
Unified Classification and Generation Networks for Co-Creative Systems

Kunwar Yashraj Singh, Nicholas Davis, Chih-Pin Hsiao, Ricardo Macias, Brenda Lin, Brian

Magerko
College of Computing

Georgia Institute of Technology
Atlanta, GA, USA

{kysingh, ndavis35, chsiao9, rmacias3, blin15, magerko}@gatech.edu
Abstract

This paper reports on a new deep machine learning ar-
chitecture to classify and generate input for co-creative
systems. Our approach combines the generational
strengths of Variational Autoencoders with the image
sharpness typically associated with Generative Adver-
sarial Networks, thereby enabling a generative deep
learning architecture for training co-creative agents
called the Auxiliary Classifier Variational Autoencoder
(AC-VAE). We report the experimental results of our
network’s classification accuracy and generational loss
on the MNIST numerical image dataset and TU-Berlin
sketch data set. Results indicate our technique is effec-
tive for classifying and generating sketched object im-
ages, with larger sizes. We also describe how our net-
work is particularly useful for co-creative agents since it
can generate diverse concepts, as well as transform and
morph user generated sketches while maintaining their
concept identity.

 Introduction

Three distinct trends are emerging in the field of computa-
tional creativity that form a spectrum of computational in-
tervention in the creative process of users. On one end of the
spectrum, intelligent systems assist users to achieve their
creative goals with creativity support tools (CSTs). At the
other end of the spectrum, users control different algorith-
mic parameters and deploy fully autonomous systems that
generate artworks (i.e. procedural and algorithmic art gen-
eration). Computer colleagues represent the midpoint on this
spectrum since these creative systems introduce co-creative
agents in the user’s creative process as a collaborator or part-
ner that can modify and add to a shared creative product.
 Collaboration is a powerful way to inspire and support
creativity. During creative improvisational collaborations, a
new form of distributed creativity arises that can lead to
emergent, dynamic, and unexpected meaning to support cre-
ativity in new ways (Sawyer and DeZutter 2009). We have
seen evidence of how collaboration leads to dynamic and
emergent meaning structures that inspire novel ideas during
empirical studies of pretend play (Davis, Comerford, et al.
2015) and collaborative drawing (Davis, Hsiao, Yashraj
Singh, et al. 2016). We have also found how collaborators
often provide unexpected ideas and thus lead to surprising

results. The same dynamism and flexibility that make crea-
tive collaboration so effective also make it challenging to
implement autonomous co-creative agents.
 We designed the Drawing Apprentice as a co-creative
drawing partner to help explore what technical approaches
and interaction designs are effective for facilitating creative
collaboration in drawing. The system analyzes the user’s in-
put and responds with its own contribution on a shared can-
vas. Our findings highlight the importance of classification
and generative models for such systems, in order to recog-
nize what type of object the user is drawing and generate an
object in response. This creative dialogue of progressively
adding related objects to a canvas can help the user generate
more novel ideas and stay motivated to continue adding to
the drawing. However, training a generative model with
highly variable data is problematic in our case. The open-
ended nature of drawing means users can introduce virtually
any idea, and they expect real time responses. Furthermore,
users are more interested in engaging in the drawing activity
than explicitly training a system. These factors impede in-
teractive machine learning and place a higher burden on the

Figure 1. Generated sketches from the TU-berlin sketch data

test set using the AC-VAE network.

interface and UX design to convince users to provide
enough feedback to meaningfully train the system.
 Creative domains, such as drawing, have two big
knowledge engineering challenges: 1) The domain is open-
ended, dynamic, and highly improvisational, which means
the system needs to both classify and generate sketches in
real time; and 2) creative domains do not have a lot of
publicly available datasets. Furthermore, only a subset of the
publicly available creativity data include data about the pro-
cess of their creation. For example, in the domain of draw-
ing, the TU-berlin sketch dataset is one of the only publicly
available datasets of human sketched objects that contains
stroke-level information.
 The solution we propose is a deep learning architecture
that can learn the latent distribution of example images to
effectively classify and generate diverse instances of the
learned concept. Our approach is called the Auxiliary Clas-
sifier Variational Autoencoder (AC-VAE). Our approach
has two main benefits: 1) it enables the design of deeper
Variational Autoencoders, and 2) it allows a training meth-
odology to ensure that these networks do not collapse when
trained on data that has high variance, such as sketched ob-
jects. The network employs a greedy training process for op-
timization, which ensures that these deeper networks do not
collapse when training on data that has higher amount of
variations.

