
Conceptual Expansion Neural Architecture Search (CENAS)

Mohan Singamsetti1,2, Anmol Mahajan1,2, and Matthew Guzdial1,2
1Computing Science Department, University of Alberta

2Alberta Machine Intelligence Institute (Amii)
{singamse, mahajan, guzdial}@ualberta.ca,

Abstract

Architecture search optimizes the structure of a neu-
ral network for some task instead of relying on man-
ual authoring. However, it is slow, as each poten-
tial architecture is typically trained from scratch. In
this paper we present an approach called Conceptual
Expansion Neural Architecture Search (CENAS) that
combines a sample-efficient, computational creativity-
inspired transfer learning approach with neural archi-
tecture search. This approach finds models faster
than naive architecture search via transferring exist-
ing weights to approximate the parameters of the new
model. It outperforms standard transfer learning by al-
lowing for the addition of features instead of only mod-
ifying existing features. We demonstrate that our ap-
proach outperforms standard neural architecture search
and transfer learning methods in terms of efficiency,
performance, and parameter counts on a variety of
transfer learning tasks.

Introduction
Deep learning is the study of deep neural networks (DNNs),
which are a type of function approximators. DNNs have
achieved remarkable success in various challenging appli-
cations such as image classification, image generation, and
natural language processing (Szegedy et al. 2015). Mod-
ern deep learning approaches perform well when researchers
train large models, often with at least millions of parameters,
on large amounts of data (Halevy, Norvig, and Pereira 2009;
Brown et al. 2020). However, this leads to two problems.
First, the size of these models limits where they can be ap-
plied and who can afford to train them. Second, there are ap-
plication domains in which we do not have sufficient training
data, and therefore where we cannot currently apply these
approaches.

The limitations of large pre-authored architectures have
been addressed using Neural Architecture Search (NAS).
In this approach, the model architecture is optimized along
with the model weights. NAS has outperformed manually
designed architectures in some tasks such as object detec-
tion (Zoph et al. 2018) and image classification (Zoph et al.
2018). However, NAS is a time consuming and computa-
tionally expensive process (Li and Talwalkar 2019) since it
requires training many potential architectures from scratch.

Approaches exist to transfer the knowledge of models
trained on large source datasets to tasks with smaller tar-
get datasets, including transfer learning (Lampert, Nickisch,
and Harmeling 2009), domain adaptation (Daumé III 2009),
few-shot learning (Fei-Fei, Fergus, and Perona 2006) and
zero-shot learning (Xian, Schiele, and Akata 2017). How-
ever, these approaches all require re-training the models
(Levy and Markovitch 2012), or require manually author-
ing or learning secondary features (Xian, Schiele, and Akata
2017) to handle new cases or to adapt to a new domain. In
addition, these approaches generally assume fixed architec-
tures set by a human expert according to the target task. This
is a limiting factor, as the transfer learning process can be
forced to adapt knowledge rather than retain it due to the
fixed size. For example, when attempting to adapt a source
network trained to recognize cats to a target network to rec-
ognize dogs some features would be better to retain (e.g.
fur), while others would be better to replace (e.g. cat eyes).

Intuitively, if we could combine NAS and transfer learn-
ing we could end up with an approach that could find more
efficient models more quickly, even for cases with less data.
NAS could benefit from transfer learning as weights can be
transferred from existing networks, speeding up the process
of training novel architectures. Transfer learning could ben-
efit from NAS as it can allow for the addition of new fea-
tures instead of only the modification of existing features
learned from a source dataset. We believe this has the po-
tential to lead to smaller and more accurate models that can
be trained more quickly, and therefore represents a valuable
open problem. Beyond recent domain adaptation and archi-
tecture search work (Li and Peng 2020), this combination of
neural architecture search and meta learning is a largely un-
explored area of research. One of the reasons for this may
be that transfer learning often represents a much faster and
simpler optimization problem than training from scratch. In
comparison to this, naive architecture search represents an
unbounded search problem.

