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Abstract

Creative problem solving (CPS) is a skill which enables
innovation, often times through repeated exploration of
an agent’s world. In this work, we investigate methods
for life-long creative problem solving (LLCPS), with
the goal of increasing CPS capability over time. We de-
velop two world models to facilitate LLCPS which use
sub-symbolic action and object information to predict
symbolic meta-outcomes of actions. We experiment
with three CPS scenarios run sequentially and in sim-
ulation. Results suggest that LLCPS is possible through
the use of a world model, which can be trained on CPS
exploration trials, and used to guide future CPS explo-
ration.

Introduction
Creative problem solving (CPS) is a skill which enables
adaptation to novel situations, often through innovating on-
the-fly (Gizzi et al., 2020, 2022). A key process in creative
problem solving work is an agent’s exploration with its envi-
ronment, which typically requires many interactions in order
to find a solution to encountered novelty. To date, research
in CPS within the field of artificial intelligence has focused
predominantly on resolving a singular novel task-at-hand.
For example, when a robot needs to figure out how to push
a heavy object, it may explore alternative parameterizations
of a push actions to discovery a strike action. In this cir-
cumstance, the agent will explore until a solution is found.
In doing so, these exploration trials are often “disposed of”
in CPS resolution. These interim exploration episodes typ-
ically contain a large number of agent-environment interac-
tions, which provide a large and fruitful data sample of ex-
perience for the agent to otherwise learn from.

In this paper, we develop a method for enabling life-long
creative problem solving (LLCPS), which uses CPS explo-
ration data to train a world model to increase CPS perfor-
mance over time. The world model is continuously trained
on both a) past CPS exploration trials and b) any past world
interactions. We train two world models (a neural net-
work and a naive Bayes model) with a combination of sub-
symbolic and symbolic data as input, and symbolic data as
the output. In doing so, we are able to direct the agent in its
CPS exploration to avoid those trials which are not likely to
resolve the CPS task, which decreases the total amount of

exploration in CPS over time. We evaluated our approach
in a 3D physics-based simulation environment, over three
consecutive experimental scenarios to observe how CPS per-
formance changes over time, and compared our approach to
three alternative baseline world model choices.

Related Work
Although life-long creative problem solving has not been di-
rectly explored in research, similar lines of work investigate
life-long learning, which develops methods to enable con-
tinual learning over time such that an agent is able to uti-
lize both its past experiences and new knowledge (see Parisi
et al. (2019) for a review). For example, Rao et al. (2019) de-
velop a custom model for continual life-long learning which
leverages a suit of artificial intelligence methods to learn
representations of tasks on the fly without labels or human
intervention. Within the mobile robotics navigation domain,
Kahn et al. (2021) develop a method which gathers data for
off-policy training of a retroactive self-supervised predic-
tive model, centered around environment affordance learn-
ing. Multi-task learning (MTL) is an area within machine
learning that aims to learn a general task model using sam-
ples from multiple tasks as a way to derive shared represen-
tation (Crawshaw, 2020). In doing so, MTL aims to address
the data efficiency issues that are typical in machine learn-
ing for single task learning (STL), to increase performance
in learning – but not necessarily to specifically be used for
novel problem solving. For example, in Kalashnikov et al.
(2021), a generalized multi-task deep reinforcement learn-
ing method called “MT-Opt” is trained off-line, simultane-
ously across multiple robot manipulation tasks. Similarly,
meta-reinforcement learning (MRL) aims to increase per-
formance in general task handling by optimizing adaptation
to new tasks (Yu et al., 2020). For example, in Javed and
White (2019), a meta-level objective is used in MRL to min-
imize catastrophic interference and promote future learning
via naturally sparse representation learning. Unlike MTL,
MRL assumes that all training and testing (novel task) data
is drawn from the same task distribution.

Theoretical Framework
Consider an agent which is able to act in its world through
symbolic planning to as a method for accomplishing tasks.



Additionally, the agent is able to use perceived sub-symbolic
information about its world in order to learn a world model
to resolve novelty in task failure.