We demonstrate how this network can effectively use var-

iational autoencoding on large highly variable sketched im-

age inputs and represent variations in the data by matching

it to a unit Gaussian. This means if the latent vector is varied

by sampling from a normal distribution, the examples

smoothly morph to form each other. In the case of Drawing

Apprentice, the network can take a sketch input, convert it

to the latent variable, and then transform it to something else

(within the same concept) by sampling on the latent vector.

Our method uses one deep unified network to achieve high

classification accuracy and low generation loss of image

based data. This paper describes the AC-VAE network and

the details of experimental results showing its efficacy on

standard ML datasets and sketched object data. We also de-

scribe how the algorithm fits into the Drawing Apprentice

architecture and how users will interact with it in the real-

time application.

Related Work

Recent advances in deep machine learning enabled powerful

classification and generation capabilities. Machine learning

has been applied to traditional CSTs by improving the clas-

sification of the user’s actions to provide better contextual

support (Hsiao 2015). Similarly, deep learning has been ap-

plied to generative systems to produce extremely detailed

and aesthetically pleasing artistic products, as demonstrated

by the proliferation of neural style blending applications

(Gatys, Ecker, and Bethge 2016). However, designing deep

learning architectures for co-creative agents presents unique

and interesting challenges as mentioned. These systems

need to be able to learn from diverse examples on the fly

during improvisation to help facilitate a more seamless col-

laboration experience.

There have been some creative approaches for generating

datasets in creative domains, such as crowdsourcing and

pulling creative content from the web (Chen et al. 2014;

Colton, Goodwin, and Veale 2012; Veale 2012). While

these methods can be successful in generative computa-

tional creativity systems, co-creative systems have to ac-

tively improvise with users that can generate responses in

real time with which the system is completely unfamiliar.

This type of improvisational learning requires generalizing

from a set of training examples that may have a high varia-

bility within the examples.

Recent advances in generative models have enabled algo-

rithms to learn a distribution from input examples and gen-

erate new examples from them, which can help train deep

neural networks. Some popular methods for generating ex-

amples include Autoencoders (Vincent et al. 2010; Bengio

et al. 2013), Generative Adversarial Networks (GAN)

(Radford, Metz, and Chintala 2015), and Variational Auto-

encoders (VAE) (Kaae Sønderby et al. 2016; Johnson et al.

2016; Walker et al. 2016). Autoencoders are unsupervised

networks that consists of an encoder and decoder stitched

together that learn to reconstruct the inputs provided to the

network. Generative Adversarial Networks learn the input

distribution by training in an adversarial fashion. GANs

consists of a discriminator and generator module that at-

tempt to constantly fool each during the training process in

order to learn the distribution (Goodfellow et al. 2014).

While GANs have gained in popularity recently due to their

effectiveness at learning the input distribution to generate

realistic images, their stability remains an open question as

training them effectively requires a lot of tuning (Arjovsky

and Bottou 2017; Salimans et al. 2016). These networks are

difficult to train on large image sizes, and often do not con-

verge on large and complex image inputs (Goodfellow et al.

2014).

Variational Autoencoders are a variant of autoencoders

that learn a compact representation of the input space, re-

ferred to as the latent space (Sønderby et al. 2016). The la-

tent space learned by VAEs are rich in a sense that they also

encode various properties of the image implicitly, which is

useful for performing vector arithmetic to generate new im-

ages (Sønderby et al. 2016). The downside of this approach

Figure 2. A typical Variational Autoencoder

is that the images are blurry when compared to GAN due to

the mean loss being optimized. Additionally, it is not feasi-

ble to train a VAE that is deep and works with large image

sizes (Arjovsky and Bottou 2017; Salimans et al. 2016). Re-

cent techniques such as Ladder Variational Autoencoders

(LVAEs), Importance Weighted Autoencoders, and Matry-

oshka Networks have tried to address this problem by utiliz-

ing warm up training to introduce the variational term grad-

ually (Bachman 2016; Sønderby et al. 2016; Burda, Grosse,

and Salakhutdinov 2015). There has also been success using

hybrid top down and bottom up networks (Bachman 2016).

In this paper, we build on the finding of LVAE and Matry-

oshka architecture to overcome some of the limitations of

VAEs. This approach enables training deeper and larger

VAEs and opens the possibility of handling large input im-

ages and leading to sharper output results. We will describe

the overall system components before discussing the details

of our approach and how it can fit into the system.

