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Abstract 

This paper reports on a new deep machine learning ar-
chitecture to classify and generate input for co-creative 
systems. Our approach combines the generational 
strengths of Variational Autoencoders with the image 
sharpness typically associated with Generative Adver-
sarial Networks, thereby enabling a generative deep 
learning architecture for training co-creative agents 
called the Auxiliary Classifier Variational Autoencoder 
(AC-VAE). We report the experimental results of our 
network’s classification accuracy and generational loss 
on the MNIST numerical image dataset and TU-Berlin 
sketch data set. Results indicate our technique is effec-
tive for classifying and generating sketched object im-
ages, with larger sizes. We also describe how our net-
work is particularly useful for co-creative agents since it 
can generate diverse concepts, as well as transform and 
morph user generated sketches while maintaining their 
concept identity. 

 Introduction 

Three distinct trends are emerging in the field of computa-
tional creativity that form a spectrum of computational in-
tervention in the creative process of users. On one end of the 
spectrum, intelligent systems assist users to achieve their 
creative goals with creativity support tools (CSTs). At the 
other end of the spectrum, users control different algorith-
mic parameters and deploy fully autonomous systems that 
generate artworks (i.e. procedural and algorithmic art gen-
eration). Computer colleagues represent the midpoint on this 
spectrum since these creative systems introduce co-creative 
agents in the user’s creative process as a collaborator or part-
ner that can modify and add to a shared creative product.  
 Collaboration is a powerful way to inspire and support 
creativity. During creative improvisational collaborations, a 
new form of distributed creativity arises that can lead to 
emergent, dynamic, and unexpected meaning to support cre-
ativity in new ways (Sawyer and DeZutter 2009). We have 
seen evidence of how collaboration leads to dynamic and 
emergent meaning structures that inspire novel ideas during 
empirical studies of pretend play (Davis, Comerford, et al. 
2015) and collaborative drawing (Davis, Hsiao, Yashraj 
Singh, et al. 2016). We have also found how collaborators 
often provide unexpected ideas and thus lead to surprising 

results. The same dynamism and flexibility that make crea-
tive collaboration so effective also make it challenging to 
implement autonomous co-creative agents. 
 We designed the Drawing Apprentice as a co-creative 
drawing partner to help explore what technical approaches 
and interaction designs are effective for facilitating creative 
collaboration in drawing. The system analyzes the user’s in-
put and responds with its own contribution on a shared can-
vas. Our findings highlight the importance of classification 
and generative models for such systems, in order to recog-
nize what type of object the user is drawing and generate an 
object in response. This creative dialogue of progressively 
adding related objects to a canvas can help the user generate 
more novel ideas and stay motivated to continue adding to 
the drawing. However, training a generative model with 
highly variable data is problematic in our case. The open-
ended nature of drawing means users can introduce virtually 
any idea, and they expect real time responses. Furthermore, 
users are more interested in engaging in the drawing activity 
than explicitly training a system. These factors impede in-
teractive machine learning and place a higher burden on the 

  
 

Figure 1. Generated sketches from the TU-berlin sketch data 

test set using the AC-VAE network. 

 

 

 

 

 

 

 

 



interface and UX design to convince users to provide 
enough feedback to meaningfully train the system.  
 Creative domains, such as drawing, have two big 
knowledge engineering challenges: 1) The domain is open-
ended, dynamic, and highly improvisational, which means 
the system needs to both classify and generate sketches in 
real time; and 2) creative domains do not have a lot of 
publicly available datasets. Furthermore, only a subset of the 
publicly available creativity data include data about the pro-
cess of their creation. For example, in the domain of draw-
ing, the TU-berlin sketch dataset is one of the only publicly 
available datasets of human sketched objects that contains 
stroke-level information.  
 The solution we propose is a deep learning architecture 
that can learn the latent distribution of example images to 
effectively classify and generate diverse instances of the 
learned concept. Our approach is called the Auxiliary Clas-
sifier Variational Autoencoder (AC-VAE). Our approach 
has two main benefits: 1) it enables the design of deeper 
Variational Autoencoders, and 2) it allows a training meth-
odology to ensure that these networks do not collapse when 
trained on data that has high variance, such as sketched ob-
jects. The network employs a greedy training process for op-
timization, which ensures that these deeper networks do not 
collapse when training on data that has higher amount of 
variations.  

