be learned in the source
environment.

Task Similarity Spectrum In previous work (Fitzgerald,
Goel, and Thomaz 2015), we have discussed task transfer as
a problem which ranges in the similarity between the source
and target environments. The outcome of this is that task
transfer problems may vary in difficulty. While we will ar-
gue that some categories of task transfer do require a co-
creative approach, task transfer does not inherently necessi-
tate creativity. For example, a task demonstrated in a source
environment (e.g. Fig. 2a) can be directly reused in a tar-
get environment which either (i) does not require modifi-
cation of the learned task (image 1 in Fig. 2b), or (ii) re-
quires parameterization based on object location (image 2 in
Fig. 2b), provided that it has been parameterized according
to the locations of objects. Since the learned skill models
are reused to address these transfer problems (albeit, mod-
ified to account for new object locations), the outcome is
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novel to neither the robot nor the human teacher, and thus
is not an example of creativity. Similarly, in transferring a
task to a target environment which requires an object map-
ping (image 3 in Fig. 2b), the original skill model can still be
reused; prior to parameterizing it according to object loca-
tions, the robot must first obtain a mapping between objects
in the source and target environments. With this mapping,
the skill model can be re-parameterized according to the cor-
rect objects. Again, the learned skill models are reused (this
time after applying an object mapping and re-parameterizing
the skill models), and so the resulting action is not novel to
the robot or human teacher.

In contrast to these three examples, consider target envi-
ronments 4 and 5 in Figure 2b. Figure 4 differs from the
source in Figure 2a in that objects are: (i) displaced, (ii) re-
placed, and now (iii) constrained because of the new scoop
size. The robot’s actions must now be constrained such that
its end-effector remains higher above the table in order to
complete the task successfully. The skill model parameters,
which reflect constraints of the task by indicating the relation
between the robot’s end-effector and object locations, can-
not be directly reused in this target environment. In order to
address this problem, new parameterization functions must
be identified in the target environment, applying constraints
to the learned skill models that are distinct from those of
the original demonstration. Provided that a robot can iden-
tify the new parameterization functions with some degree
of autonomy (e.g. does not simply receive a new demon-
stration of the task in the target environment), this category
of transfer problems meets the criteria for creative transfer:
partial-autonomy and novel output.

Target 5 in Figure 2b differs from the source in similar
respects, with one additional difference: an extra step is
needed in order to lift the lid off the pasta pot prior to scoop-
ing the pasta. As a result, the original skill models learned
in the source cannot be directly transferred. In addition to
deriving new parameterization functions in the target envi-
ronment, this problem also requires that the robot derive or
learn a new skill model to account for the missing step. In a
later section, we discuss potential methods for deriving this
information via further interaction with the human teacher;
however, regardless of what method is used, the robot (i) au-
tonomously transfers the task representation (since it does
not rely on receiving a full re-demonstration of the task), (ii)
produces action that is novel to both the robot and the hu-

man teacher, and (iii) utilizes a creative reasoning method
(by blending previously and newly learned skill models).
Therefore, a robot that successfully completes transfer prob-
lems of this kind meets the criteria for creativity.

These task differences illustrate a spectrum of similarity
between the source and target; at one end of the spectrum,
the source and target differ in small aspects such as object
configurations. At the other end of the spectrum, they con-
tain more differences, until finally (as in target 6), the tar-
get environment cannot be addressed via transfer. While we
have highlighted discrete levels of similarity in this spec-
trum, we do not claim this to be an exhaustive categorization
of transfer problems. Figure 2 illustrates that without ad-
dressing problems of creative transfer, task transfer methods
are limited to addressing a narrower set of transfer problems:
those in which the target environment does not require novel
behavior or reasoning to address. By examining problems
of creative transfer, we broaden the range of problems that a
robot can address from transferring a single task demonstra-
tion.

Transfer Via Task Abstraction In previous work, we
have found that as the source and target environments be-
come more dissimilar (according to the similarity spectrum
in Fig. 2), the task must be represented at increasing levels
of abstraction for transfer to be successful (Fitzgerald, Goel,
and Thomaz 2015). We have summarized these task dif-
ferences in Figure 4. For problems of non-creative transfer,
we have also demonstrated that the abstracted representation
can be grounded through perception (e.g. by completing the
object features element based on perception of the target en-
vironment) and/or interaction with the human teacher (e.g.
by using interaction with the teacher in the target environ-
ment to infer the object labels element).

To address problems in which objects are displaced in
the target environment, the object features element must be
grounded in the target environment, while other elements
of the original representation can be retained. This ground-
ing occurs by observing the new object locations in the tar-
get (Pastor et al. 2009; Fitzgerald, Goel, and Thomaz 2015).

To address problems in which objects are replaced in the
target environment, both the object features and object la-
bels must be grounded in the target environment. We have
demonstrated a method for grounding this information by
inferring an object mapping from guided interaction with
the human teacher (Fitzgerald et al. 2016). An object map-



ping indicates which objects in the source environment cor-
respond to each object in the target environment, and is used
to ground object labels in the target environment. By asking
the teacher to assist in the object mapping by indicating the
first object the robot should use in the target environment,
the robot can attempt to infer the remainder of the object
mapping.