System Description

Drawing Apprentice System

The Drawing Apprentice is implemented as a web applica-

tion (He et al. 2016; Davis, Hsiao, Yashraj Singh, et al.

2016; Davis, Hsiao, et al. 2015) with a client-server archi-

tecture that enables multiple people to collaborate on the

same drawings as well as the co-creative agent. It was de-

signed for use with stylus- or touch-based interactions, but

a mouse can also be used. To briefly summarize its function,

the system takes user input lines, transforms those lines

based on the sketch recognition and generation algorithms,

and outputs new lines onto the same canvas. Unique and de-

fining features of input line sets are determined by clustering

the data points and sending that them into the neural net-

work. This allows the neural network to derive its own clas-

sifications scheme based on the data it has been given.

As shown in Figure 3, the system was seeded with various

algorithms: (1) line transformation functions, such as trans-

lation, scaling, rotation (Davis et al. 2011); (2) line morph-

ing techniques that change the individual features of the in-

put lines to create new lines that retain a similarity to the

input lines (Davis, Hsiao, et al. 2015; Davis et al. 2014); and

(3) recognizing the sketching object and generating similar

object in response (Davis, Hsiao, Singh, et al. 2016). During

drawing collaboration, the user may begin at any point,

which can lead to synchronous collaboration. When the user

pauses the drawing, the agent will recognize it as a “turn”,

and adopt one of the algorithms to generate the response

lines. When the user is not satisfied with the agent’s drawing

actions, she could provide feedback on them to optimize the

system’s model by clicking on the up and down voting but-

tons. To simulate the dynamism and embodied nature of

real-time human collaboration, the Drawing Apprentice

character draws lines dynamically, meaning lines do not ap-

pear at once in full, but are gradually animated through until

their completion. Dynamic line drawing is meant to provide

a sense that the system is going through the embodied act of

creating a line. This presents an interesting opportunity

where improving the user experience design might poten-

tially improve the performance of the machine learning al-

gorithms (since more feedback helps train the system).

One of the primary limitations of the Drawing Apprentice

system that requires the proposed architecture is the ability

to generate diverse instances of learned objects. Before in-

tegrating the new architecture, the system’s line generation

capabilities were restricted to reacting to the user’s line or

recognizing groups of lines as objects and selecting a related

object from its databased of known concepts and drawing

the selection directly. The system never actively generated

new instances of concepts that it learned. The new AC-VAE

network learns the latent distribution of example inputs,

which allows sampling in that space to generate new outputs

based on that distribution. We define two types of sampling

for our use case.

Zero-Sampling: when the latent vector of the input im-

age is sampled close to the mean having 0 standard devia-

tion.

Tail-Sampling: when the latent vector of the input image

is sampled way from the mean towards the tail of the distri-

bution, having standard deviation close to 1.

Based on the two sampling types we can indicate the

amount of variation required on the input. In case of zero-

sampling, the input image is reconstructed as close to itself

as possible whereas in tail-sampling, the input is varied sig-

nificantly while still retaining some of the input features.

The following sections describe the design decision and

experimentations related to the new network architecture.

Network Architecture

When initially tackling the sketch generation problem using

Bayesian Program Learning (BPL)(Lake, Salakhutdinov,

and Tenenbaum 2015), we found that the quantification of

the semantic representation of differing sketch types is an

intractable problem due to the variations in size, detail, and

Figure 3. The Drawing Apprentice system overview.

primitives inherent in each sketch. The large number of

combinations of stroke orderings, along with their semantic

significance for each sketch archetype is very difficult to

represent in a way BPL can generate examples. The mathe-

matical representation of sketch archetypes would be the

ideal basis to use when generating new sketch examples. But

due to the intractability of the problem, we decided that a

more suitable framing of the problem would be an approxi-

mation of a family of posterior distributions. These distribu-

tions should be similar to a Gaussian, so that variation be-

tween sketches of the same type can be captured. The goal

is to then sample from these distributions, which will also

be representative of the vector space from which sketches

can be generated, with a given standard deviation to produce

a variation on a given image. We wish to represent distribu-

tions that are similar enough to the true generative distribu-

tion so that generated images are semantically coherent, but

not so closely related that a classifier being trained on a gen-

erated example would receive little increase in classification

accuracy. Therefore, it is necessary to use a model that can

approximate these distributions based on the hidden repre-

sentation of the salient variables present in each sketch, and

this narrowed down the family of algorithms that would be

appropriate for the task quite a bit.