Combinational creativity (Boden and others 2004), also
called conceptual combination (Gagné and Shoben 1997), is
a cognitive process in which old knowledge is combined to
produce new knowledge. This is a general process in hu-
man cognition (Gagné and Shoben 1997; Fauconnier 2001),
an efficient means of representing new concepts with exist-
ing knowledge. Attempts have been made to approximate
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this cognitive process computationally, most famously con-
ceptual blending, to the point where any attempt to approx-
imate combinational creativity with computation is called
blending (Fauconnier 2001). However, these earlier combi-
national creativity approaches are generally limited to hand-
authored inputs and curated knowledge bases.

Our problem in this paper directly relates to combina-
tional creativity (Boden and others 2004). In combinational
creativity, existing knowledge is recombined to created new
knowledge. As a cognitive process, it is unlikely that our hu-
man brains replicate the existing knowledge in order to pro-
duce a recombination, as this would be inefficient and slow.
Instead, evidence suggests this is a quick, compact process
(Gagné and Shoben 1997). We therefore argue that simul-
taneous neural architecture search and transfer learning is a
reasonable computational metaphor for combinational cre-
ativity in neural networks.

To address our problem we employ a representation that
allows for sample-efficient transfer learning called Concep-
tual Expansion (Guzdial and Riedl 2019; Banerjee 2021;
Guzdial and Riedl 2021). In this transfer learning approach
the reuse of a source model’s knowledge is modeled as a
combinational creativity problem. With conceptual expan-
sion we can approximate the weights of a target model
as a combination of weights from a source model. This
allows for a much faster optimization of model weights,
therefore speeding up architecture search. We call our ap-
proach Conceptual Expansion Neural Architecture Search
(CENAS). In a number of image classification domains we
demonstrate how CENAS outperforms standard architecture
search, transfer learning, and naive architecture search with
transfer learning. This work contributes this novel approach,
experimental results that demonstrate that it outperforms ex-
isting approaches to meta learning and architecture search
(Li and Peng 2020), and earlier applications of conceptual
expansion to deep neural networks (Guzdial and Riedl 2019;
Banerjee 2021).

Related Work
In this section we overview the two most related areas of
prior work: architecture search and transfer learning.

Architecture Search
Architecture search attempts to automatically determine the
optimal neural network architecture for a particular problem.
The approach dates back to the 1980’s, when evolutionary
optimization approaches were proposed to find both the ar-
chitectures and weights of a neural network (Miller, Todd,
and Hegde 1989). As the name implies, the problem is typ-
ically represented as a search problem, where some initial
architecture or population of architectures are optimized to
find the best architecture in a given search space (Xie and
Yuille 2017). We employ evolutionary search in this work
as it has been shown to still be the best or equivalent opti-
mization method for neural architecture search (Real et al.
2019). Many optimization strategies have been used to ex-
plore the space of the possible architectures (Zoph and Le
2016). However, architecture search methods still struggle

to find the same results as architectures hand-authored by
human experts.

Transfer Learning
Transfer learning of deep neural networks (DNN) refers to
the transfer of knowledge from a DNN trained to solve one
source problem to a DNN for designed to solve a related
target problem. A wide range of prior approaches exist
for the transfer of knowledge in neural networks such as
domain adaptation and one or zero-shot learning (Fei-Fei,
Fergus, and Perona 2006; Xian, Schiele, and Akata 2017).
These kinds of approaches often require additional features
to guide the transfer of knowledge, which can be hand-
authored or learned from a secondary dataset (Ganin et al.
2016). Our approach does not use any additional hand-
authored or machine-learned features.

Domain adaptation focuses on transferring the knowl-
edge gained from one or more labelled domains to an un-
labelled target domain. Multi Source Domain Adaptation
(MSDA) takes training data collected from multiple sources
and applies that to a single unlabelled target (Peng et al.
2018). Neural Architecture Search for Domain Adaptation
(NASDA) is a recent approach focused on deriving the best
architecture for a specific domain adaptation task by lever-
aging differentiable neural architecture search (Li and Peng
2020). Our approach also uses a unique representation sim-
ilar to NASDA, but it is a representation that approximates
novel class features in the target domain as combinations of
source domain features.

