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Figure 1: Art images on left with orange borders are generated using Creative Walk Adversarial Networks. The right part shows
the Nearest Neighbors (NN) from the training set on the WikiArt dataset (with green borders), which are different indicating
our generations’ novelty. Nearest neighbor distance is computed on ResNet-18 space (He et al. 2016).

Abstract

We propose Creative Walk Adversarial Networks
(CWAN) for novel art generation. Quality learning rep-
resentation of unseen art styles is critical to facilitate
generation of new meaningful artworks. CWAN learns
an improved metric space for generative art by ex-
ploring unseen visual spaces with probabilistic random
walks. CWAN constructs a dynamic graph that includes
the seen art style centers and generated samples in the
current minibatch. We then initiate a random walk from
each art style center through the generated artworks in
the current minibatch. As a deviation signal, we encour-
age the random walk to eventually land after T steps
in a feature representation that is difficult to classify as
any of the seen art styles. We investigate the ability
of the proposed loss to generate meaningful novel vi-
sual art on the WikiArt dataset. Our experimental re-
sults and human evaluations demonstrate that CWAN
can generate novel art that is significantly more prefer-
able compared to strong state-of-the-art methods, in-
cluding StyleGAN2 and StyleCAN2. The code is pub-
licly available at: https://vision-cair.github.io/CWAN/

Introduction
Generative models like Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014a) and Variational Auto
Encoders (VAEs) (Kingma and Welling 2013) are excel-
lent tools for generating images due to their ability to rep-
resent high-dimensional probability distributions. However,
they are not explicitly trained to go beyond distribution
seen during training. Hence, the generations tends to be
more emulative than creative. To generate likable novel vi-
sual content, GANs’ training has been augmented with ex-
plicit losses that encourages careful deviation from exist-
ing classes, as first demonstrated in Creative Adversarial
Networks (CANs) (Elgammal et al. 2017a). These mod-
els were shown to have some capability to produce unseen
aesthetic art (Elgammal et al. 2017a; Hertzmann 2018;
Jha, Chang, and Elhoseiny 2021), fashion (Sbai et al. 2018),
design (Nobari, Rashad, and Ahmed 2021), and sculp-
ture (Ge et al. 2019). Producing these creative generations is
mainly leveraged by the generative model’s improved abil-
ity to learn visual representations of novel generations that
are distinguishable from seen ones. Similar deviation mech-
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anisms was shown to have generalization benefit, improv-
ing performance on the task of unseen class recognition by
encouraging discrimination explicitly between seen and un-
seen generations(Elhoseiny and Elfeki 2019; Elhoseiny, Yi,
and Elfeki 2021).

We propose Creative Walk Adversarial Networks
(CWAN) as a new learning system for generating artworks.
We build our method on top of the state-of-the-art GAN
architectures, StyleGANs (Karras, Laine, and Aila 2019a;
Karras et al. 2020), due to their superior performance
as compared to VAEs. We augment StyleGANs with
parameter-free graph-based loss, dubbed as Creative Walk
loss, to improve learning representation of unseen Artworks
generatively. We first represent each art style class (e.g.,
cubism, High renaissance) by its center, representing the
mean neural representation of the given Art style. Our Cre-
ative Walk loss then starts from the center of each seen art
style class and performs a random walk through the gen-
erated images for T steps. Then, we encourage the land-
ing representation to be distant and distinguishable from
the seen art style centers. In summary, the Creative Walk
loss is computed over a similarity graph involving the cen-
ters of seen art styles and the generated images/art pieces in
the current minibatch. Thus, Creative Walks takes a global
view of the data manifold compared to existing deviation
losses that are local/per example; e.g., (Sbai et al. 2018;
Elgammal et al. 2017a). Our work can be connected to
recent advances in semi-supervised learnin, that leverage
unlabeled data within the training classes, e.g., (Zhang et
al. 2018)(Ayyad et al. 2020)(Ren et al. 2018)(Haeusser,
Mordvintsev, and Cremers 2017)(Li et al. 2019). In these
methods, unlabeled data are encouraged to attract existing
classes. In contrast, our goal is the opposite, deviating from
seen styles. Also, creative walks operate on generated im-
ages instead of provided unlabeled data.
Contribution. We propose Creative Walk Adversarial Net-
works(CWAN) for novel art generation. CWANs augment
state-of-the-art adversarial generative models with a Cre-
ative Walk loss that learns an improved metric space for
novel art generation. The loss generatively explores unseen
art discriminatively against the existing art style classes.
The augmented loss is unsupervised on the generative space
and can be applied to any GAN architectures; e.g., DC-
GAN (Radford, Metz, and Chintala 2016), StyleGAN (Kar-
ras, Laine, and Aila 2019a), and StyleGAN2 (Karras et
al. 2020). We show that Creative Walk Adversarial Net-
works helps understand unseen visual styles better, improv-
ing the generative capability in unseen space of liked art
as compared to state-of-the-art baselines including Style-
GAN2(Karras et al. 2020) and StyleCAN2(Jha, Chang, and
Elhoseiny 2021); see Fig. 1.