We noticed that we could build a modified Variational

Autoencoder that would be suitable for the task of approxi-

mating the family of posterior distributions because we

could build an architecture which uses hierarchies of condi-

tional random variables to represent them (Sønderby et al.

2016; Bachman 2016). The salient aspects of each sketch,

represented in the latent space, are used to condition the dis-

tributions.

A typical VAE architecture consists of an encoder net-

work and a decoder network. The encoder network takes in

the input image and maps it to a latent vector 𝑍 of predefined

length. This latent vector is then used by the decoder to re-

construct the input image given the information contained in

it (Doersch 2016). The variational part comes into play

when the encoder does not directly encode the image but

splits it into two vectors of same length, namely 𝑍𝜇 and

𝑙𝑜𝑔(𝑍𝜎).Then, the final encoding, which is the latent vector

𝑍, is formed by sampling on the learned mean and standard

deviation (Doersch 2016; Nowozin, Cseke, and Tomioka

2016). For example: 𝑍 = 𝑍𝜇 + 𝑒𝑙𝑜𝑔(𝑍𝜎) ∗ 𝜀 where 𝜀 ∼

𝑁(0,1) where 𝑁 is the standard normal distribution. This

separation of latent space into two components is referred to

as the ‘reparameterization’ trick (D. P. Kingma and Welling

2013; Doersch 2016) that helps in applying KL-divergence

in order to evaluate how well the latent variable matches the

unit Gaussian (D. P. Kingma and Welling 2013; Nowozin,

Cseke, and Tomioka 2016; Doersch 2016). Hence, the loss

function that VAE tries to optimize as its objective is (1) The

reconstruction loss and (2) the KL-divergence (D. P.

Kingma and Welling 2013).

Previous work has shown that smaller networks are able

to optimize the loss function easily but cap off after a point

due to the difficulty smaller networks face when attempting

to capture highly non-linear relationships in data. Deeper

networks on the other hand tend to get stuck in a local max-

ima and collapse when trained on large image sizes (Søn-

derby et al. 2016; Bachman 2016; Burda, Grosse, and Sala-

khutdinov 2015). The LVAE architecture demonstrated that

training deeper Multilayer Perceptron layers requires grad-

ually introducing the KL term in the loss function during the

training process. However, this method had limitations, par-

ticularly in knowing at what epoch the KL term should be

introduced and on what scale (Sønderby et al. 2016). In the

literature, these decisions are usually determined by experi-

mentation and fine-tuning.

The network discussed in this paper was built to generate

as well as classify images using the learned features. We call

this architecture Auxiliary Classifier Variational Autoen-

coder (AC-VAE) that consists of an auxiliary classifier as

part of the encoder along with the latent vector. We build

upon findings from LVAE and use deep residual learning to

construct a very deep model that can work with large image

sizes and train efficiently in order to generate and classify

images. Classification networks built using residual blocks

are known for being very deep (>30 layers). Their ability to

adjust themselves depend on the degree of linearity of the

data (He et al. 2016) eases the training process. These resid-

ual blocks, as shown in Figure 4, form an integral part of our

network and are symmetrical for the encoder and decoder

network. They make use of Batch Normalization, which

speeds up training and can be incorporated into deeper net-

works without running the risk of overfitting. The diagram

shown in Figure 5 shows the overall network architecture of

AC-VAE using residual blocks and identity mappings be-

tween the convolutional layers for the sketch dataset.

Training deeper convolutional networks to optimize the

VAE loss requires significant tuning and usually the KL-

term becomes very large in the first few epochs to account

for variations in the data (Sønderby et al. 2016; Doersch

2016). Hence, we came up with a training strategy that could

potentially overcome these limitations and train the deep

network effectively. To do so, we reexamined the objective

that the network was trying to optimize and found something

similar to findings mentioned by LVAEs but the strategy

had to be changed. We found that if we minimized just the

reconstruction error before we moved to minimize the over-

all loss, the network would be able to learn good features

prior to minimizing the variational error. This scheme ena-

bled the network to partially encode the data distribution be-

fore moving on to learning the variations. Apart from this,

𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 𝐵𝑖𝑛𝑎𝑟𝑦𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴𝑐𝑡𝑢𝑎𝑙, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑)