Combinational creativity (Boden and others 2004) or con-
ceptual combination (Gagné and Shoben 1997) represents
the ability of humans to combine existing knowledge to
produce new knowledge. Computational implementations
of combinational creativity can be understood as a special-
ized case of transfer learning, focused on re-representing ex-
isting knowledge to approximate new or unseen concepts.
There have been many combinational creativity approaches
with conceptual blending being the most popular (Faucon-
nier 2001; Guzdial and Riedl 2018). However, the major-
ity of these existing approaches can only take hand-authored
symbolic data as input. Guzdial and Riedl introduced com-
binets (Guzdial and Riedl 2019), the application of combi-
national creativity to deep neural networks via a represen-
tation they called Conceptual Expansion, which is designed
to work with messy, machine-learned knowledge. We build
directly upon this work, but extend it to a more general ap-
proach that better leverages the available, existing data to do
simultaneous transfer learning and architecture search.

System Overview
In this section we present our Conceptual Expansion Neural
Architecture Search (CENAS) approach. This approach is
focused on domain transfer problems: where we have dis-
tinct source and target datasets, and where the goal is to
adapt knowledge from the source domain to the target do-
main. We define CENAS as a three-step process. First, we
train a model on the source dataset. Second, we approximate
the weights of the connections of an initial target model as
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Figure 1: The three step CENAS Process. First we train a
model in our source domain. Second, we approximate the
weights of the initial model in the target domain as a con-
ceptual expansion of the source model’s weights. Finally,
we run architecture search, changing the architecture and
approximating the new weights of the architecture simulta-
neously.

a conceptual expansion: a combination of weights from the
source model. Third, we run our architecture search process
on target model by updating our approximations of exist-
ing connections and approximating the weights of any ad-
ditional connections in the same manner. This process is
visualized in Figure 1.

Conceptual Expansion
We begin by formally defining Conceptual Expansion (CE).
CE is a way of representing knowledge as a combination of
existing knowledge, in our case neural network weights. If
we wished to represent a particular weight w as a combina-
tion of existing weights with CE we would use Equation 1:

CEw(F,A) = a1 ∗ f1 + a2 ∗ f2 + ...+ an ∗ fn (1)

where the F = f1, f2, ......., fn represent a set of existing
weights, A=a1, a2, ....., an are alpha filter matrices that
undergo pairwise multiplication with their paired existing
weight matrix. A act as instructions for how to transform
the weight for the combination. Notably, the same weight
value can appear multiple times in F with different a val-
ues. CE can be understood as analogous to the crossover
function in evolutionary search (Whitley 1994), both rely on
the intuition that combinations of high-quality knowledge
are more likely to lead to new high-quality knowledge. Sim-
ilarly, crossover can be understood as another example of
combinational creativity, the general human cognitive pro-
cess for reusing old knowledge (Gagné and Shoben 1997;
Fauconnier 2001). CE is designed to be a simple but ex-
tendable way to represent combinations of neural network
weights, in order to more clearly study combinational cre-
ativity in DNNs. In the original CE paper (Guzdial and Riedl
2019), Guzdial and Riedl employed greedy search to opti-
mize the f and a values, finding that this approach outper-
formed backpropagation-based transfer learning approaches
for low sample sizes. The values in a matrix range [-2, 2].

However, the greedy optimization failed to outperform ex-
isting methods for larger sample sizes of data.