We demonstrate how this network can effectively use var-

iational autoencoding on large highly variable sketched im-

age inputs and represent variations in the data by matching 

it to a unit Gaussian. This means if the latent vector is varied 

by sampling from a normal distribution, the examples 

smoothly morph to form each other. In the case of Drawing 

Apprentice, the network can take a sketch input, convert it 

to the latent variable, and then transform it to something else 

(within the same concept) by sampling on the latent vector. 

Our method uses one deep unified network to achieve high 

classification accuracy and low generation loss of image 

based data. This paper describes the AC-VAE network and 

the details of experimental results showing its efficacy on 

standard ML datasets and sketched object data. We also de-

scribe how the algorithm fits into the Drawing Apprentice 

architecture and how users will interact with it in the real-

time application.  

Related Work 

Recent advances in deep machine learning enabled powerful 

classification and generation capabilities. Machine learning 

has been applied to traditional CSTs by improving the clas-

sification of the user’s actions to provide better contextual 

support (Hsiao 2015). Similarly, deep learning has been ap-

plied to generative systems to produce extremely detailed 

and aesthetically pleasing artistic products, as demonstrated 

by the proliferation of neural style blending applications 

(Gatys, Ecker, and Bethge 2016). However, designing deep 

learning architectures for co-creative agents presents unique 

and interesting challenges as mentioned. These systems 

need to be able to learn from diverse examples on the fly 

during improvisation to help facilitate a more seamless col-

laboration experience.  

There have been some creative approaches for generating 

datasets in creative domains, such as crowdsourcing and 

pulling creative content from the web (Chen et al. 2014; 

Colton, Goodwin, and Veale 2012; Veale 2012). While 

these methods can be successful in generative computa-

tional creativity systems, co-creative systems have to ac-

tively improvise with users that can generate responses in 

real time with which the system is completely unfamiliar. 

This type of improvisational learning requires generalizing 

from a set of training examples that may have a high varia-

bility within the examples.  

Recent advances in generative models have enabled algo-

rithms to learn a distribution from input examples and gen-

erate new examples from them, which can help train deep 

neural networks. Some popular methods for generating ex-

amples include Autoencoders (Vincent et al. 2010; Bengio 

et al. 2013), Generative Adversarial Networks (GAN) 

(Radford, Metz, and Chintala 2015), and Variational Auto-

encoders (VAE) (Kaae Sønderby et al. 2016; Johnson et al. 

2016; Walker et al. 2016). Autoencoders are unsupervised 

networks that consists of an encoder and decoder stitched 

together that learn to reconstruct the inputs provided to the 

network. Generative Adversarial Networks learn the input 

distribution by training in an adversarial fashion. GANs 

consists of a discriminator and generator module that at-

tempt to constantly fool each during the training process in 

order to learn the distribution (Goodfellow et al. 2014). 

While GANs have gained in popularity recently due to their 

effectiveness at learning the input distribution to generate 

realistic images, their stability remains an open question as 

training them effectively requires a lot of tuning (Arjovsky 

and Bottou 2017; Salimans et al. 2016). These networks are 

difficult to train on large image sizes, and often do not con-

verge on large and complex image inputs (Goodfellow et al. 

2014).  

Variational Autoencoders are a variant of autoencoders 

that learn a compact representation of the input space, re-

ferred to as the latent space (Sønderby et al. 2016). The la-

tent space learned by VAEs are rich in a sense that they also 

encode various properties of the image implicitly, which is 

useful for performing vector arithmetic to generate new im-

ages (Sønderby et al. 2016). The downside of this approach 

 
 

Figure 2. A typical Variational Autoencoder 



is that the images are blurry when compared to GAN due to 

the mean loss being optimized. Additionally, it is not feasi-

ble to train a VAE that is deep and works with large image 

sizes (Arjovsky and Bottou 2017; Salimans et al. 2016). Re-

cent techniques such as Ladder Variational Autoencoders 

(LVAEs), Importance Weighted Autoencoders, and Matry-

oshka Networks have tried to address this problem by utiliz-

ing warm up training to introduce the variational term grad-

ually (Bachman 2016; Sønderby et al. 2016; Burda, Grosse, 

and Salakhutdinov 2015).  There has also been success using 

hybrid top down and bottom up networks (Bachman 2016). 