To similarly abstract and ground the task representation
in order to address problems of creative transfer (including
problems in the New Object Relations and New Skill Mod-
els categories), two elements of the TTA representation must
be grounded in the target environment: the parameterization
functions (for both categories of creative transfer problems)
and skill models (for creative transfer problems involving
new skill models). This is a challenge because these two el-
ements cannot be directly observed via perception (as was
possible when grounding object features) and cannot be in-
ferred (as was possible when inferring an object mapping).
Rather, they are dependent on knowledge of the goal of the
task, which the robot does not have. We next discuss inter-
active solutions to challenge by taking a co-creative perspec-
tive on creative transfer.

Co-Creativity

In the context of an embodied robot which is situated in a
task domain, a robot may continue to interact with a human
teacher during task transfer. Thus, the robot may leverage
the human teacher’s knowledge of the task domain in order
to engage in a co-creative transfer process.

As discussed in the previous section, the robot required
little assistance in order to address problems of non-creative
transfer. The first two categories of transfer problems (e.g.
identical and displaced-objects environments) could be ad-
dressed by the robot with full autonomy. The third category
of transfer problems (e.g. replaced-objects environments)
required some assistance from the human teacher in order to
indicate which objects the robot should use in the first few
steps of the task.

In order to address problems of creative transfer, the robot
must ground the (i) parameterization functions and (ii) skill
models in the target environment. These are the two ele-
ments of the TTA representation which contain the most
high-level information about the task: the constraints be-
tween the robot’s hand and objects in the environment, and
the skill model which preserves the trajectory shape of the
demonstrated action, respectively. Because these represent
high-level information and are informed by the goal of the
task, they cannot be grounded by the robot with complete
autonomy. Presuming that the human teacher is aware of the
goal of the task, and how that goal should be met in the target
environment, we posit that the teacher is available to assist
the robot in reaching that goal. It is advantageous for the
robot to continue to interact with the human teacher in order
to ground these representation elements, since the teacher
does know how the task should be performed to achieve the
task goal. The aim of this co-creative approach is to produce
a solution that (i) is partially autonomous (the robot interacts
with a human teacher and may receive additional instruc-
tion, but does not require a full re-demonstration of the task),

(ii) enables collaboration with the human teacher so that the
robot may infer information about the task in the target en-
vironment, (iii) results in parameterization functions and/or
skill models that can ground an abstracted task representa-
tion, and (iv) grounds the TTA representation such that a
trajectory can be executed in the target environment.

Figure 4 summarizes the representation elements which
must be retained or grounded for each category of transfer
problems. This relation between (i) task similarity and (ii)
assistance from the human teacher introduces a second di-
mension to the aforementioned similarity spectrum; as the
source and target environments become more dissimilar, the
robot’s level of transfer autonomy decreases and its depen-
dence on interaction with the human teacher increases. We
now discuss two forms of interaction for human-robot co-
creativity.

Grounding Parameterization Functions In order to ad-
dress problems in the New Object Relations category, three
representation elements must be grounded: object features,
object labels, and parameterization functions. In previous
work (Fitzgerald et al. 2016), we demonstrated a simulated
robot asking for assistance to identify the object mapping be-
tween objects in the source and target environments. In im-
plementing this system on a physical robot, a robot could re-
quest assistance after each step of the task by asking "What
do I'use next?”, to which the teacher would respond by hand-
ing the robot the next object involved in the task. Each as-
sistance would provide a single correspondence (e.g. the
red bowl is mapped to the blue bowl). Additional assistance
would be derived by asking the teacher where to place the
object, to which the teacher would respond by pointing at
the next goal location. After each hint, the remainder of the
object mapping (e.g. the mapping of objects for which the
robot has not yet received assistance) would be predicted by
calculating mapping confidence after each assistance.
Similarly, when grounding parameterization functions,
the robot should interact with the teacher so that it infers
the necessary information to ground missing elements of the
task representation, without requiring too much information
and time from the human teacher (so as to maximize the
robot’s autonomy). We propose a method for grounding pa-
rameterization functions in a manner similar to object map-
ping. Rather than evaluate only the object mapping confi-
dence at each step of the task, the robot should also ver-
ify its confidence in using the next step’s parameterization
function. One method of measuring confidence may be to
compare the objects used in the next step to those which
the robot would have used in the source environment. As-
suming that similarly-shaped objects can be manipulated in
similar ways, dissimilar objects may need to be manipulated
differently despite serving the same purpose. Olteteanu &
Falomir (2016) proposed a method for identifying the suit-
ability of object replacements in simulation, based on fea-
tures such as shape and affordances. We expect that similar
features will play a role in evaluating the robot’s confidence
in using a novel object, and must be extracted from a phys-
ical robot’s perception (similar to how object features were
obtained in Fitzgerald et al. 2016). If the robot is not confi-