Source Training
In this paper we focus on the image classification domain,
employing several common image classification datasets as
our source and target datasets. We employ CifarNet as our
initial source model throughout this paper (Krizhevsky, Hin-
ton, and others 2009), as it represents a well-understood and
compact initial architecture. CifarNet has two convolutional
layers each with max pooling and two fully connected lay-
ers. We implemented it unchanged from the original de-
scription (Krizhevsky, Hinton, and others 2009). The con-
volutional layers apply the convolution operation to the in-
put in order to extract features. Max Pooling is a convolution
process where it down-samples the feature representation by
taking only the maximum values. Our first step is to train Ci-
farNet on the source dataset.

Weights Approximation
The second step of our approach approximates the weights
on an initial target model. Given that we focus on image
classification in this paper, we only need to approximate
novel weights for the final classification layer in this step.
To approximate these weights we take our available train-
ing data for each target class and pass it through the model
trained on the source dataset. This gives us a distribution
over the n source classes for each target class (e.g. In a
target domain “fox” class images might be classified as the
source domain class “dog” 65% of the time and the remain-
ing 35% of the time as “cat”). We normalize these values
with a softmax function, which gives us our initial a values.
Softmax is an activation function which maps the output in
the range [0, 1] and also maps each output in such a way that
the total sum is 1. Every one of the non-zero values output
from the softmax function is paired with its source w value
and combined to approximate the initial target class w value
as in Equation 1 (e.g. the source domain class cat and dog
weights are associated with their alpha values to approxi-
mate the initial target domain class fox classification neuron
weight). For all other layers in the model we initialize their
a value as a matrix of ones of the appropriate shape for that
layer’s weights. Thus the initial model is represented as a
conceptual expansion that is equivalent to the source model
except for the final layer.

Architecture Search
For the architecture search step of CENAS we use an evo-
lutionary optimization process or genetic algorithm, given
their history and consistent performance in NAS tasks (Real
et al. 2019). We chose this as greedy optimization of CE
struggles to exit the local optima near the model output from
the weight approximation step (Guzdial and Riedl 2019;
Banerjee 2021). Evolutionary optimization requires that
we initialize a population of points, define mutation and
crossover operators, and a fitness function. We represent
this whole process in Algorithm 1, with lines one and two
representing the first and second steps of CENAS described

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

329



Algorithm 1: CENAS Workflow
Input: An architecture A, the population size

pop size, maximal generations gen, the
source dataset, and the target dataset.

Output: Best performing architecture.
1 A← train A on source;
2 A← Re-represent A using CE and target;
3 pop = {A };
4 while |pop| < pop size do
5 network←Mutation(A);
6 pop.append(network);
7 end
8 i← 0;
9 while i < gen do

10 pop← Crossover(pop);
11 pop←Mutation(pop, mutationRate);
12 fitness pop = Fitness(pop);
13 pop← Reduce(pop, fitness pop);
14 i← i + 1;
15 end
16 architecture = best model(pop);
17 Return architecture;

Algorithm 2: Fitness Score
Input: An architecture Net, target domain data

Dtarget with N classes of image dataset,
target classes are list of classes in target
domain

Output: Fitness scores of Net.
1 score← 0;
2 for class in target classes do
3 score← score+Net.accuracy(Dtarget[class])
4 end
5 ;
6 Return score/N;

above, and the remaining lines devoted to this final step. We
initialize a population of fixed size based on the output of
the second step, running our mutation function pop size-1
times to produce each population member. From there we it-
erate through the standard evolutionary search steps, running
our crossover function to double our population size, mutat-
ing the population members, evaluating the new models on
the target domain training data, and reducing back to our
original population size. The mutation and crossover func-
tions act directly on the model architecture and weights; we
describe them in detail below. We explored several fitness
functions, but found that taking the average accuracy over
the target domain training data gave the best performance as
represented in Algorithm 2.

Mutation and Crossover
For our crossover function we use a simple single-point
crossover. We take two models and target a random CNN
layer from each for the split point. We then take the first half
of one model and the second half of the other.

We employ a total of seven different mutation operators.
Our first four operators are typical for architecture search
applications:
• The first mutation operation adds a new convolutional

layer to the architecture at a random position before fully
connected layers and after the first convolutional layer.
We randomly choose 32 filters or 64 filters and a kernel
shape of 3x3 or 5x5, we use all the other parameters from
the original CifarNet’s convolutional layers.