In this paper, we build on the finding of LVAE and Matry-

oshka architecture to overcome some of the limitations of 

VAEs. This approach enables training deeper and larger 

VAEs and opens the possibility of handling large input im-

ages and leading to sharper output results. We will describe 

the overall system components before discussing the details 

of our approach and how it can fit into the system. 

System Description 

Drawing Apprentice System 

The Drawing Apprentice is implemented as a web applica-

tion (He et al. 2016; Davis, Hsiao, Yashraj Singh, et al. 

2016; Davis, Hsiao, et al. 2015) with a client-server archi-

tecture that enables multiple people to collaborate on the 

same drawings as well as the co-creative agent. It was de-

signed for use with stylus- or touch-based interactions, but 

a mouse can also be used. To briefly summarize its function, 

the system takes user input lines, transforms those lines 

based on the sketch recognition and generation algorithms, 

and outputs new lines onto the same canvas. Unique and de-

fining features of input line sets are determined by clustering 

the data points and sending that them into the neural net-

work. This allows the neural network to derive its own clas-

sifications scheme based on the data it has been given.  

As shown in Figure 3, the system was seeded with various 

algorithms: (1) line transformation functions, such as trans-

lation, scaling, rotation (Davis et al. 2011); (2) line morph-

ing techniques that change the individual features of the in-

put lines to create new lines that retain a similarity to the 

input lines (Davis, Hsiao, et al. 2015; Davis et al. 2014); and 

(3) recognizing the sketching object and generating similar 

object in response (Davis, Hsiao, Singh, et al. 2016). During 

drawing collaboration, the user may begin at any point, 

which can lead to synchronous collaboration. When the user 

pauses the drawing, the agent will recognize it as a “turn”, 

and adopt one of the algorithms to generate the response 

lines. When the user is not satisfied with the agent’s drawing 

actions, she could provide feedback on them to optimize the 

system’s model by clicking on the up and down voting but-

tons. To simulate the dynamism and embodied nature of 

real-time human collaboration, the Drawing Apprentice 

character draws lines dynamically, meaning lines do not ap-

pear at once in full, but are gradually animated through until 

their completion. Dynamic line drawing is meant to provide 

a sense that the system is going through the embodied act of 

creating a line. This presents an interesting opportunity 

where improving the user experience design might poten-

tially improve the performance of the machine learning al-

gorithms (since more feedback helps train the system).  

One of the primary limitations of the Drawing Apprentice 

system that requires the proposed architecture is the ability 

to generate diverse instances of learned objects. Before in-

tegrating the new architecture, the system’s line generation 

capabilities were restricted to reacting to the user’s line or 

recognizing groups of lines as objects and selecting a related 

object from its databased of known concepts and drawing 

the selection directly. The system never actively generated 

new instances of concepts that it learned. The new AC-VAE 

network learns the latent distribution of example inputs, 

which allows sampling in that space to generate new outputs 

based on that distribution. We define two types of sampling 

for our use case.  

Zero-Sampling: when the latent vector of the input im-

age is sampled close to the mean having 0 standard devia-

tion.  

Tail-Sampling: when the latent vector of the input image 

is sampled way from the mean towards the tail of the distri-

bution, having standard deviation close to 1.  

Based on the two sampling types we can indicate the 

amount of variation required on the input. In case of zero-

sampling, the input image is reconstructed as close to itself 

as possible whereas in tail-sampling, the input is varied sig-

nificantly while still retaining some of the input features. 

The following sections describe the design decision and 

experimentations related to the new network architecture.    

