
How Can We Deal With The Design Principle Of Visibility In Highly
Encapsulated Computationally Creative Systems?

Liam Bray
Art and Design

The University of New South Wales
Cnr Oxford St and Greens Rd

Paddington NSW 2021 Australia
liam.bray@sydney.edu.au

Oliver Bown
Art and Design

The University of New South Wales
Cnr Oxford St and Greens Rd

Paddington NSW 2021 Australia
o.bown@unsw.edu.au

Benjamin Carey
Sydney Conservatorium of Music

The University of Sydney
1 Conservatorium Rd

Sydney NSW 2000 Australia
benjamin.carey@sydney.edu.au

Abstract

In this paper we analyse three specific computationally cre-
ative interface categories; direct manipulation systems, pro-
grammable interfaces and highly encapsulated systems. We
conduct a preliminary investigation into a single expert user’s
experience of using tools which are designed for musical
composition. Then discuss the implications encapsulation
has on visibility in different computationally creative scenar-
ios. Our analysis of the user’s experience is then used to iter-
atively inform our categorisation of computationally creative
interface types.

Introduction
Computationally creative (CC) music systems that are de-
signed to be used as part of a co-creative process face a chal-
lenge in Norman’s principle of Visibility (Norman 1988), a
quality used in the evaluation of user experience. Our re-
search suggests that as complexity increases, designers are
forced to either allow their interfaces to become visually
complex or heavily encapsulated (Bray and Bown 2016).

We begin by considering the context in which different
users work. End-user programming has developed to be-
come a feature of general-purpose computing (Blackwell
2002). It is commonplace to see non-professional program-
mers tasked with the specification, design, testing and main-
tenance of a spreadsheet of non-trivial complexity. We
would argue that CC processes are also part of this devel-
opment. CC software, once only accessible to domain spe-
cialists, is now being used to facilitate creative exploration
in end-user oriented software. Our research aims to engage
with this shift and facilitate a practice-centered approach to
the evaluation of CC systems.

In this paper we provide a practice-centered evaluation of
several CC music composition systems. The third author
plays the role of an expert practitioner to research end-user
oriented workflow when using these systems, and provide
an analysis of the experience of working with these tools to
achieve creative outcomes. We build on our previous work
with a categorisation of CC interface types and discuss us-
ability issues within CC systems with the goal of offering a
heuristic solution to potential visibility issues. Our central
research question is, what are the user’s obstacles or frustra-
tions when working with a highly encapsulated CC system?

Practice-based research can include the study of creative
methods and tools from the perspective of the first person
practitioner. One example of this is rather than conducting
studies with users, the practice-based researcher becomes
her own user and engages in a cycle of iterative research
and practice studies (Smith and Dean 2009). This has the
disadvantage of the potential failure to be objective, but the
advantage of a more fluid, rapid and intuitive approach to
the study of systems.

In previous work, we proposed that visibility in music sys-
tems, both digital and physical, can be successfully under-
stood by thinking about the system in terms of a breakdown
between the system’s structure and some form of trajectory
through that structure. This framework, based on interaction
design principles, helps us better understand how users are
capable of maintaining functional cognitive models of com-
putationally complex systems and when that model breaks
down in the context of musical interfaces. For example,
dropping a pinball into a pinball machine, we think of the
fixed structure of the pinball machine layout dictating the
trajectory of the pinball. We think of all traditional acoustic
instruments as having specific fixed structures around which
a musician denes a trajectory (Bray and Bown 2016).

In this paper we seek to expand this framework to include
a user’s capacity to conceptually map abstraction. Here we
draw on Blackwell (Blackwell 2002), who in turn draws on
Lindsay (Lindsay 1988), to provide the conceptual founda-
tion required for us to create a practical framework for the
design of musical interfaces:

If a planning agent maintains a mental representation
of the situation in which it acts, the process of planning
relies on the agent being able to simulate updates to
the situation model, in order to evaluate the results of
potential actions. (Blackwell 2002)

CC systems are often heavily encapsulated systems
which, for practical reasons, intentionally hide their com-
plexity. This in turn can prevent the user from developing
a coherent a mental representation of the system’s intended
state. By way of example, consider the use of an algorithm
such as a artificial neural network (ANN) in a CC system.
With 2 inputs, 4 hidden and 2 output nodes, the inherent
complexity of this algorithm may cause the designer to ques-
tion the utility of representing the algorithm’s internal state

to the user. In such a scenario, the decision to represent the
ANN may be based upon the designer’s belief that a user is
able to maintain a mental model of the effect a modification
to an input node will have on the system when it updates.
This example implies that is it necessary for the user to be
aware of what the ANN is doing as it completes a task.