Algorithm 1 Grounding Parameterization Functions

Algorithm 2 Grounding Skill Models

1: function GROUNDPARAMFUNCTIONS(S)

2 map < empty mapping

3 while target task is incomplete do

4 if map is incomplete then

5: h < next mapping hint from teacher

6: map < map+PredictMapping(h)

7 end if

8: s < GetNextStep(source demo Cy)

9: on, < GetNextObject(s, map, target objects O;)
10: if ObjectSim(o,,, source objects Oy) < 3 then
11: ask teacher to reposition end-effector
12: r < record end-effector displacement from

nearest object
13: SetParamFunction(s, 1)
14: end if
15: ExecuteNextStep(s)

16: end while
17: end function

dent in this similarity (meaning its confidence value is below
some threshold (), it can request the human teacher to align
its end-effector in preparation to complete the next step of
the task. The robot would then record the parameterization
function as an offset from the closest object. Algorithm 1
outlines this process.

Grounding Skill Models To address tasks requiring new
skill models (such as the final target environment image in
Figure 4), the robot will need to ground the same elements as
before (object features, object labels, and parameterization
functions) in addition to the new skill models. To do this,
we hypothesize that the robot can again evaluate its confi-
dence for completing each step of the task. We introduce an
additional threshold to this evaluation process: if object sim-
ilarity is below a second threshold « (such that o« < 3), then
the robot searches for other previously-learned task demon-
strations which contain the unfamiliar object. If there ex-
ists another demonstration using the same object, the robot
should then evaluate the similarity between (i) the task step
involving the object in the original source environment and
(ii) the task step in the newly-retrieved demonstration that
involves the new object. If the two task steps appear sim-
ilar, then the newly-retrieved task step may be an alternate
version of the step adapted for that object, and can be ap-
plied toward reproducing the task in the target environment.
If they are not similar, then the robot may ask the teacher to
re-demonstrate that particular step of the task. Algorithm 2
outlines this process.

Directions for Continued Work

We have introduced three perspectives on the problem of
creative transfer. Embodiment introduces challenges of per-
ception and action which must be integrated into the creative
process. The domains that a creative robot encounters adds
additional constraints; we have argued that for some cate-
gories of task transfer problems, creativity is necessary for
the robot to transfer past task knowledge and produce a new

1: function GROUNDSKILLMODELS(S)

2 map <— empty mapping

3 while target task is incomplete do

4 if map is incomplete then

5 h < next mapping hint from teacher

6: map < map-+PredictMapping(h)

7 end if

8: s < GetNextStep(source demo C)

9: on, < GetNextObject(s, map, target objects O;)
10: if ObjectSim(o,,, source objects O,) < 3 then
11: find a demo with step Sy, containing o,
12: if ActionSimilarity(s,ew, s) < « then
13: ask teacher to demonstrate next step
14: a < record demonstrated task step
15: r < record end-effector displacement

from nearest object
16: SetSkillModel(s, TrainSkillModel(a))
17: SetParamFunction(s, )
18: else
19: S < Spew
20: end if
21: end if
22: ExecuteNextStep(s)

23: end while
24: end function

action which is different from the originally taught behav-
iors. By interacting with the human teacher to produce a
result which is both (i) distinct from that of the original task
demonstration and (ii) achieved through a combination of
the robot’s reasoning and the teacher’s assistance, the robot
and human teacher use a co-creative process to address the
task transfer problem. This enables the robot to leverage
the teacher’s knowledge of the task goals and how they are
achieved in the target environment, while also minimizing
the time required of the human teacher to provide assistance.

We propose several directions for continued work on co-
creative transfer. First, we hypothesize that there are several
alternative approaches to interactive task grounding. For ex-
ample, the robot may use speech as the assistance modal-
ity by asking about objects prior to attempting to perform
the task. Alternatively, the robot could instead rely on the
teacher to correct its actions (rather than proactively ask for
assistance) after each task step. Transfer problems of in-
creased difficulty may be also addressed via exploration, in
which the robot collaborates with the human teacher to cre-
atively explore new actions, to which the human teacher can
respond by guiding the robot’s exploration. Second, we have
proposed two algorithms for co-creative transfer, and sug-
gest that future work should implement these on a physical
robot. This will also engender questions of interaction; how
should the robot request specific types of assistance from the
teacher? We expect that the implementation of this will re-
sult in additional questions of how the robot should behave
in order to best leverage the teacher’s knowledge. Finally,
we have identified two categories of creative transfer prob-



lems, and associated each with a task abstraction which can
be used to address problems in these categories. However,
we do not claim this to be an exhaustive list of creative trans-
fer problem categories. We propose an area of continued
work to identify other applications of creative task transfer,
which may occur in problems which require more creativity
to address. We suggest that further work on creative trans-
fer explore the dimensions along which a creative transfer
problem becomes more (or less) difficult.
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