Network Architecture 

When initially tackling the sketch generation problem using 

Bayesian Program Learning (BPL)(Lake, Salakhutdinov, 

and Tenenbaum 2015), we found that the quantification of 

the semantic representation of differing sketch types is an 

intractable problem due to the variations in size, detail, and 

 
 

Figure 3. The Drawing Apprentice system overview.  



primitives inherent in each sketch. The large number of 

combinations of stroke orderings, along with their semantic 

significance for each sketch archetype is very difficult to 

represent in a way BPL can generate examples. The mathe-

matical representation of sketch archetypes would be the 

ideal basis to use when generating new sketch examples. But 

due to the intractability of the problem, we decided that a 

more suitable framing of the problem would be an approxi-

mation of a family of posterior distributions. These distribu-

tions should be similar to a Gaussian, so that variation be-

tween sketches of the same type can be captured. The goal 

is to then sample from these distributions, which will also 

be representative of the vector space from which sketches 

can be generated, with a given standard deviation to produce 

a variation on a given image. We wish to represent distribu-

tions that are similar enough to the true generative distribu-

tion so that generated images are semantically coherent, but 

not so closely related that a classifier being trained on a gen-

erated example would receive little increase in classification 

accuracy. Therefore, it is necessary to use a model that can 

approximate these distributions based on the hidden repre-

sentation of the salient variables present in each sketch, and 

this narrowed down the family of algorithms that would be 

appropriate for the task quite a bit. 

We noticed that we could build a modified Variational 

Autoencoder that would be suitable for the task of approxi-

mating the family of posterior distributions because we 

could build an architecture which uses hierarchies of condi-

tional random variables to represent them (Sønderby et al. 

2016; Bachman 2016). The salient aspects of each sketch, 

represented in the latent space, are used to condition the dis-

tributions. 

A typical VAE architecture consists of an encoder net-

work and a decoder network. The encoder network takes in 

the input image and maps it to a latent vector 𝑍 of predefined 

length. This latent vector is then used by the decoder to re-

construct the input image given the information contained in 

it (Doersch 2016). The variational part comes into play 

when the encoder does not directly encode the image but 

splits it into two vectors of same length, namely 𝑍𝜇 and 

𝑙𝑜𝑔(𝑍𝜎).Then, the final encoding, which is the latent vector 

𝑍, is formed by sampling on the learned mean and standard 

deviation (Doersch 2016; Nowozin, Cseke, and Tomioka 

2016). For example: 𝑍 = 𝑍𝜇 + 𝑒𝑙𝑜𝑔(𝑍𝜎) ∗ 𝜀 where 𝜀 ∼

𝑁(0,1) where 𝑁 is the standard normal distribution. This 

separation of latent space into two components is referred to 

as the ‘reparameterization’ trick (D. P. Kingma and Welling 

2013; Doersch 2016) that helps in applying KL-divergence 

in order to evaluate how well the latent variable matches the 

unit Gaussian (D. P. Kingma and Welling 2013; Nowozin, 

Cseke, and Tomioka 2016; Doersch 2016). Hence, the loss 

function that VAE tries to optimize as its objective is (1) The 

reconstruction loss and (2) the KL-divergence (D. P. 

Kingma and Welling 2013).  

Previous work has shown that smaller networks are able 

to optimize the loss function easily but cap off after a point 

due to the difficulty smaller networks face when attempting 

to capture highly non-linear relationships in data. Deeper 

networks on the other hand tend to get stuck in a local max-

ima and collapse when trained on large image sizes (Søn-

derby et al. 2016; Bachman 2016; Burda, Grosse, and Sala-

khutdinov 2015). The LVAE architecture demonstrated that 

training deeper Multilayer Perceptron layers requires grad-

ually introducing the KL term in the loss function during the 

training process. However, this method had limitations, par-

ticularly in knowing at what epoch the KL term should be 

introduced and on what scale (Sønderby et al. 2016). In the 

literature, these decisions are usually determined by experi-

mentation and fine-tuning. 