Related Work
Generative Models with Deviation Losses. In the con-
text of computational creativity, several approaches have
been proposed to produce original items with aesthetic and
meaningful characteristics (Machado and Cardoso 2000;
Mordvintsev, Olah, and Tyka 2015; DiPaola and Gab-
ora 2009; Tendulkar et al. 2019). Various early stud-

ies have made progress on writing pop songs (Briot, Had-
jeres, and Pachet 2017), and transferring styles of great
painters to other images (Gatys, Ecker, and Bethge 2016;
Date, Ganesan, and Oates 2017; Dumoulin et al. 2017;
Johnson, Alahi, and Li 2016; Isola et al. 2017) or doo-
dling sketches (Ha and Eck 2018). The creative space
of the style transfer images is limited by the content im-
age and the stylizing image, which could be an artistic
image by Van Gogh. GANs (Goodfellow et al. 2014a;
Radford, Metz, and Chintala 2016; Ha and Eck 2018;
Reed et al. 2016; Zhang et al. 2017; Karras et al. 2018;
Karras, Laine, and Aila 2019a) have a capability to learn
visual distributions and produce images from a latent z vec-
tor. However, they are not trained explicitly to produce novel
content beyond the training data. More recent work explored
an early capability to produce novel art with CAN (Elgam-
mal et al. 2017b), and fashion designs with a holistic CAN
(an improved version of CAN) (Sbai et al. 2018), which are
based on augmenting DCGAN (Radford, Metz, and Chin-
tala 2016) with a loss encouraging deviation from existing
styles. The difference between CAN and holistic-CAN is
that the deviation signal is Binary Cross Entropy over indi-
vidual styles for CAN (Elgammal et al. 2017b) and Multi-
Class Cross-Entropy (MCE) loss overall styles in Holistic-
CAN (Sbai et al. 2018). (Jha, Chang, and Elhoseiny
2021) recently proposed StyleCAN model, which augments
the Holistic CAN loss on StyleGANs, showing an improved
performance compared to StyleGANs in art generation.

In contrast to these deviation losses, our Creative Walk
loss is global. It establishes dynamic messages between gen-
erations produced in every mini-batch iteration and seen vi-
sual spaces. These generations deviate from style norms rep-
resented by the centers of the seen art style classes. In our
experiments, we added the proposed loss to StyleGAN1 and
StyleGAN2 architectures to produce novel visual artworks,
showing superior likeability compared to existing losses.

Creative Walk Adversarial Networks
We start this section by the formulation of our Creative Walk
loss. We will show later in this section how state-of-the-art
deep-GAN models can be integrated to encourage novel vi-
sual generations. We denote the generator as G(z) and its
corresponding parameters as θG. As in (Goodfellow et al.
2014b; Karras, Laine, and Aila 2019a), the random vector
z ∈ RZ sampled from a Gaussian distribution pz = N (0, 1)
to generate an image. Hence, G(z) is an generated image
from the noise vector z. We denote the discriminator as D
and its corresponding parameters as θD. The discrimina-
tor is trained with two objectives: (1) predicting real images
from the training images and fake for generated ones. (2)
identify the art style class of the input artwork. The dis-
criminator then has two classification heads. The first head
is for binary real/fake classification; {0, 1} classifier. The
second head is a K-way classifier over the seen art style
classes, where K is the number of style classes in the train-
ing dataset. We denote the real/fake probability produced by
D for an input image as Dr(·), and the classification score
of a seen style class k ∈ S given the image as Dc(·), where
S is the set of seen art styles.
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Figure 2: Creative Walk loss starts from each seen style class center (i.e., pi). It then performs a random walk through generated
examples of hallucinated unseen classes using G(z) for T steps. The landing probability distribution of the random walk is
encouraged to be uniform over the seen classes. For careful deviation from seen classes, the generated images are encouraged
to be classified as real by the Discriminator D. H indicates relative entropy; see Eq. 4 for detailed definition.