𝐿𝑜𝑠𝑠𝐾𝐿 = −
1

2
𝑀𝑒𝑎𝑛(1 + 𝑙𝑜𝑔(𝑍𝜎) − 𝑍𝜇

2 − 𝑒𝑙𝑜𝑔(𝑍𝜎))

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝐾𝐿

we also introduced an auxiliary classifier that shared the

learned features to classify the input data. Therefore, the

overall loss term that AC-VAE minimizes is:

 𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐿𝑎𝑏𝑒𝑙𝑠𝑡𝑟𝑢𝑒 , 𝐿𝑎𝑏𝑒𝑙𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝐿𝑜𝑠𝑠𝐴𝐶−𝑉𝐴𝐸 = 𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝐾𝐿 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Furthermore, we noticed that the 𝐿𝑜𝑠𝑠𝐾𝐿 term acts as reg-

ularizer for our network, as mentioned in (Sønderby et al.

2016; Bachman 2016; D. P. Kingma and Welling 2013), and

helps the entire network counter overfitting. The process be-

low outlines the way the network is trained.

Method: Train AC-VAE

For each epoch:

1. Train the network once to minimize

𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

2. Train the network for 𝑘 epochs to minimize

𝐿𝑜𝑠𝑠𝐴𝐶−𝑉𝐴𝐸

This method of training facilitates the network to learn good

weights before trying to learn the variation across the image

batch and this is particularly helpful for deeper network that

have large number of parameters. The 𝐿𝑜𝑠𝑠𝐾𝐿term acts as a

regularization term (D. P. Kingma and Welling 2013;

Doersch 2016) and counters the network from overfitting to

the training data. A more intuitive way to reason about the

training process is that the first sub-epoch tries to match the

training distribution by training the network as a determin-

istic auto-encoder whereas, the second sub-epoch tries to

pull the network away from the distribution by introducing

variational cost. This enables the network account for vari-

ations in the training data and represent it within the latent

vector. This way of greedily minimizing the pieces of the

overall loss within each iteration stops the network from col-

lapsing when there are large deviations in the training data

and when the minimization process suddenly introduces

large variances in the KL-term.

Experiments and Evaluation

MNIST

MNIST dataset contains a collection of handwritten digit

images from 0 to 9 (image size 28 by 28 pixels) with 60,000

images in the training set and 10,000 in the test set. (LeCun,

Cortes, and Burges 2010). This dataset is widely used to

benchmark generative as well as classification networks.

For our experiments with MNIST, we created a network of

2 residual blocks as the encoder and 2 for the decoder to

account for the non-linearity.

The auxiliary classifier was attached to the intermediate

dense layer right before the latent layer and it consisted of

another residual block as shown in Figure 4. The network

mentioned in the paper was trained with Adam optimizer (D.

Kingma and Ba 2014), using no data augmentation and with

a learning rate of 0.001 as used during training LVAE (Søn-

derby et al. 2016). We ran the experiments for different di-

mensions of latent vectors from 2, 50 and 100 for 50 epochs.

Figure 5. AC-VAE used for sketch data. The auxiliary classifier uses the features extracted by the encoder to classify.

Figure 4. Residual block with identity mapping, used as the ba-

sis of our network where X denotes the number of filters used

in each convolutional layer.

The training process use the training methodology as out-

lined in this paper and we set 𝑘 = 2. During the training pro-

cess, we monitored the log-likelihood to report the genera-

tion accuracy in addition to the classification accuracy

measured. Table 1 below reports the best generation loss

achieved in addition to the auxiliary classification accuracy

on the MNIST test set and compares it to the other state-of-

the-art methods.

We can see that AC-VAE can minimize the loss better

than the previously employed methods, this is because net-

work can adjust itself to be as linear or nonlinear as possible

depending on the training data. To add to it, the high number

of convolutional feature extraction layers work well with

spatial data, have more parameters and can better represent

the distribution. Apart from the generative mode, we can see

that the features learned by the intermediate layer of the net-

work are even useful for classification purposes and the aux-

iliary classifier reaches a good accuracy of 99.31 percent,

which is comparable to the state-of-the-art classification re-

sults on MNIST dataset without any data augmentation.