On the other hand, abstraction and encapsulation are ac-
tually common in design. For example, if we conduct an
image search which relies on a ANN, is it necessary for the
user to have mental representation of the process by which
the ANN has completed the search? Arguably (Dennett
1989), abstraction does not inherently inhibit usability in CC
systems. Our observation is that in compositional tasks in
which a user is engaged with a CC system, intelligible ac-
tions are facilitated by structural knowledge of the system’s
process.

This type of abstraction, described by Blackwell (Black-
well 2002) as the loss of direct manipulations’, is the same
problem that programmable notation systems are challenged
by. Blackwell has described fundamental conceptual limi-
tations of non-direct manipulations in general purpose pro-
gramming as abstraction over time and abstraction over a
class of situations (Blackwell and Green 2003).

Computationally Creative Interfaces
The pay-off for encapsulation in general-purpose program-
ming is based on the paradigm of productivity through au-
tomation (Wilkes 1956; Gaver 2002). Blackwell (Blackwell
2002) demonstrates this with the establishment of a cost-
benefit analysis. Cost being the amount of effort cognitive or
otherwise weighed against the benefit of having some given
thing automated.

Programmable computationally creative interfaces, un-
derstood in the context of creativity support tools (CSTs)
(Shneiderman 2007) are challenging when placed in this
paradigm. Blackwell proposes that for tasks that have the
potential to be automated, users have to weigh up the cogni-
tive effort and risk associated with setting up an automated
approach. He calls this ”prospecting”, as in ”digging a hole
in the ground to find out whether it is worth siting a gold
mine there”. Direct manipulation, in this scenario, can work
against the future benefit of having a process automated. For
example, when using a non-realtime co-creative music sys-
tem, the user takes on the role of curator or editor, often
leading the user towards a more structural model of control.

To further describe CC specific interfaces we will use
three high level categories of CC interface types.

• Direct manipulation systems: Provides the user with an
immediate representation of objects of interest that the
user can manipulate with immediate effect.

• Programmable interfaces: A notational interface which
allows the user to define a set of control commands to
be executed as a program. Objects may be represented
directly or encapsulated in this process.

• Highly encapsulated systems: Systems in which the rep-
resentation of the process is wholly encapsulated. Users
are presented with parameterised abstract control of the
system, which has hidden underlying processes.

We suggest however that this spectrum is context depen-
dant as many interfaces have multiple representative or no-
tational models which can be adapted in specialist scenarios.
This is a common feature described as ”abstraction gradient”
in the cognitive dimensions of notations usability evaluation
(Green and Petre 1996) which provides design principles for
notations, user interfaces and programming languages. Here
abstraction gradient can be understood as the fluid descrip-
tion of the state the system is currently in.

These high level categories of CC interface types provide
a context for our evaluation. We will draw on this categori-
sation to develop an analysis of the user’s experience when
engaged in using a CC system in an open ended creative
task.

Methodology
We have conducted a preliminary investigation into a sin-
gle user’s experience of using tools which are designed for
musical composition that demonstrate non-direct manipu-
lations in compositional workflow. To define our method-
ological approach to this investigation we draw on Candy’s
(2006) guide to practice-based research. Our goal is to better
understand artists practice when engaged in compositional
tasks with CC systems. In this way we are primarily con-
cerned with contributing to operationally significant knowl-
edge within the practice of algorithmic music composition.

In approaching this goal we reflect on previous studies
conducted by the authors (Bray and Bown 2014). Previously
we implemented a study based on the Cognitive Dimensions
of Notations framework (Blackwell and Green 2003) which
focuses on comparing the users’ reflections on the usability
of computer based systems by identifying conceptual mod-
els employed by notational systems. Here we draw on a
similar process in order to gain insight into the user’s ex-
perience of using a group of systems which exhibit specific
properties.