Symbolic Planning
We assume that the robot has a symbolic knowledge base
K, defined as a classical planning problem, where K =
⟨SK,AK, EK,PK⟩, with respective components denoted
S,A, E ,P for brevity. The set S indicates possible world
states, reachable by taking actions on entities (either ma-
nipulable, static, or parts of the agent) in the sets A and E
respectively. Specifically, S = {s1 . . . sn}, E = {e1 . . . ep},
and A = {a1(▽1) . . . am(▽m)},▽i ⊆ E , where the ele-
ments in a ordered list ▽i are considered to be the arguments
of its corresponding action ai. Note that in general, entities
can be physical objects in the environment or the end effec-
tors of the robot, but in this work we only consider physical
manipulable objects in the environment. We define a set of
known predicate descriptors, or fluents, which can be used
to describe entities in the world as F = {f1(▽) . . . fq(▽)}
along with their negations F̂ = { ˆf1(▽) . . . ˆfq(▽)}, where
▽ ⊂ E . Together, the predicate descriptors and their nega-
tions comprise an encompassing set of predicates P =

F
⋃

F̂ which is used by the agent to describe states, enti-
ties, and information about the execution of actions, as is
typical in planning domains. Thus, a given state si ∈ S is
composed of a finite set of predicates Fi ⊂ F which hold
true in world state si. Note, this does not include negation
predicates in F , although these may be deduced by the plan-
ning agent. Moreover, we assume a planning domain def-
inition language (PDDL) representation of actions, where
each action has a set of preconditions and effects, denoted
ρi, pi ∈ P , indicating the predicates which must hold true
before executing an action (preconditions), and those which
are assumed to hold true after executing an action (effects).
Note that the preconditions and effects can include those
negation predicates in F̂ , described earlier.

The agent is able to use the aforementioned information
to act in its world, through planning, to accomplish tasks.
We define a task T in K as T = (K, s0, sg), where s0 is an
initial state, sg is a goal state, and s0, sg ∈ S (recall a state
is composed of a set of fluents which hold true). A plan
π = [a1, . . . a|π|] is a solution to accomplishing task T .

Sub-symbolic-based Learning
Next, we describe the sub-symbolic information known and
perceivable to the agent. For a given symbolic knowledge
base K, we assume that the robot has a corresponding sub-
symbolic knowledge base Ψ, containing low-level action
executors and object feature information (collectively de-
scribed as the tuple (K, Ψ)). Specifically, Ψ = ⟨R, X⟩,
where R = {r1 . . . r|AK|} denotes a set of action controllers
for the actions in AK, and X = {x1 . . . x|EK|} denotes a
set of feature mappings xi : ei 7→ Rn for the objects in
EK, where n is the size of the input vector (experimen-
tally chosen), discussed in the next paragraph. For every
action in ai ∈ AK, there exists a corresponding action con-
troller ri ∈ R which is able to execute ai with various sub-

Value Description (type) Value Possibilities
encoded action (int) {1,2,3,4}

rate (float) action specific
movementMagnitude (float) action specific

encoded orientation (int) {1,2}
encoded shape (int) {1,2,3}

volume (float) [0.0,∞)
encoded color (float) {1,2,3}

entity vector magnitude (float) [0.0,∞)
unit vector x (float) [0.0,1.0]
unit vector y (float) [0.0,1.0]
unit vector z (float) [0.0,1.0]

Table 1: World model W input values. Data types and value pos-
sibilities of each feature in our proof-of-concept is shown. Val-
ues which are encoded into numeric values are as follows: action
(1 = push together, 2 = remove from container, 3 =
place in container), orientation (1 = left, 2 = top), shape
(1 = sphere, 2 = box, 3 = cylinder), color (1 = red, 2 = blue, 3 =
green).

symbolic parameterizations. Thus |AK| = |R|. Addition-
ally, for every entity ei ∈ EK, there exists a feature mapping
xi ∈ X which contains sub-symbolic information about en-
tity properties. For every entity list Ej , there exists a list
of feature mappings X̂j which contains the mappings xi of
individual entities in ei ∈ Ej .

A given feature space X has a cardinality n (denoted
|X|n) such that every feature vector mapping xi ∈ X is
represented as a feature vector containing n distinct object
features (thus, |xi| = n). Therefore, for a given knowledge
base Ψ, entities can be described using exactly n feature val-
ues. Furthermore, we assume that the agent is able to per-
ceive the values of a given feature space through visual or
haptic feedback. We assume that the agent starts with all
features abstracted already, and thus, in our proof of con-
cept, we do not require the agent to discover these features.

Forward Model We define a world model for our hybrid
tuple (K, Ψ) as W : (ai, ri,▽i, Xi) 7→ Ω where Ω defines
the static output vector of the world model, which numeri-
cally encodes fluent changes which incur after the mapping
(See Table 2 for our proof-of-concept world model output
choices. Note that the output can be changed to suit the do-
main). The input to the mapping is a given action ai with
parameter settings ri, executed over arguments ▽i with cor-
responding feature vectors Xi (See Table 1 for our proof-
of-concept world model input choices. Note that the input
can be changed to suit the domain). Thus, for any action,
parameter settings to that action, entity arguments to that
action, and corresponding feature mappings or the entity ar-
guments, W is able to predict what fluent states in the world
may change as a result of executing ai on ei with low-level
settings ri and Xi.