TU-Berlin Sketch Dataset

The TU-Berlin dataset is a collection of human drawn

sketches of objects from everyday life. It is one of the first

datasets to contain several exemplar sketches for a wide va-

riety of human-drawn concepts. The dataset contains 250

categories, with each category containing 80 distinct

sketches for a total of 20,000 images. This dataset was se-

lected because it aligns with the scope of Drawing Appren-

tice project, and it is one of the largest collection of human

drawn sketches. We were motivated to test the network and

see how well the network could understand and generate

variations of the sketches present in this dataset. If success-

ful, this would help the program generate unique variations

to the sketches drawn by the user depending on how far the

algorithm samples from the distribution, adding transforma-

tional qualities to the agent.

For our purpose, the sketch images were resized to 128

by 128 pixels, and we tweaked the network to handle larger

images by using 5 residual blocks for the encoder and 5 for

the decoder. The dense layers that bridged the encoder and

decoder consisted of 4096 neurons in the intermediate layer

and 1024 in the latent layer. Overall, the network consisted

of 45 layers and was trained using ADAM optimizer with a

learning rate of 0.00001 for 100 epochs.

 To test our model, we split the 20,000 images into training

and test set with 18,000 images in the training set and the

remaining 2,000 in the test set. This split was chosen be-

cause previous evaluation methods used the same split to

benchmark the models. The above table reports the genera-

tion and classification accuracy we achieved using our

model and compare it to DRAW + VGP as used in D. Tran

et al. (Tran, Ranganath, and Blei 2015). Though, DRAW +

VGP generated using window sizes, the method cannot be

directly compared to ours as it uses a sliding window ap-

proach instead of generating end to end. Table 2 above

shows the accuracy for 300 epochs for DRAW + VGP and

for 100 epochs for AC-VAE. Few of the generated images

are also presented in figure 1 and 7 where figure 7 highlights

the variational part of the generative network where the first

image is the input image used to obtain the initial latent vec-

tor and is sampled upon to get the generated images. The

Model Generation

Log Likeli-

hood

Classifi-

cation

Accuracy

DRAW + VGP (Tran,

Ranganath, and Blei 2015)

(300 epochs)

-423.9 -

AC-VAE (100 epochs) -887 39%

Table 2. Results on the TU-Berlin test set where generation accu-

racy is measured using log-likelihood.

Model Generation

Log Likeli-

hood

Classifica-

tion

Accuracy

VAE, 2-layer + VGP

(Sønderby et al. 2016; Tran,

Ranganath, and Blei 2015)

-81.90 -N/A

LVAE, 5-Layer + fine-tuning

(Sønderby et al. 2016)

-81.84 -N/A

LVAE, 5-Layer + fine-tuning +

IW=10 (Sønderby et al. 2016)

-81.74 -N/A

MATNET (Bachman 2016) -80.5 -N/A

AC-VAE, Latent size = 50 -55.31 99.22%

AC-VAE, Latent size = 100 -52.63 99.31%

Table 1. Results on the MNIST test set. Generation accuracy is

measured using log-likelihood as used in previous works.

Figure 6. 2D Latent space representation of MNIST test im-

ages. Images are generated by sampling points from [0, 0] (top

left) to [1, 1] (bottom right). Each row goes from zero-sampling

to tail sampling on the right.

sampling is closer to mean on the left and away from the

mean as we move right.

Discussion

Our experimental results show that AC-VAE is effective for

classifying and generating sketched object images as re-

quired by the Drawing Apprentice co-creative system. This

approach combines the strength of VAEs with the image

sharpness typically associated with GANs. The network lev-

erages the strength of VAEs to represent variations in the

data by matching it to a unit Gaussian. This means if the

latent vector is varied by sampling from a normal distribu-

tion, the examples smoothly morph to form each other as

seen in figure 6. This continuous representation of the con-

ceptual space enables the system to generate diverse exam-

ples of that concept during the co-creation with the user,

such as helping designers explore the conceptual space of

their design.

The AC-VAE generation capabilities are useful for co-

creative agents because it can generate concepts represent-

ing different degrees of variations within the overall con-

cept. For example, the network can be used to intelligently

alter user’s sketched objects by converting it to the latent

variable and then transforming it to something else within

the same concept by sampling on the latent vector.

Future work can also explore combining the latent vectors

of two objects into a new space to enable object blending.

For example, combining the concepts of tree and airplane

may produce interesting tree airplanes when sampling the

latent vector. This type of object blending can be used in the

real time co-creative system by turning one object into an-

other resulting in a conceptual shift for the user. These types

of conceptual shifts are a unique part of the creative process,

and are particularly relevant to collaboration as different

perspectives often reveal new ways of seeing problems and

opportunities in the environment.