The network discussed in this paper was built to generate 

as well as classify images using the learned features. We call 

this architecture Auxiliary Classifier Variational Autoen-

coder (AC-VAE) that consists of an auxiliary classifier as 

part of the encoder along with the latent vector. We build 

upon findings from LVAE and use deep residual learning to 

construct a very deep model that can work with large image 

sizes and train efficiently in order to generate and classify 

images. Classification networks built using residual blocks 

are known for being very deep (>30 layers). Their ability to 

adjust themselves depend on the degree of linearity of the 

data (He et al. 2016) eases the training process. These resid-

ual blocks, as shown in Figure 4, form an integral part of our 

network and are symmetrical for the encoder and decoder 

network. They make use of Batch Normalization, which 

speeds up training and can be incorporated into deeper net-

works without running the risk of overfitting. The diagram 

shown in Figure 5 shows the overall network architecture of 

AC-VAE using residual blocks and identity mappings be-

tween the convolutional layers for the sketch dataset. 

Training deeper convolutional networks to optimize the 

VAE loss requires significant tuning and usually the KL-

term becomes very large in the first few epochs to account 

for variations in the data (Sønderby et al. 2016; Doersch 

2016). Hence, we came up with a training strategy that could 

potentially overcome these limitations and train the deep 

network effectively. To do so, we reexamined the objective 

that the network was trying to optimize and found something 

similar to findings mentioned by LVAEs but the strategy 

had to be changed. We found that if we minimized just the 

reconstruction error before we moved to minimize the over-

all loss, the network would be able to learn good features 

prior to minimizing the variational error. This scheme ena-

bled the network to partially encode the data distribution be-

fore moving on to learning the variations. Apart from this, 

𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 𝐵𝑖𝑛𝑎𝑟𝑦𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴𝑐𝑡𝑢𝑎𝑙, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑)   

 

𝐿𝑜𝑠𝑠𝐾𝐿 = −
1

2
𝑀𝑒𝑎𝑛(1 + 𝑙𝑜𝑔(𝑍𝜎) − 𝑍𝜇

2 − 𝑒𝑙𝑜𝑔(𝑍𝜎))  

 
𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝐾𝐿 



we also introduced an auxiliary classifier that shared the 

learned features to classify the input data. Therefore, the 

overall loss term that AC-VAE minimizes is: 

 

 𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  =

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐿𝑎𝑏𝑒𝑙𝑠𝑡𝑟𝑢𝑒 , 𝐿𝑎𝑏𝑒𝑙𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 

𝐿𝑜𝑠𝑠𝐴𝐶−𝑉𝐴𝐸 = 𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝐾𝐿 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 
 

 

 

Furthermore, we noticed that the 𝐿𝑜𝑠𝑠𝐾𝐿 term acts as reg-

ularizer for our network, as mentioned in (Sønderby et al. 

2016; Bachman 2016; D. P. Kingma and Welling 2013), and 

helps the entire network counter overfitting. The process be-

low outlines the way the network is trained. 

 

Method: Train AC-VAE 

For each epoch: 

1. Train the network once to minimize 

𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

2. Train the network for 𝑘 epochs to minimize 

𝐿𝑜𝑠𝑠𝐴𝐶−𝑉𝐴𝐸 

This method of training facilitates the network to learn good 

weights before trying to learn the variation across the image 

batch and this is particularly helpful for deeper network that 

have large number of parameters. The 𝐿𝑜𝑠𝑠𝐾𝐿term acts as a 

regularization term (D. P. Kingma and Welling 2013; 

Doersch 2016) and counters the network from overfitting to 

the training data. A more intuitive way to reason about the 

training process is that the first sub-epoch tries to match the 

training distribution by training the network as a determin-

istic auto-encoder whereas, the second sub-epoch tries to 

pull the network away from the distribution by introducing 

variational cost. This enables the network account for vari-

ations in the training data and represent it within the latent 

vector. This way of greedily minimizing the pieces of the 

overall loss within each iteration stops the network from col-

lapsing when there are large deviations in the training data 

and when the minimization process suddenly introduces 

large variances in the KL-term. 