In this paper, the 3rd author, Benjamin Carey, was enlisted
specifically to play the role of an expert user. The 1st and
3rd author are both engaged in practice with CC systems.
Evaluating usability is an extension of both 1st and 3rd au-
thors practice-based research on these systems. Carey was
not involved in the preparation of the paper or the develop-
ment of the contexts discussed here but did assist in editing
and has been included as an author to represent a collabo-
rative research approach rather than a blind user-study style
approach.

As Carey’s contribution to this analysis is the primary
source of knowledge, we consider his role as the user to be
that of a practice-based researcher, reflecting on his experi-
ence using three Max for Live based composition tools in
Ableton Live. Our analysis draws on his results to further
iterate and inform the parameters of our interface categori-
sation. Our analysis bellow outlines our reflections on his
responses.

Each of these tools were selected as they represent a dif-
ferent functional workflow, a different level of abstraction
and a varying scale of complexity in algorithmic process-
ing, but by definition demonstrate non-direct manipulations
in compositional workflow. Carey answered a single ques-

Figure 1: Categorisation of CC interfaces

tionnaire for each system he used. Below we outline each
system, and discuss his responses.

Description of Systems
Jnana Live is an algorithmic musical accompaniment tool, it
allows the user to analyse realtime MIDI information com-
ing from Ableton Live. Based on this input, through an al-
gorithmic process it creates a model to generate unique ma-
terial in a similar style. Jnana has a second system called
Jnana Clips which is used to analyse existing MIDI infor-
mation in the form of Ableton Live ’Clips’. In this study we
only looked at the ’Live’ device which can functionally op-
erate in a similar manner when MIDI information is routed
as a real-time input to the device.

Controls that are represented to the user are separated
into three groups, Input Analysis expressed as ’when’ and
’how’. ’Response generation’ allowing for the modifica-
tion of manual or automatic response generation and lastly
’Other’ providing control of MIDI passthrough. The pri-
mary controls of the tool are found in the input analysis sec-
tion. Under which we find hold/auto to analyse, initiating
the model. Phrase detection, where a time in (ms) can be

specified which determines how much silence is required for
an input ’phrase’ to have occurred. Under how, ’use start-
ing statistics’ allows the user to control if the start of each
phrase in the analysis will be considered when generating
new phrases. Lastly ’assume circular’ which loops the anal-
ysis of phrases, optimising it for more consistent loop-based
inputs.

Patter is a stochastic event generator, it generates ’seg-
ments’ of MIDI events. A segment has a set duration and
the events within that segment are stochastically generated
based on the weightings specified in the rhythm, accent and
pitch sections of the interface. Patter will by default begin
generating events based on the global transport settings in
Ableton Live and output them to a MIDI channel, assignable
in Ableton Live to any desired MIDI input source such as a
virtual instrument. Patter also includes the functionality to
be slaved to other instances of Patter enabling it to play with
or after segments generated by those other instances. Seg-
ments can be looped based on a weighted probability and are
segments are divided into six sections as represented in the
loop section.

Within the Rhythm section of the interface are four gener-

Figure 2: Excerpt from Questionnaire

Figure 3: Jnana Live

ators with different ranges, each distribution includes mean
and deviation which allows the user to shape the events gen-
erated in each segment. The First takes the tempo from
Ableton Live’s transport and provides a distribution from
8th notes to Whole notes. The second generator multiplies
or divides that beat, based on the selection of the or opera-
tor, providing the user with the ability to achieve more com-
plex rhythmic events. For example, multiplying by 3 yields
”dotted” notes, dividing by 3 yields ’triplets’. The next gen-
erator determines the number of notes and the next deter-
mines the number of rests in a segment. Additionally the
user is able to select ’post’ so that rests will occur after the
notes, not before. Also an option for ’downbeat’ is provided
meaning segments will always begin on a downbeat accord-
ing to their rhythm. The Accent generator determines where
the ’accent’ (highest velocity) is placed within the segment.
The Pitch region allows the user to define available notes,
and toggle between midi input or a generator weighted from
high to low.