Conclusions

This paper reported on a new deep machine learning archi-

tecture to classify and generate input for co-creative sys-

tems. This network combines the generational strengths of

Variational Autoencoders with the image sharpness typi-

cally associated with Generative Adversarial Networks,

thereby enabling a generative deep learning architecture for

training co-creative agents called the Auxiliary Classifier

Variational Autoencoder (AC-VAE).

Our approach has two benefits: 1) it enables the design of

deeper Variational Autoencoders, and 2) it allows a training

methodology to ensure that these networks do not collapse

when trained on data that has high variance, such as

sketched objects. We reported the experimental results of

our network’s classification accuracy and generational loss

on the MNIST numerical image dataset and TU-Berlin

sketch data set. Results indicate our technique is effective

for classifying and generating sketched object images, eve n

with larger image size. We also described how our network

is particularly useful for co-creative agents since it can gen-

erate diverse concepts, as well as transform and morph user

generated sketches while maintaining their concept identity.

Acknowledgements

This work was supported by NSF Grant IIS-1320520.

References

Arjovsky, Martin, and Léon Bottou. 2017. “Towards Prin-

cipled Methods for Training Generative Adversarial Net-

works.” In NIPS 2016 Workshop on Adversarial Training.

In Review for ICLR. Vol. 2016.

Bachman, Philip. 2016. “An Architecture for Deep, Hierar-

chical Generative Models.” In Advances in Neural Infor-

mation Processing Systems, 4826–4834.

Bengio, Yoshua, Li Yao, Guillaume Alain, and Pascal Vin-

cent. 2013. “Generalized Denoising Auto-Encoders as

Generative Models.” In Advances in Neural Information

Processing Systems, 899–907.

Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov.

2015. “Importance Weighted Autoencoders.” arXiv Pre-

print arXiv:1509.00519.

Chen, Quanze, Chenyang Lei, Wei Xu, Ellie Pavlick, and

Chris Callison-Burch. 2014. “Poetry of the Crowd: A Hu-

man Computation Algorithm to Convert Prose into Rhym-

ing Verse.” In Second AAAI Conference on Human Com-

putation and Crowdsourcing.

Colton, Simon, Jacob Goodwin, and Tony Veale. 2012.

“Full Face Poetry Generation.” In Proceedings of the Third

International Conference on Computational Creativity,

95–102.

Davis, Nicholas, Margeaux Comerford, Mikhail Jacob,

Chih-Pin Hsiao, and Brian Magerko. 2015. “An Enactive

Characterization of Pretend Play.” In Proceedings of the

2015 ACM SIGCHI Conference on Creativity and Cogni-

tion, 275–284. ACM.

Figure 7. Variations of examples from Tu-Berlin test data gen-

erated using AC-VAE. Image on the far left represents the

sketch image that was fed into the system. The variations are

generated by randomly sampling on the latent variable of size

1024 used in the experiment.

Davis, Nicholas, Ellen Yi-Luen Do, Pramod Gupta, and

Shruti Gupta. 2011. “Computing Harmony with PerLogi-

cArt: Perceptual Logic Inspired Collaborative Art.” In Pro-

ceedings of the 8th ACM Conference on Creativity and

Cognition, 185–194. ACM.

Davis, Nicholas, Chih-Pin Hsiao, Kunwar Yashraj Singh,

Lisa Li, Sanat Moningi, and Brian Magerko. 2015. “Draw-

ing Apprentice: An Enactive Co-Creative Agent for Artis-

tic Collaboration.” In Proceedings of the 2015 ACM

SIGCHI Conference on Creativity and Cognition, 185–

186. ACM.

Davis, Nicholas, Chih-Pin Hsiao, Kunwar Yashraj Singh,

and Brian Magerko. 2016. “Co-Creative Drawing Agent

with Object Recognition.” In Twelfth Artificial Intelligence

and Interactive Digital Entertainment Conference.

Davis, Nicholas, Chih-Pin Hsiao, Kunwar Yashraj Singh,

Lisa Li, and Brian Magerko. 2016. “Empirically Studying

Participatory Sense-Making in Abstract Drawing with a

Co-Creative Cognitive Agent.” In Proceedings of the 21st

International Conference on Intelligent User Interfaces,

196–207. ACM.