Experiments and Evaluation 

MNIST 

MNIST dataset contains a collection of handwritten digit 

images from 0 to 9 (image size 28 by 28 pixels) with 60,000 

images in the training set and 10,000 in the test set. (LeCun, 

Cortes, and Burges 2010). This dataset is widely used to 

benchmark generative as well as classification networks. 

For our experiments with MNIST, we created a network of 

2 residual blocks as the encoder and 2 for the decoder to 

account for the non-linearity.  

The auxiliary classifier was attached to the intermediate 

dense layer right before the latent layer and it consisted of 

another residual block as shown in Figure 4. The network 

mentioned in the paper was trained with Adam optimizer (D. 

Kingma and Ba 2014), using no data augmentation and with 

a learning rate of 0.001 as used during training LVAE (Søn-

derby et al. 2016). We ran the experiments for different di-

mensions of latent vectors from 2, 50 and 100 for 50 epochs. 

 
 

Figure 5. AC-VAE used for sketch data. The auxiliary classifier uses the features extracted by the encoder to classify. 

 

 
Figure 4. Residual block with identity mapping, used as the ba-

sis of our network where X denotes the number of filters used 

in each convolutional layer. 



The training process use the training methodology as out-

lined in this paper and we set 𝑘 = 2. During the training pro-

cess, we monitored the log-likelihood to report the genera-

tion accuracy in addition to the classification accuracy 

measured. Table 1 below reports the best generation loss 

achieved in addition to the auxiliary classification accuracy 

on the MNIST test set and compares it to the other state-of-

the-art methods. 

We can see that AC-VAE can minimize the loss better 

than the previously employed methods, this is because net-

work can adjust itself to be as linear or nonlinear as possible 

depending on the training data. To add to it, the high number 

of convolutional feature extraction layers work well with 

spatial data, have more parameters and can better represent 

the distribution. Apart from the generative mode, we can see 

that the features learned by the intermediate layer of the net-

work are even useful for classification purposes and the aux-

iliary classifier reaches a good accuracy of 99.31 percent, 

which is comparable to the state-of-the-art classification re-

sults on MNIST dataset without any data augmentation. 

 

TU-Berlin Sketch Dataset 

The TU-Berlin dataset is a collection of human drawn 

sketches of objects from everyday life. It is one of the first 

datasets to contain several exemplar sketches for a wide va-

riety of human-drawn concepts. The dataset contains 250 

categories, with each category containing 80 distinct 

sketches for a total of 20,000 images. This dataset was se-

lected because it aligns with the scope of Drawing Appren-

tice project, and it is one of the largest collection of human 

drawn sketches. We were motivated to test the network and 

see how well the network could understand and generate 

variations of the sketches present in this dataset. If success-

ful, this would help the program generate unique variations 

to the sketches drawn by the user depending on how far the 

algorithm samples from the distribution, adding transforma-

tional qualities to the agent.  

For our purpose, the sketch images were resized to 128 

by 128 pixels, and we tweaked the network to handle larger 

images by using 5 residual blocks for the encoder and 5 for 

the decoder. The dense layers that bridged the encoder and 

decoder consisted of 4096 neurons in the intermediate layer 

and 1024 in the latent layer. Overall, the network consisted 

of 45 layers and was trained using ADAM optimizer with a 

learning rate of 0.00001 for 100 epochs.  

 To test our model, we split the 20,000 images into training 

and test set with 18,000 images in the training set and the 

remaining 2,000 in the test set. This split was chosen be-

cause previous evaluation methods used the same split to 

benchmark the models. The above table reports the genera-

tion and classification accuracy we achieved using our 

model and compare it to DRAW + VGP as used in D. Tran 

et al. (Tran, Ranganath, and Blei 2015). Though, DRAW + 

VGP generated using window sizes, the method cannot be 

directly compared to ours as it uses a sliding window ap-

proach instead of generating end to end. Table 2 above 

shows the accuracy for 300 epochs for DRAW + VGP and 

for 100 epochs for AC-VAE. Few of the generated images 

are also presented in figure 1 and 7 where figure 7 highlights 

the variational part of the generative network where the first 

image is the input image used to obtain the initial latent vec-

tor and is sampled upon to get the generated images. The 

Model Generation 

Log Likeli-

hood 

Classifi-

cation 

Accuracy 

DRAW + VGP (Tran, 

Ranganath, and Blei 2015) 

(300 epochs) 

-423.9 - 

AC-VAE (100 epochs) -887 39% 

 

Table 2. Results on the TU-Berlin test set where generation accu-

racy is measured using log-likelihood. 