Creative Walk Loss
We denote the seen class centers, or prototypes1, that we
aim to deviate from as C = {p1 · · ·pK}, where pi rep-
resents center of seen class/style i and K is the number of
seen art styles that we aim to deviate from. We compute
C = {p1 · · ·pK} by sampling a small episodic memory
of size m for every class and computing pi from the dis-
criminator representation. Concretely, we randomly sample
m = 10 examples per class once and compute at each it-
eration its mean discriminator features, computed as activa-
tions from the last layer of the Discriminator D followed by
scaled L2 normalization L2(v, β) = β v

∥v∥ , β = 3.

With the generator G(·), we sample generated images X̃
of size Ñ that we aim them to deviate from the seen art
styles. X̃ is then embedded to the same feature space as
style centers with the discriminator. Let B ∈ RÑ×K be the
similarity matrix between the features of the generations (X̃)
and the seen class centers (C). Similarly, let A ∈ RÑ×Ñ be
the similarity matrix between the generated images. In par-
ticular, we use the negative Euclidean distances between the
embeddings as a similarity measure as follows:

Bij = −∥x̃i − pj∥2, Ai,j = −∥x̃i − x̃j∥2 (1)

where x̃i and x̃j are ith and jth features in the set X̃; see
Fig. 2. To avoid self-cycle, The diagonal entries Ai,i are set
to a small number ϵ.

1we refer alternatively between prototypes and centers

Hence, we defined three transition probability matrices:
PC→X̃ = σ(BT), PX̃→C = σ(B), PX̃→X̃ = σ(A) (2)

where σ is the softmax operator is applied over each row of
the input matrix, PC→X̃ and PX̃→C are the transition prob-
ability matrices from each seen class over the Ñ generated
images and vice-versa respectively. PX̃→X̃ is the transition
probability matrix from each generated image over other
generated images. We hence define our generative random
walker probability matrix as:

PC→C(t, X̃) = PC→X̃ · (PX̃→X̃)t · PX̃→C (3)

where P i,j
C→C(t, X̃) denotes the probability of ending a ran-

dom walk of a length t at a seen class j given that we have
started at seen class i; t denotes the number of steps taken
between the generated points, before stepping back to land
on a seen art style.
Creative Walk Loss. Our random walk loss aims at boost-
ing the deviation of unseen visual spaces from seen art style
classes. Hence, we define our loss by encouraging each row
in PC→C(t) to be hard to classify to seen classes as follows

LCW =−
T∑

t=0

γt ·
K∑
i=1

K∑
j=1

Uc(j)log(P
i,j
C→C(t, X̃))

−
Nu∑
j=1

Ux(j)log(Pv(j))

(4)

where the first term minimizes cross entropy loss between
every row in PC→C(t, X̃)∀t = 1 → T and uniform distri-
bution over seen classes Uc(j) =

1
Ks ,∀j = 1 · · ·Ks, where



Figure 3: Most liked and disliked art generated using StyleGAN1 + CWAN(left) and StyleGAN2 + CWAN(right) architectures.

T is a hyperparameter and γ is exponential decay set to 0.7
in our experiments. In the second term, we maximize the
probability of all the generations x̃i ∈ X̃ to be equality vis-
ited by the random walk; see Fig. 2. This term is called
the “visit loss” and was proposed in (Haeusser, Mordvint-
sev, and Cremers 2017) to encourage random walker to visit
a large set of unlabeled points. We compute the overall prob-
ability that each generated point would be visited by any of
the seen class Pv = 1

K̃

∑K
i=0 P

i
C→X̃

, where P i
C→X̃

repre-

sents the ith row of the PC→X̃ matrix. The visit loss is then
defined as the cross-entropy between Pv and the uniform
distribution Ux(j) =

1
Ñ
,∀j = 1 · · · Ñ . Hence, visit loss en-

courages to visit as many examples as possible from X̃ and
hence improves learning representation.