Davis, Nicholas, Yanna Popova, Ivan Sysoeven, Dingtian

Zhang, and Brian Magerko. 2014. “Building Artistic Com-

puter Colleagues with an Enactive Model of Creativity.” In

International Conference on Computational Creativity,

Ljubljuana Slovenia. AAI.

Doersch, Carl. 2016. “Tutorial on Variational Autoencod-

ers.” arXiv Preprint arXiv:1606.05908.

Gatys, Leon A, Alexander S Ecker, and Matthias Bethge.

2016. “Image Style Transfer Using Convolutional Neural

Networks.” In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2414–2423.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,

and Yoshua Bengio. 2014. “Generative Adversarial Nets.”

In Advances in Neural Information Processing Systems,

2672–2680.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. 2016. “Deep Residual Learning for Image Recogni-

tion.” In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 770–778.

Hsiao, Chih-Pin. 2015. “SolidSketch: Toward Enactive In-

teractions for Semantic Model Creation.” In Proceedings

of the 2015 ACM SIGCHI Conference on Creativity and

Cognition, 329–330. ACM.

Johnson, Matthew J, David Duvenaud, Alexander B Wilt-

schko, Sandeep R Datta, and Ryan P Adams. 2016. “Struc-

tured VAEs: Composing Probabilistic Graphical Models

and Variational Autoencoders.” arXiv Preprint

arXiv:1603.06277.

Kaae Sønderby, Casper, Tapani Raiko, Lars Maaløe, Søren

Kaae Sønderby, and Ole Winther. 2016. “How to Train

Deep Variational Autoencoders and Probabilistic Ladder

Networks.” arXiv Preprint arXiv:1602.02282.

Kingma, Diederik, and Jimmy Ba. 2014. “Adam: A

Method for Stochastic Optimization.” arXiv Preprint

arXiv:1412.6980.

Kingma, Diederik P, and Max Welling. 2013. “Auto-En-

coding Variational Bayes.” arXiv Preprint

arXiv:1312.6114.

Lake, Brenden M, Ruslan Salakhutdinov, and Joshua B

Tenenbaum. 2015. “Human-Level Concept Learning

through Probabilistic Program Induction.” Science 350

(6266): 1332–1338.

LeCun, Yann, Corinna Cortes, and Christopher J.C.

Burges. 2010. “The MNIST Database of Handwritten Dig-

its.” http://yann.lecun.com/exdb/mnist/.

Nowozin, Sebastian, Botond Cseke, and Ryota Tomioka.

2016. “F-GAN: Training Generative Neural Samplers Us-

ing Variational Divergence Minimization.” In Advances in

Neural Information Processing Systems, 271–279.

Radford, Alec, Luke Metz, and Soumith Chintala. 2015.

“Unsupervised Representation Learning with Deep Convo-

lutional Generative Adversarial Networks.” arXiv Preprint

arXiv:1511.06434.

Salimans, Tim, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, and Xi Chen. 2016. “Improved

Techniques for Training Gans.” In Advances in Neural In-

formation Processing Systems, 2226–2234.

Sawyer, R Keith, and Stacy DeZutter. 2009. “Distributed

Creativity: How Collective Creations Emerge from Collab-

oration.” Psychology of Aesthetics, Creativity, and the Arts

3 (2): 81.

Sønderby, Casper Kaae, Tapani Raiko, Lars Maaløe, Søren

Kaae Sønderby, and Ole Winther. 2016. “Ladder Varia-

tional Autoencoders.” In Advances in Neural Information

Processing Systems, 3738–3746.

Tran, Dustin, Rajesh Ranganath, and David M. Blei. "The

variational Gaussian process." arXiv preprint

arXiv:1511.06499 (2015).

Veale, Tony. 2012. “From Conceptual Mash-Ups to Bad-

Ass Blends: A Robust Computational Model of Conceptual

Blending.” In Proceedings of the Third International Con-

ference on Computational Creativity, 1–8.

Vincent, Pascal, Hugo Larochelle, Isabelle Lajoie, Yoshua

Bengio, and Pierre-Antoine Manzagol. 2010. “Stacked De-

noising Autoencoders: Learning Useful Representations in

a Deep Network with a Local Denoising Criterion.” Jour-

nal of Machine Learning Research 11 (Dec): 3371–3408.

Walker, Jacob, Carl Doersch, Abhinav Gupta, and Martial

Hebert. 2016. “An Uncertain Future: Forecasting from

Static Images Using Variational Autoencoders.” In Euro-

pean Conference on Computer Vision, 835–851. Springer.