• The second mutation operation deletes a random convolu-
tional layer in the network besides the first one to maintain
the fixed input size.

• The third mutation operation adds additional filters to an
existing convolutional layer. We randomly choose a con-
volutional layer in the network except for the first layer
and add a random filter count of 2, 4, 8, 16, or 32.

• The fourth mutation operation deletes filters in a random
convolutional layer of the network; we delete a random
filter count of 2, 4, 8, 16, or 32 filters.

The remaining three mutation operations help in manipulat-
ing the network weights directly by modifying the a and f
values associated with each weight.
• The fifth mutation operation multiplies the a of a random
f of a random layer by a scalar in the range [-2,2].

• The sixth mutation operation replaces a f value of a ran-
dom layer with a randomly selected f value.

• The seventh mutation operation adds a random a and f
to a random position in a random layer (e.g. adding
an+1*fn+1 to a1*f1+a2*f2... an*fn).

Experiments
We focus on convolutional neural networks (CNNs) for our
initial exploration of CENAS, as they were used in prior
combinets (Guzdial and Riedl 2019; Banerjee 2021). We
explore this through two major types of experiments in this
paper. First, we measure the performance of CENAS on sev-
eral tasks that have been used in prior domain transfer and
architecture search work, alongside several baselines (Li and
Peng 2020). This is meant to present evidence for our claims
of the value of CENAS to transfer and architecture search
tasks. Second, we present a series of low data n → n + 1
tasks using the CIFAR-10 (Krizhevsky, Hinton, and others
2009) dataset. This is meant to present evidence for our
claims around how CENAS can operate even for low data
problems, which relates to how humans can employ com-
binational creativity with few examples (Gagné and Shoben
1997). In addition, this second evaluation allows us to di-
rectly compare to the original CE with DNNs work (Guzdial
and Riedl 2019).

For all tasks we make use of CifarNet as our base architec-
ture. We train CifarNet for 100 epochs on our source dataset.
For CENAS we then use the the training dataset as described
above to guide the search over models for 100 generations
with a population of size 10. We chose these low values to
demonstrate the effectiveness of the approach with minimal
computation, and as part of our investigation as to whether
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this can be an appropriate metaphor for combinational cre-
ativity in neural networks. We take the final 10 members of
the final generation and train them for 30 epochs on our tar-
get dataset in a standard supervised learning paradigm using
RMSProp. In all cases we use a batch size of 32 and a learn-
ing rate of 0.0001. We used Keras for implementation and
non-CENAS training of our deep neural networks.

We have four baselines. The first two are variations of
CENAS. R-CENAS employs a random walk instead of a ge-
netic algorithm. It uses the same seven mutation functions
from above and chooses one at random for every architec-
ture. We run the random walk for 100 steps and output the
top five best models according to target training accuracy.
G-CENAS makes use of greedy optimization instead of a
genetic algorithm. We try 10 random mutation functions at
every step as a neighbor function and choose the best across
the neighbors and current model according to training accu-
racy. We run for 100 iterations and take the final five models
as our output. Afterwards, we take this output and train it
for 30 epochs using the target training data.

The next two methods represent how one might naively
attempt to solve this problem using more standard meth-
ods. The first of these is a simple neural architecture search
implementation (NAS). For this implementation we used
the same fitness and crossover functions from our CENAS
implementation, but only the first four mutation functions,
making it a more standard NAS implementation. After mu-
tation and crossover functions we instantiate the new model
and train on the available target training data for 30 epochs.
If this naive NAS outperforms CENAS it would indicate that
our approach to transferring existing features via recombina-
tion is actively detrimental. Finally, we include a naive com-
bination of neural architecture search and transfer learning
(NAS-T). This is similar to our naive NAS implementation
but we transfer existing weights from the parent models dur-
ing crossover and copy over the weights from the most simi-
lar weight or filter for our mutation functions. We then train
on the target training data for 12 epochs, as we found that
any more training led to overfitting. If NAS-T outperforms
CENAS that indicates that our more complex representation
has no benefit over simply finetuning the existing weights,
and is therefore no better as a metaphor for human combi-
national creativity. For all of the NAS approaches (NAS,
NAS-T, and CENAS) that rely on a genetic algorithm we
report the results for the top five members of the final gener-
ation according to training accuracy.