Problem Formulation
Given a task T , a planner generates a plan π to accomplish
a goal state sg . The planning agent, containing an accu-



Value Description Value Possibilities
positive visibility change {0,1}
negative visibility change {0,1}

positive reachability change {0,1}
negative reachability change {0,1}

positive touching change {0,1}
negative touching change {0,1}

Table 2: World model W output values. Our proof-of-concept
output vector Ω is defined by 6 output values, each characterizing
meta-level symbolic changes in the world. A 0 value indicates none
of the meta-level changes (in value description) occurred, whereas
a 1 indicates 1 or more instances of the meta-level change occurred.

rate representation of the world in its symbolic knowledge
base K, is able to successfully execute π, thereby achieving
its goal state sg . We refer to this case as the original sce-
nario. Now, suppose that in the case of novelty, something
about the world changes such that K is no longer sufficient,
but needs to be updated with new information such that K
becomes K′. The agent also must learn a new set of corre-
sponding action controllers RK′ (represented as trajectories
relative to the arguments of the action). We refer to this sce-
nario as the novel scenario. In this novel context, the planner
initially uses K to plan for solving T , once again generating
π. Upon executing π, a plan failure occurs for some action
af ∈ π. At this point, the agent must explore its world to
learn a new knowledge base K′, providing it with an updated
and accurate representation of the new world, along with its
corresponding set of action controllers RK′ . We define the
learning process L as the process in which an agent can learn
a new knowledge base K′ using exploration method ω, such
that L(K, ω) 7→ K′.

The exploration method ω used by the agent for CPS is a
method which can result in knowledge base expansion. For
example, in previous work, we demonstrate knowledge base
expansion through action discovery (Gizzi et al., 2021a). In
preliminary work, we demonstrate knowledge base expan-
sion via action discovery through trajectory segmentation
(Gizzi et al., 2019). In another case, we demonstrate action
discovery through behavior babbling across action parame-
ter assignments (Gizzi et al., 2021b). In Gizzi et al. (2022),
we provide a comprehensive review of work in CPS which
provide methods for knowledge base expansion through var-
ious exploration methods ω.

Experiments
World Model
We experimented with 2 model types, with each model for-
mulated as multi-label binary classifiers.

Inputs and Outputs The inputs and outputs to our mod-
els are listed in Table 1 and Table 2, respectively. Before
training our models, we performed basic preprocessing on
our data to render the data formats shown in the tables. We
one-hot encoded the categorical features in both the input
(actions, shapes, color, and orientation were encoded as de-
scribed in Table 1), and output (world fluent changes were

encoded to indicate whether they occurred or not, as de-
scribed in Table 2). We also standardized continuous fea-
tures by removing the mean and scaling to unit variance in a
given feature space. Lastly, we split our data into a training
and testing set to prevent over-fitting.

Model 1: Neural Network The first model we tested was
a feed forward neural network (NN), which is a basic artifi-
cial neural networks, where connections between nodes do
not form a cycle. Our NN had 3 hidden layers, 256 neurons
in each hidden layer, a binary cross entropy loss function,
and a decaying learning rate for the CPR scenarios. Af-
ter examining multiple model choices, we determined that a
shallow and narrow neural network was not complex enough
to learn the data but still achieved high binary accuracy since
few actions in the data set affected the agent’s world. Con-
versely, a deep and wide neural network was able to learn
the complexity of the data.

Model 2: Naı̈ve Bayes The next model we tested was a
naı̈ve bayes model (NB). The NB model uses Bayes The-
orem and the assumption that each input variable is inde-
pendent to dramatically simplify calculations. We extended
a binomial naı̈ve bayes model to support multi-label classi-
fication by fitting one classifier per label. Recommending
actions to the agent in CPS when performing exploration is
well suited for a binomial naı̈ve bayes model since the agent
is training on a knowledge base of independent trials and
each trial produces six binary labels.

Measures We developed four measures used to prioritize
exploration trial recommendations by our world models.
That is, given a list of possible exploration trials (where each
trial describes an action to vary with corresponding param-
eter settings, and low level information about the entity ar-
gument to the action – thus describing a world model input
choice), the agent uses its world model to first predict multi-
label binary outputs described in Table 2, and then numeri-
cally quantifies each trial based on the world model output
it render. By using the least destructive measure, the model
orders the list of recommended exploration trials based on
how much a given input changes in it negative reachability
output. Exploration trials which minimize these changes are
prioritized. The most changes measure ranked inputs based
on how many fluent property changes they rendered through
the world model. Thus, inputs that rendered the highest net
value in the sum of the values of Ω were prioritized. The
most positive changes measure prioritized inputs which re-
sulted in the high rank for the sum of positive reachability,
positive touching, and positive visibility outputs. And lastly,
the least negative changes measure prioritized inputs which
resulted in the low rank for the sum of negative reachability,
negative touching, and negative visibility outputs.