Figure 4: Patter

Style Machine Lite, produces complete musical pieces
that are modelled on a corpus and a groove. It uses Ableton
Lives clip view to populate short sections of a song across

a range of channels defined by their intended instrument or
sound type. Style Machine Lite produces long term musical
structures by populating clips in sequence. Users are able
to access Ableton Live’s complete functionality when the
clips have been populated, allowing for editing of sounds
and clips. The user is provided with pre-set styles which
are focused on predominant electronic music genres. And
grooves which are musically descriptive. The user can con-
trol three parameters complexity, density and length. These
controls function to shape the structure of the generated ma-
terial and are applied across either a generated phrase that is,
a single row of clips, or the tracks entirety.

Figure 5: Style Machine Lite

Analysis
After a self-determined amount of time using each tool,
Carey provided answers to the questionnaire we provided
him. Firstly, we were interested in understanding if he was
able to demonstrate a tangible understanding of the tool he
was using. In all three systems, Carey was able to identify
the primary functionality and navigate the interface profi-
ciently enough to generate output from it. He described his
approach to working with the system in each instance. In
both Jnana and Style machine, Carey was focused on manip-
ulating parameters, so that the system would provide feed-
back for him to evaluate before making additional adjust-
ments. In this way he was attempting to build a functional
model of the effect of a given parameter manipulation. One
consideration here is that this process is cognitively demand-
ing as it relies on the user to monitor the interface and the

Figure 6: Analysis of user responses based on CC Interface Categorisation

systems output precisely. Another is that this initial pro-
cesses stimulates undirected search as the parameter space
is unknown to the user.

In Patter, Carey cited the simplicity of the generation in
the system as exploratory, and began searching for usable
compositional content. This is distinct from Jnana and Style
machine, Carey’s sense of immediacy in controlling the sys-
tem enabled him to begin a process of directed search. In
this way we could consider Patter an example of a highly lit-
teral interface. From his answers we can anecdotally estab-
lish the nature of the Carey’s capacity to model each system,
or at least establish a description of the strategy they formed
when using the system. In this regard, he was successful in
determining the intended design of each tool. When asked
a supplementary question about Jnana’s functionality, Carey
articulates the precise paradigm CC systems are faced with.

”The limited information and parameters to tweak makes
me more likely to use something like this. Endless pa-
rameters in something as complex as a Markov model is
daunting, even for someone like myself with experience
with such approaches.”

This is a highly opaque system, which conventional user
experience knowledge tells us can be situationally prob-
lematic. Norman’s principle of visibility being the pri-
mary articulation of this (Rogers, Preece, and Sharp 2007;
Bray and Bown 2016; Norman 2013). We infer that Carey
requires non-direct, abstract control of the system to be able
to make intelligible actions within it. However this has a
clear trade-off. In both Jnana and Style Machine Lite, Carey
expressed that he did not feel as if he had strong control over
the system’s output.

”I felt passive as it’s difficult to see a real connection be-
tween these choices of material and the output. Though
this may change over time.”

Highly encapsulated systems can also represent a concep-
tual black box (Kolen and Pollack 1994) to the user. Jnana
Live’s highly encapsulated interface, focused on initiation
and structural control of the algorithm is suggestive of its
intended purpose as an accompaniment system. The ab-
sence of parameterised control of temporal event or pitch
information also embodies a highly exploratory approach to
compositional workflow which could correlate with exist-
ing research on the open-ended nature of creative discovery
(Saunders and Gero 2002). The system allowed the user to
create endless variations, however this was at the cost of a
sense of passivity in the compositional process.

Feeling passive may not be desirable from a user’s per-
spective, but it does not necessitate that in a co-creative situ-
ation where both agents are enabled to act on each other that
you cannot be musically successful. Carey describes being
able to successfully input midi information into the system
and generate outcomes which he considered composition-
ally desirable. But by contrast Style Machine Lite, which
is also highly encapsulated took what Carey perceived as
an undesirable amount of control away from him. He de-
scribed the system’s output as impressive, but was unable
to discernibly act on the system to navigate towards desired
compositional output. We could possibily describe this char-
acteristic as providing a sense of system autonomy or en-
couraging passivity. This

Out of all three systems, only Patter provides the user with
a visual interface that depicts musical events as objects. But
as the output of these systems is auditory, Carey was still
able to develop a cognitive understanding of the effect nota-
tional changes made to the systems output. Or at least was
forced to rely on this feedback in an attempt to build a cogni-
tive understanding. In this sense, the system’s output is not
dissimilar to an auditory display (Walker and Kramer 1996).
One possible benefit of this could be that auditory feedback
afforded Carey and additional means by which to determine
the system’s trajectory, enabling him to better understand the
system’s structure and act to steer the algorithm in a desired
direction.