All the experiments are carried out using the cloud com-
puting resources of Compute Canada, which uses 32 cores 4
x NVIDIA V100 Volta (32G HBM2 memory). We employ
a consistent random seed across all experiments.

Domain Transfer Experiments
Setup We make use of four tasks and datasets inspired
from prior domain adaptation work (Hoffman et al. 2018; Li
and Peng 2020). The four datasets are MNIST, USPS, STL-
10 (Coates, Ng, and Lee 2011), and CIFAR-10 (Krizhevsky,
Hinton, and others 2009), which are all well-understood im-
age classification datasets. Each of our tasks involves us-
ing one of the datasets as a source and another as a target,

making our four tasks: MNIST→USPS, USPS→MNIST,
STL-10→CIFAR-10, and CIFAR-10→STL-10. Given that
CifarNet was designed for CIFAR-10 we modify the other
datasets to have the same 32x32 input size, but do not other-
wise process them, unlike in prior domain adaptation work
where certain classes are removed (Hoffman et al. 2018;
Li and Peng 2020).

Results We present the average test accuracy and standard
deviation for each target dataset using the given test splits,
and the average parameter count of the output models for
each approach in Table 1. As a comparison point, the default
CifarNet has 597K parameters. Overall, CENAS outper-
formed the baselines on three of the four tasks. The only task
it struggled on was the MNIST→USPS task, which seems
to be a difficult domain transfer task given prior results (Li
and Peng 2020). We anticipate this is due to transferring
from a monochrome to an RGB colour domain. The NAS
approaches that involved backpropagation to a greater ex-
tent were able to better adapt to this new domain. However,
while our final CENAS models were roughly 5% less accu-
rate they were also three times smaller. Of particular interest
are the USPS→MNIST results, which outperform even su-
pervised domain transfer approaches reported in prior work
(Hoffman et al. 2018).

While we do not include the results in the table or describe
them as baselines, the very first model of the first genera-
tion for NAS and NAS-T represent training CifarNet on the
target domain from scratch and finetuning CifarNet trained
on the source domain respectively. Our finetuned CifarNet
test accuracy (36.07, 99.37, 78.49, 77.64 on the four tasks)
outperformed several baselines, but didn’t outperform CE-
NAS. Thus, CENAS seems to be a better metaphor for the
human ability to adapt to new knowledge by reusing existing
knowledge than standard transfer learning. Comparatively,
CifarNet trained only from scratch on the target domain with
no adaptation or transfer outperformed CENAS in all but the
third task (96.41, 99.52, 81.60, 78.51). This is still a positive
result overall as NAS architectures tend to struggle to even
equal the performance of hand-authored architectures (Sax-
ena and Verbeek 2016). Put another way, CENAS seems
to be the best approach for automatically adapting to new
knowledge, but not for learning knowledge directly.

In terms of average parameter count, CENAS is a clear
winner, with hundreds of thousands of parameters fewer
than the closest approach. This may seem unintuitive, but a
similar effect is seen with network pruning (Liu et al. 2018)
where reducing the number of weights can be beneficial as
it leads to more general models. Notably, the fitness func-
tion did not bias the output towards smaller models, only
accuracy. The models in the final iteration are also gener-
ally larger than the initial architecture. Instead, compact-
ness arose as a secondary effect of pursuing accuracy and
the combinational representation. These compact represen-
tations parallel prior cognitive science results in terms of the
representative power of combinations (Gagné and Shoben
1997; Fauconnier 2001). This provides some evidence that
this may be true in deep neural networks as well. Of par-
ticular note is the relative size to the relative performance of
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Table 1: Domain Transfer Tasks Average Accuracy and Parameter Count Results
MNIST -> USPS USPS -> MNIST STL -> CIFAR-10 CIFAR-10 -> STL