Note that, if we replace Uc by an identity matrix to
encourage landing to the starting seen class, the loss be-
comes an attraction signal similar to (Haeusser, Mordvint-
sev, and Cremers 2017), which defines its conceptual dif-
ference to the Creative Walk loss. We integrated our loss
with StyleGAN1 (Karras, Laine, and Aila 2019a) and Style-
GAN2 (Karras et al. 2020) by simply adding LGRW in Eq. 4
to the generator loss. The generator and discriminator losses
are defined as follows

LG = LG GAN + λLCW (5)

LD = LD GAN + λLstyle classification (6)
where LG GAN and LD GAN are the default generator and dis-
criminator loss, used in the adopted GAN architecture (e.g.,
DCGAN, StyleGAN1. StyleGAN2). Similar to (Elgammal
et al. 2017a; Sbai et al. 2018), we add art style classification
loss, Lstyle classification, on real art images to LD.

Experiments
Dataset. We performed our experiments on the WikiArt
datasets (WikiArt 2015), which contains approximately 81k
art works from 27 different art styles and over 1k artists.

Nomenclature. Our models are referred as CWAN-
T(value), where CWAN means Creative Walk Adversarial
Network, with Creative Walk loss of T time steps. We name
our models according to this convention throughout this sec-
tion. We perform human subject experiments to evaluate
generated art. We set value of the loss coefficient λ as 10 in
all our experiments. We divide the generations from these
models into four groups, each containing 100 images; see
examples in Fig. 3.
• NN↑. Images with high nearest neighbor (NN) distance

from the training dataset.
• NN↓. Images with low nearest neighbor (NN) distance

from the training dataset.
• Entropy ↑. Images with high entropy of the probabilities

from a style classifier trained on WikiArt dataset.
• Random (R). A set of random images.
For example, we denote generations using CWAN with
T=10, and NN↑ group as CWAN-T10 NN↑. Fig. 3 shows
top liked/disliked paintings according to human evaluation
on StyleGAN1 and StyleGAN2 with our Creative Walk loss.
Baselines. We performed comparisons with two baselines,
i.e., (1) the vanilla GAN for the chosen architecture, and
(2) adding Holistic-CAN loss (Sbai et al. 2018) (an im-
proved version of CAN (Elgammal et al. 2017b)). For sim-
plicity, we refer the Holistic-CAN as CAN. We also com-
pared to StyleCAN(Jha, Chang, and Elhoseiny 2021) model,
an adaptation of the holistic CAN loss on the state-of-the-
art StyleGAN (Karras, Laine, and Aila 2019b) and Style-
GAN2 (Karras et al. 2020) architectures.
Human Evaluation. We performed our human subject
MTurk experiments based on StyleGAN1 (Karras, Laine,
and Aila 2019b) & StyleGAN2 (Karras et al. 2020) archi-
tecture’s vanilla GAN, CAN, and CWAN variants. We con-
ducted three types of experiments; see Fig. 5.

1. Likeability Experiment: Following(Elgammal et al.
2017a), we performed the likeability experiments on



Table 1: Human experiments on generated art from vanilla GAN, and CAN, and CWAN. CWAN obtained the highest mean
likeability in all the groups. Here Q1 is asking for a likeability score and Q2 is asking whether the art work is created by a
computer/human. See Likeability Experiment for more details. More people believed the generated art to be real for the artwork
generated from model trained using the Creative Walk loss.

Likeability Mean Turing Test

Loss Architecture Q1-mean(std) NN ↑ NN ↓ Entropy ↑ Random Q2(% Artist)

CAN (Elgammal et al. 2017b) DCGAN 3.20(1.50) - - - - 53

GAN (Vanilla) (Karras, Laine, and Aila
2019a)

StyleGAN 3.12(0.58) 3.07 3.36 3.00 3.06 55.33

CAN (Jha, Chang, and Elhoseiny 2021) StyleGAN 3.20(0.62) 3.01 3.61 3.05 3.11 56.55
CWAN-T3 (Ours) StyleGAN 3.29(0.59) 3.05 3.58 3.13 3.38 54.08
CWAN-T10 (Ours) StyleGAN 3.29(0.63) 3.15 3.67 3.15 3.17 58.63
GAN (Vanilla) (Karras et al. 2020) StyleGAN2 3.02(1.15) 2.89 3.30 2.79 3.09 54.01
CAN (Jha, Chang, and Elhoseiny 2021) StyleGAN2 3.23(1.16) 3.27 3.34 3.11 3.21 57.9
CWAN-T3 (Ours) StyleGAN2 3.40(1.1) 3.30 3.61 3.33 3.35 64.0
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Figure 4: Percentage of each rating from human subject experiments on generated images. Compared to CAN, images generated
using CWAN are rated (5,4) by a significantly larger share of people, and are rated (1,2) by fewer people.