Model Generation 

Log Likeli-

hood 

Classifica-

tion 

Accuracy 

VAE, 2-layer + VGP  

(Sønderby et al. 2016; Tran, 

Ranganath, and Blei 2015) 

-81.90 -N/A 

LVAE, 5-Layer + fine-tuning  

(Sønderby et al. 2016) 

-81.84 -N/A 

LVAE, 5-Layer + fine-tuning + 

IW=10  (Sønderby et al. 2016) 

-81.74 -N/A 

MATNET (Bachman 2016) -80.5 -N/A 

AC-VAE, Latent size = 50 -55.31 99.22% 

AC-VAE, Latent size = 100 -52.63  99.31% 

 

Table 1. Results on the MNIST test set. Generation accuracy is 

measured using log-likelihood as used in previous works. 

    
 

Figure 6. 2D Latent space representation of MNIST test im-

ages. Images are generated by sampling points from [0, 0] (top 

left) to [1, 1] (bottom right). Each row goes from zero-sampling 

to tail sampling on the right. 

 

 

 

 



sampling is closer to mean on the left and away from the 

mean as we move right. 

Discussion 

Our experimental results show that AC-VAE is effective for 

classifying and generating sketched object images as re-

quired by the Drawing Apprentice co-creative system. This 

approach combines the strength of VAEs with the image 

sharpness typically associated with GANs. The network lev-

erages the strength of VAEs to represent variations in the 

data by matching it to a unit Gaussian. This means if the 

latent vector is varied by sampling from a normal distribu-

tion, the examples smoothly morph to form each other as 

seen in figure 6. This continuous representation of the con-

ceptual space enables the system to generate diverse exam-

ples of that concept during the co-creation with the user, 

such as helping designers explore the conceptual space of 

their design.  

The AC-VAE generation capabilities are useful for co-

creative agents because it can generate concepts represent-

ing different degrees of variations within the overall con-

cept. For example, the network can be used to intelligently 

alter user’s sketched objects by converting it to the latent 

variable and then transforming it to something else within 

the same concept by sampling on the latent vector.  

Future work can also explore combining the latent vectors 

of two objects into a new space to enable object blending. 

For example, combining the concepts of tree and airplane 

may produce interesting tree airplanes when sampling the 

latent vector. This type of object blending can be used in the 

real time co-creative system by turning one object into an-

other resulting in a conceptual shift for the user. These types 

of conceptual shifts are a unique part of the creative process, 

and are particularly relevant to collaboration as different 

perspectives often reveal new ways of seeing problems and 

opportunities in the environment.  

Conclusions 

This paper reported on a new deep machine learning archi-

tecture to classify and generate input for co-creative sys-

tems. This network combines the generational strengths of 

Variational Autoencoders with the image sharpness typi-

cally associated with Generative Adversarial Networks, 

thereby enabling a generative deep learning architecture for 

training co-creative agents called the Auxiliary Classifier 

Variational Autoencoder (AC-VAE).  

Our approach has two benefits: 1) it enables the design of 

deeper Variational Autoencoders, and 2) it allows a training 

methodology to ensure that these networks do not collapse 

when trained on data that has high variance, such as 

sketched objects. We reported the experimental results of 

our network’s classification accuracy and generational loss 

on the MNIST numerical image dataset and TU-Berlin 

sketch data set. Results indicate our technique is effective 

for classifying and generating sketched object images, eve n 

with larger image size. We also described how our network 

is particularly useful for co-creative agents since it can gen-

erate diverse concepts, as well as transform and morph user 

generated sketches while maintaining their concept identity. 
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