test acc model para test acc model para test acc model para test acc model para
R-CENAS 74.9 ± 15 1.8M ± 9.9k 99.3 ± 0.0 2.1M ± 846k 11.2 ± 0.3 3.6M ± 2.3M 11.1 ± 0.1 2.1M ± 1.5M
G-CENAS 90.0 ± 8.3 903k ± 12.2k 99.3 ± 0.1 1.7M ± 615k 81.7 ± 0.5 2.3M ± 1.1k 74.9 ± 0.5 2.2M ± 451k

NAS 83.5 ± 12 1.5M ± 55.6k 99.3 ± 0.1 1.3M ± 539k 75.7 ± 1.2 4.2M ± 59k 59.8 ± 2.0 2.1M ± 213k
NAS-T 95.5 ± 2.4 1.6M ± 13.8k 99.2 ± 0.1 1.5M ± 13.6k 78.8 ± 0.1 3.7M ± 131k 61.7 ± 1.8 3.3M ± 157k
CENAS 89.94 ± 12 579k ± 534k 99.4 ± 0.1 920k ± 511k 82.5 ± 0.6 2.2M ± 170k 77.7 ± 2.8 1.9M ± 295k

Table 2: Domain Transfer Tasks Average Computation Time
in GPU Hours/Days

Approach Average Hours (GPU Hours)
R-CENAS 8H 36M
G-CENAS 6H 55M
NAS 2D 9H
NAS-T 2D 6H
CENAS 7H 23M

these models, with some of these final models performing
comparatively to models up to 3-4 times their size (Kabir et
al. 2020). Further, while CENAS is weakly supervised up
to its final generation, prior unsupervised domain adaptation
methods for these tasks far exceeded these parameter counts
(Li and Peng 2020).

We present the average computation time in GPU hours in
Table 2. R-CENAS was slightly slower than CENAS as the
mutation functions occurred at every step, instead of only
with some probability. While G-CENAS was on average
somewhat faster due to early convergence, it’s clear from
the average parameters of its output models that it was bi-
ased towards adding features. The big difference is between
the approaches that were strongly supervised, that re-trained
at every generation: NAS and NAS-T. While NAS-T was
somewhat faster as it trained for less time to adapt the exist-
ing features, our CENAS approaches were, on average, three
times faster than these methods.

n→ n+ 1 Experiments
Setup The results from our first experiments indicate CE-
NAS can produce output domain transfer models that per-
form well, take less time to compute, and are more com-
pact than similar performing models. These features com-
pare favorably to the results of studies on human combina-
tional creativity (Gagné and Shoben 1997). However, these
results came about using thousands of datapoints available
in our target datasets, which is not similar to the human cog-
nitive process. In the original paper by Guzdial and Riedl
(Guzdial and Riedl 2019), they focused on how conceptual
expansion could allow for low-data transfer in terms of the
n → n + 1 problem. To determine whether CENAS is still
capable of handling this type of problem we ran a series of
n → n + 1 experiments using the CIFAR-10 dataset. For
each experiment we trained CifarNet on only 9 of the 10
available classes. We constructed a target dataset that in-
cluded the training data of these 9 (n) classes and between

10 to 500 samples of the held-out (n + 1) or Novel class.
To ensure our results were reproducible, we made use of the
first X training instances in each experiment where X is the
sample size of the training images of the Novel class. No-
tably we did not make use of backpropagation for the CE-
NAS approach for this experiment, as it was not used in the
original paper.