Amazon Mechanical Turk by asking the surveyors the fol-
lowing questions.

(a) Q1. How much do you like this image? 1-5 rating; 5 is
best rating.

(b) Q2. Do you think this image was created by artist or
generated by computer? (yes/no)

The user interface of this experiment is shown in Figure
5 (top). We divide the generations into four groups de-
scribed in nomenclature. We collect five responses for
each art piece (400 images), totaling 2000 responses per
model by 341 unique workers. Table 1 summarizes the
likeability of CWAN generated artworks in comparison
to vanilla GAN and StyleCAN variants (Jha, Chang, and
Elhoseiny 2021). We find that images generated from our
model is more likeable in all the groups described earlier.
Figure 4 shows how our paintings are given higher rat-

ings by more share of participants and lower ratings by
less participants. We found that artworks from the trained
StyleGAN1 and StyleGAN2 with our Creative Walk loss
were more likeable and more people believed them to be
real art, as shown in Table 1. For StyleGAN1, adding the
Creative Walk loss resulted in 38% and 18% more peo-
ple giving a full rating of 5 over vanilla StyleGAN1 and
StyleGAN1 + CAN (StyleCAN1) loss, respectively, see
Fig. 4. For StyleGAN2, these improvements are 65% and
15%. Table 2 shows that images generated by CWAN
on StyleGAN1 and StyleGAN2 architectures have better
ranks when combined with sets from other baselines.

2. Comparison Experiment: We performed experiments
where given an artwork from a model trained with our
Creative Walk loss vs an artwork with CAN loss, we ask
people, which one they prefer. The pairing of the im-
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Figure 5: User interfaces of the likeability experi-
ment(top), comparison experiment(middle) and emotion ex-
periment(bottom).

Table 2: Normalized mean ranking (lower the better) cal-
culated from the likeability experiment. We take the mean
rating of each artwork on both CAN and CWAN losses. We
then stack, sort, normalize them to compute the normal-
ized mean rank. The numbers are corresponding normalized
ranks from the models in the row above them.

Normalized Mean Ranks

CAN/CWAN-T10 CAN/CWAN-T3 CAN/CWAN-T10/CWAN-T3
StyleGAN1 0.53/0.47 0.53/0.47 0.52/0.48/0.50

CAN/CWAN-T3 GAN/CWAN-T3 CAN/GAN/CWAN-T3
StyleGAN2 0.54/0.46 0.59/0.41 0.49/0.59/0.42

ages was done on the basis of nearest neighbour. So, for
each image generated from a StyleGAN model trained on
Creative Walk loss, we found the nearest neighbour from
images of model trained on CAN loss. Several qualita-

tive results from these experiments are shown in Figure 6.
The nearest neighbour was computed based on features
that were extracted from a pretrained ResNet-18 (He et
al. 2016). This is to make sure that the images we give
out for comparison looks similiar as possible. We took
random pairs of images from generations from StyleGAN
model trained with CAN and CWAN; see the user inter-
face for this experiment in Figure 5 (middle). The re-
sults for this experiment on StyleGAN 1 and 2 model on
CWAN and CAN losses are summarized in Table 3. We
collected 5 responses each for 600 pairs of artworks by
300 unique workers. Table 3 shows that CWAN loss is
significantly more preferred compared to art work from
CAN losses.

Figure 6: Figure shows CWAN (left) preferred more than
CAN (right) for each pair of columns (random selection).



Figure 7: Distribution of emotional responses for generated art from StyleGAN1 + CWAN. Example image for fear, awe, and
contentment is shown. The box beneath shows the most frequent words used by evaluators to describe their feeling. These
responses were collected from a survey on Amazon Mechanical Turk.

3. Emotion Human Subject Experiments: To measure
the emotional influence of AI generated art on the par-
ticipants similar to (Jha, Chang, and Elhoseiny 2021),
we asked participants to record their constructed emo-
tion when exposed to a generated artwork. Following
(Machajdik and Hanbury 2010; Achlioptas et al. 2021;
Mohamed et al. 2022), we allowed these options of emo-
tion categories 1) Amusement 2) Awe 3) Contentment 4)
Excitement 5) Anger 6) Disgust 7) Fear 8) Sadness and
9) Something Else (“Other” in Fig 7). People were also
asked to describe why they feel that particular emotion
in text, so that survey participants chose the emotion af-
ter properly looking at the art work; see the user interface
Figure 5 (bottom). We collected 5 responses each for a
set of 400 generated artworks from 250 unique work-
ers. Despite the model being trained unconditionally, it
was able to produce generations that constructed diverse
feelings in the viewer. Fig. 7 shows the distribution over
the opted emotions, which are diverse but mostly positive.
However, some generations construct negative emotions

Table 3: Evaluator preference percentage for generated im-
ages for both CWAN and CAN loss on the StyleGAN ar-
chitectures. We split the preferred images into two groups
based on their NN distance, and then the preference percent-
age is calculated for these groups.