We can also consider these interfaces in the context of a
syntactic/semantic model of user behaviour (Shneiderman
1983). That is, that there are two kinds of knowledge repre-
sented by software systems:

First, the user must possess syntactic knowledge, which
correlates to valid input methods or permissible delimiters.
In an direct manipulation system interface this could be valid
topographic arrangements or object manipulations. In a pro-
grammable interface this is easily identified as valid syntac-
tic statements. In a highly encapsulated system this could
just be successfully inputting information. This type of
knowledge, may not be entirely system dependant but will
feature idiosyncratic notations making it harder to recall for
new or infrequent users.

And second semantic knowledge, which is acquired

through analogy, example or generalised conceptual princi-
ples. Shneiderman places this type of knowledge on a scale
from low level program domain actions to high level prob-
lem domain features. Here an direct manipulation interface
might provide skeuomorphic analogy, a programmable in-
terface interface might facilitate a process-based hierarchy
of events and a highly encapsulated system might draw on
cultural knowledge through simple iconography.

Conclusion
In conclusion, we have discussed issues surrounding the use
of highly encapsulated CC systems. Employing the use of
a high level categorisation of interface types allowing us
to discern more clearly what Carey our practice-based re-
searcher, was experiencing when using each system. A users
capacity to understand and cognitively map the structure or
trajectory of an interface relies on the user being able to gain
access to intelligible forms of feedback. The user’s per-
ceived experience of the opaqueness of the system’s feed-
back can be analysed through practice lead research as we
have demonstrated. This research intends to contribute to
and inform the design of CC systems to make them more
usable and in turn more useful for creative practitioners.

References
Blackwell, A., and Green, T. 2003. Notational systems–the
cognitive dimensions of notations framework. HCI Mod-
els, Theories, and Frameworks: Toward an Interdisciplinary
Science. Morgan Kaufmann.
Blackwell, A. 2002. What is programming. In 14th work-
shop of the Psychology of Programming Interest Group,
204–218.
Bray, L., and Bown, O. 2014. Linear and non-linear com-
position systems: User experience in nodal and pro tools. In
Proceedings of the Australian Computer Music Association
Conference.
Bray, L., and Bown, O. 2016. Applying core interaction de-
sign principles to computational creativity. In Proceedings
of the Seventh International Conference on Computational
Creativity.
Dennett, D. C. 1989. The intentional stance. MIT press.
Gaver, B. 2002. Designing for Homo Ludens, Still. Interac-
tion Research Studio, Goldsmiths, University of London, I3
Magazine No. 12 163–178.
Green, T. R. G., and Petre, M. 1996. Usability analysis of
visual programming environments: a ‘cognitive dimensions’
framework. Journal of Visual Languages & Computing
7(2):131–174.
Kolen, J. F., and Pollack, J. B. 1994. The observers’ para-
dox: Apparent computational complexity in physical sys-
tems. The Journal of Experimental and Theoretical Artificial
Intellignce.
Lindsay, R. K. 1988. Images and inference. Cognition
29(3):229–250.
Norman, D. 1988. The Design of Everyday Things. New
York: Basic Books.

Norman, D. A. 2013. The design of everyday things: Re-
vised and expanded edition. Basic books.
Rogers, Y.; Preece, J.; and Sharp, H. 2007. Interaction
design.
Saunders, R., and Gero, J. S. 2002. How to study artificial
creativity. In Proceedings of the 4th conference on Creativity
& cognition, 80–87. ACM.
Shneiderman, B. 1983. Human factors of interactive soft-
ware. In IBM Germany Scientific Symposium Series, 9–29.
Springer.
Shneiderman, B. 2007. Creativity Support Tools: Accelerat-
ing Discovery and Innovation. Communications of the ACM
50(12).
Smith, H., and Dean, R. 2009. Practice-led research,
research-led practice in the creative arts. Edinburgh Uni-
versity Press.
Walker, B. N., and Kramer, G. 1996. Mappings and
metaphors in auditory displays: An experimental assess-
ment. Georgia Institute of Technology.
Wilkes, M. V. 1956. Automatic digital computers..