Results We visualize the results for the X=100-400 cases
per novel class in Figure 2. We only include the NAS-T
baseline due to space constraints, and as NAS performed
equivalently to NAS-T for these sample sizes. We also note
that our experiments included a transfer-only (no architec-
ture search) baseline, which performed significantly worse.
The dotted line across all the graphs represents 85%, which
is the reported CIFAR-10 test accuracy for CifarNet, though
we only observed values closer to 80% when training on all
available data (Krizhevsky, Hinton, and others 2009). From
the Figure 2 it’s clear that CENAS outperforms the baselines
when it comes to the held out or novel class at lower sam-
ple sizes. We found that NAS-T and NAS began to perform
equivalently or better than CENAS without backpropagation
at and above the X=400 case. However, they had the same
drawbacks as above in terms of model size and computation
time.

We found that the accuracy on the held out class dropped
to nearly 0 for all of our baselines for the X <100 case. We
visualize X=10-90 sample sizes for CENAS separately in
Figure 3. Each line indicates the average across the novel
classes of the novel (n + 1) and other (n) classes. Inter-
estingly, CENAS retains better than chance accuracy on the
held out class (>10%) all the way down to 10 samples.
These results mirror the earlier results with greedy opti-
mization and without architecture search (Guzdial and Riedl
2019), and outperform follow-up work using other optimiza-
tion methods (Banerjee 2021).

Interestingly, CENAS’ performance on the held out class
does not correlate to the sample size. We hypothesize that
instead of training data size, a secondary feature of the held-
out class training set is more important: the extent to which
it reflects the true variance of the class in question. We also
anticipate that this is closer to human combinational creativ-
ity, though we are unaware of prior work that investigates
this. If this is true, it could lead to even stronger results with
tailored datasets. We hope to study this in future work.

Limitations and Future Work
In this paper we focus solely on image classification do-
mains for simultaneous architecture search and transfer
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Figure 2: Evaluation results for 100-400 samples of the novel class.

Figure 3: The average test and training accuracy for the CE-
NAS approach for the 10 to 90 sample size cases.

learning. While our results do reflect the appropriateness of
CENAS to these domains, even in cases with small amounts
of available training data, this is still a major limiting factor.
We plan to explore CENAS in sequence and generative mod-
eling domains and with different types of data like audio and
text in the future, in order to ascertain of these results hold.

Our current CENAS implementation relies on a fairly
straightforward evolutionary search process. However,
given that this search space is unbounded, it is unlikely that
we have discovered the true global maxima. Simply in-
creasing the number of generations or the population size
is unlikely to solve this problem. We are currently explor-
ing alternative strategies for more fully exploring this space,
including ways to estimate the probable value of different
operators in certain locations of the space or enforcing di-
versity with approaches like MAP-Elites (Mouret and Clune
2015).

Conclusions
In this paper we argue for exploring the problem of simulta-
neous architecture search and transfer learning as it relates
to combinational creativity, and introduce an approach we
call Conceptual Expansion Neural Architecture Search (CE-
NAS). This approach relies on a neural representation of
combinational creativity, the ability of humans to combine
existing knowledge to produce novel solutions. We compare
our approach to a set of baselines on several experiments us-
ing well-known image classification domains. From this, we
identify CENAS as a fast and sample-efficient method that
produces high-quality and compact models.

Ethics Statement
There are a variety of potential concerns for any approach
that seeks to lower resource requirements to apply deep neu-
ral networks. Specifically, there are ways in which bad ac-
tors could theoretically use an approach like CENAS to, for
example, derive an image classifier for a particular person
faster and with fewer images of said individual. While we
did not explore it in this work, prior work with Conceptual
Expansion considered the generative case along with the dis-
criminative case (Guzdial and Riedl 2019). Thus, there is
a possibility that one could employ CENAS to more easily
produce things like “deep fakes”. However, concerns of this
nature are premature, given that right now CENAS has only
been evaluated in one domain. To combat this potential in
future work, we intend to explore how CENAS models can
be identified from their output.
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Figure 4: Example of three different architectures from the final CENAS generation for the held out airplane class.
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