Architecture Low NN distance split High NN distance split

CAN StyleGAN1 0.46 0.48
CWAN-T10 StyleGAN1 0.54 0.52
CAN StyleGAN2 0.46 0.43
CWAN-T3 StyleGAN2 0.54 0.56

like fear. Fig. 7 also shows the most frequent words for
each emotion after removing stop words. Notable posi-
tive words include “funny”, “beautiful”, “attractive”, and
negative words include “dark”, “ghostly” which are asso-
ciated with feelings like fear and disgust. Compared to the
emotion experiments on Real Art and StyleCAN reported
in (Jha, Chang, and Elhoseiny 2021), emotional responses
to StyleGAN +CWAN art are more entropic (diverse).

Emotional Descriptions by people. In Fig. 9, we can see
a sample of the emotional descriptions that we collected on
the art generated by CWAN in the emotion human subject
experiment. One of the interesting descriptions we collect
by a survey participant where they describe an artwork with
a old looking female as ”Zombie grandma”. Another survey
participant describes a artwork generated as ”super relax-
ing” because of the sunset like colors in the artwork. More
examples are shown in Fig. 9
Wundt Curve Analysis. Wundt curve (Packard 1975;
Wundt 1874) illustrates Collin Martinale’s “The principle of
least efforts”, a theory that explains human behavior towards
creativity in artworks (Martindale 1990). The curve shows
that as the originality/novelty of the work increases, people
like the work. After a certain threshold, people start dislik-
ing it due to the difficulty of understanding, which leads to
a lack of appreciation. We approximate Wundt curve by fit-
ting a degree 3 polynomial on a scatter plot of normalized
likeability vs. mean NN distance ( novelty measure). Gen-
erations are more likable if the deviation from existing art
is moderate but not too much; see Fig. 8. We observe that
likeability responses to image sets with higher NN distance
(i.e., Random (R) and NN↑ ) are generally lower compared
to NN↓. Compared to CAN and GAN, CWAN achieves on
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Figure 8: Empirical approximation of Wundt Curve (Packard 1975; Wundt 1874). The color of the data point represents
a specific model and its label specifies the group named according to nomenclature. Art from the NN ↑ group has lower
likeability than the NN ↓ group. Examples of a high and low likeability artwork and its novelty are shown. The NN distance is
computed from features of resnet-18 and are normalized by scaling down by 20 (to be < 1). We select 20 because it was around
the higher NN distances we observe in our generations

Figure 9: Descriptions given by people when asked to describe the why they felt a particular emotion while looking at artworks
generated by CWAN (our method)

balance novel images that are more preferred.

Key Observations
In the experiments and the analysis conducted above, we
noted the following key observations.

1. The creative walk loss used in CWAN has performed bet-
ter than CAN on two SOTA base architectures i.e. Style-
GAN1 and StyleGAN2.

2. From Table 1 we find that the artworks generated by our
proposed CWAN model are more likeable than those art-
works by CAN in all the evaluation groups.

3. From Fig. 3 we see that artworks by CWAN have a sig-
nificantly higher percentage of people giving a rating of 5
and least amount for people giving a rating of 1.

4. In Fig. 8, we approximated the Wundt Curve from art-
works generated from CWAN.

5. The generated artworks were able to construct meaning-
ful and diverse emotional experiences for our human par-
ticipants as shown in Figures 7 and 9

Conclusion

We propose Creative Walk Adversarial Networks. Aug-
menting Generative Adversarial Networks with a creative
random walk loss. Through our experiments and analysis,
we showed that CWAN improves generative models’ capa-
bility to better represent the unseen artistic space and gen-
erate preferable novel artworks. We think the improvement
is due to our learning mechanism’s global nature, which op-
erates at the minibatch level producing generations that are
message-passing to each other to facilitate better deviation
of generated artworks from seen art style classes.
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