Scenarios
We ran a proof-of-concept experiment of our methodology
in PyBullet, which is a 3D physics simulation environment.
The world model of the agent is first trained on input/output
data points (described later), sampled from randomized ac-
tions on randomized entities. After initial training, the robot



Figure 1: CPS Scenarios. In Scenario 1, the robot has a goal of
pushing an object off the table, into a bucket on the ground. In
Scenario 2, the robot has a goal of placing an item into a container.
In Scenario 3, the robot has a goal of emptying the contents of a
container, which has one object in it.

attempts to solve 3 CPS scenarios sequentially Each experi-
mental scenario in shown in terms of its original and novelty
condition, shown in Figure 1).

Results
In order to evaluated whether the use of a world model in-
creases CPS ability (through decreasing exploration time)
across longitudinal CPS trials, we ran two experiments,
where the world model used in each trial was first trained
on the same 200 data points of randomly generated world
model interactions. In each experiment, we took the aver-
age of four trial runs to calculate average exploration time
for each scenario in the described sequence, along with the
total exploration time for the sequence. We performed this
test for the NN model and the NB model. Additionally, we
performed this test for each of the 4 measures.

In the first experiment, we allowed exploration trials dur-
ing each scenario to be used to train the model over time,
across scenarios. In the second experiment, we reset the
training data back to the original set of 200 data points, and
retrained the model before each scenario. In this way, we
were able to observe whether training on CPS trials was
helpful toward decreasing CPS exploration over time. Note
that each scenario is characteristically different, regarding
the amount of exploration needed to find a solution. For ex-
ample, scenario 1 requires exploration of actions outside of
the original failed plan, or defocused exploration. There-
fore, comparisons were made relative to the corresponding
scenarios of each experiment.

We did not find a significant difference between model
updating versus not model updating in the first experiment.
We believe this may be due to the fact that the data generated
in the randomized trials may have not been a great represen-
tation of normal robot exploration (for example, in many tri-
als, objects fell off of the table before exploration was able
to begin). Moreover, even with accurate exploration, we be-
lieve the training apriori may have biased the agent toward
“nominal problem solving,” which uses different reasoning

Figure 2: Percent change in time for scenario 2 and 3 execution.
Red values show instances where model updating improve perfor-
mance (by reducing exploration time against trials with no model
updating). Thus, in the case where the world model was first
trained a priori, there was a decrease in CPS exploration time in
50% of the measure-model combination choices. In the case where
the world model was not trained a priori, there was a decrease in
CPS exploration time in 81% of the measure-model combination
choices.

than CPS. For this reason, we decided to test how the agent
would perform if there was little aprioiri training.

We performed the same two experiments, where we in-
stead only trained our models on 4 data points (one for each
action, randomly sampled from the original 200 data points).
Results are shown in Figure 2. In this case, we found that
there was a reduction in CPS time between scenario 1 and
2, and between scenario 2 and 3, in 50% and 81% of the
trial combinations for NN and NB, respectively (further de-
scribed in the caption of Figure 2). This shows that up-
dating the NB world model using only CPS exploration
trials is beneficial toward decreasing CPS exploration, as
opposed to not. When executing sequences of consecutive
CPS exploration without model updating in-between scenar-
ios, the agent was still updating its own world model within
the exploration of an individual scenario. Therefore, its pos-
sible that there is still benefit in having a “miniature” world
model for each scenario, not to be used in a long term sense.

Conclusion and Future Work
In this paper, we develop a method for enabling life-long
creative problem solving by training a world model on cre-
ative problem solving exploration data to increase CPS ex-
ploration performance. It was shown that using a naive
Bayes model is useful toward decreasing exploration time
in CPS over time, when trained on CPS data alone. A lim-
itation of our work is that it does not perform CPS over ex-
tensive/complex CPS operational runs. Future work should
consider performing LLCPS over 100 seeds, or more. Sim-
ilar limitations are addressed in Sun (2007). Additionally,
future work should consider using alternative output vectors
for capturing meta-level world changes, and different mea-
sures to rank those output values such that predictions can be
more consistent across scenarios. Lastly, future work should
compare alternative meta-level world models for LLCPS, in-
cluding reinforcement learning-based methods.
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