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Abstract:

We introduce an analytical tool to study the convergence of bidirectional multiagent agreement

systems and use it to sharpen the analysis of various natural algorithms, including flocking, opinion consensus,
and synchronization systems. We also improve classic bounds about colored random walks and discuss the

usefulness of algorithmic proofs.
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1 Introduction

We introduce an analytical tool to study the con-
vergence of certain multiagent agreement systems and
use it to sharpen the analysis of various natural al-
gorithms, including flocking, opinion consensus, and
synchronization systems. We also improve classic
bounds about colored random walks. Before we go
into any of the details, we wish to explain the moti-
vation behind this work.

Nonlinear dynamics counts as one of the great sci-
entific advances of the last century: chaos, fractals,
strange attractors, emergence, and “small worlds”
have all been the focus of public attention and the
ferment of first-rate science. As these subjects ma-
ture, however, the limitations of classical mathemat-
ics are being felt. No one today seriously believes that
to understand ecologies, immune systems, markets, or
social networks is just a matter of finding the right dif-
ferential equations and shaping them into predictive
tools. Mathematics thrives on symmetry and physics
on invariance. This perfect match largely accounts
for the amazing success of 20th-century science. But,
after what Wigner called the “unreasonable effective-
ness of mathematics in the natural sciences,” we are
beginning to witness its reasonable ineffectiveness in
coping with complex systems short on symmetry and
regularity.

This is where computer science comes in. Nu-
merical simulations, data mining, machine learning,
and other data-centric applications of computing have
moved center stage. Yet the question remains: Can
natural algorithms be analyzed directly, without rely-
ing primarily on the data they generate? To appre-
ciate this point, try a thought experiment. Suppose
no one knew that a square matrix M could be diago-
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nalized or put in Jordan normal form. To analyze the
dynamical system

ugr1 = Muy,

we would then probably gather statistics on its iter-
ates and search for numerical patterns. We would
observe that the system seems to stretch the initial
states in some directions, compress them in others,
and sometimes produce oscillations. We would fur-
ther learn to classify these oscillations into two types:
periodic and quasirandom. Meanwhile, we would be
making all these inferences with no theory to explain
them. Unfortunately, this situation is all too common
in the study of multiagent systems. Does it need to
be so?

We wish to suggest that algorithms themselves
should be harnessed as analytical tools to study other
algorithms. A good example of such an inward-
looking approach is mathematics itself. Although the
motivation might often come from the outside (espe-
cially the physical sciences), most mathematical tools
are in fact invented for internal purposes: determi-
nants for matrices, resultants for polynomials, groups
for algebraic equations, etc. Can the same be true of
algorithms?

1.1 Results

We focus on the use of algorithmic proofs for the
analysis of complex systems. The idea could not
be simpler. Theorems often have proofs that look
like algorithms. But theorems are hard to generalize
whereas algorithms are easy to modify. Therefore, if
a complex system is too ill-structured to satisfy the
requirements of a specific theorem, why not algorith-
micize its proof and retool it as a suitable analytical
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device? We illustrate this idea with three examples
related to agreement systems.

e We give a short algorithmic proof that a lazy
random walk on a connected graph mixes in polyno-
mial time. The result and the ideas behind our proof
are well known, but the perspective is different. Our
proof algorithmicizes the concept of reversibility in a
Markov chain. Think of it as a warm-up exercise.

e Lorenz [27] and, independently, Hendrickx and
Blondel [14], proved a counterintuitive bound on the
nonzero probabilities occurring in colored random
walks. We improve the bound to its optimal asymp-
totic value and prove a general ergodicity result for
colored random walks. The proof is a flow algorithm
tailored to mimic an eigenvalue computation. Specif-
ically, it algorithmicizes the proof of Schur’s Lemma.
One might sense a bit of a paradox here, as eigenval-
ues are notoriously inadequate for tackling products
of noncommuting matrices—the kind that occurs in
colored walks. This illustrates an intriguing aspect of
algorithmicized proofs, which is that the mathemati-
cal object upon which the original proof bears might
become entirely irrelevant in the new proof.

e We introduce the total s-energy of a multiagent
agreement systems. This is a generating function
(specifically, a Dirichlet series) that partly captures
the dynamics of the system. We show how to derive
good convergence bounds from the order of its pole.
We apply this to (i) Vicsek-Cucker-Smale flocking; (ii)
Hegselmann-Krause opinion dynamics; and (iii) Ku-
ramoto synchronization.

1.2 Discussion

Aren’t most mathematical proofs algorithmic any-
way? Computer science proofs, in particular, often
track the flow of execution so closely as to resem-
ble a rewriting of the code at a different level of ab-
straction. The literature in program verification, dis-
tributed computing, and proof-carrying code is full of
such examples. So our basic point may seem at best
unoriginal and at worst meaningless. After all, most
proofs consist of discrete steps with variable names,
conditionals, and the occasional recursive (ie, induc-
tive) calls. So what’s new? Our purpose here is not
to introduce a formal concept but to appeal to an
intuition that algorithms themselves must join the
analytical arsenal of a theory of natural algorithms.
The reason is that, in a practical sense (if not a for-
mal one), algorithms are more expressive than formu-
las and equations. And so, to analyze natural algo-
rithms, it is sometimes useful, or perhaps even indis-
pensable, to think of the proof itself as an abstrac-
tion of the original algorithm. In particular, the stan-
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dard method of, first, exhibiting forbidden structures
and, second, drawing the combinatorial consequences
might not always be suitable. (We discuss this point
further in §2.3.) Our three examples point to the rich
potential of an algorithmic calculus for dynamical sys-
tems. This work is a small contribution to this larger
project.

Note that nonconstructivity is not necessarily an
issue. The standard proof of Koénig’s Lemma, which
says that an infinite connected bounded-degree graph
has an infinite path, is nonconstructive. Yet, with
the proper oracle in place, it is algorithmic and fits
our model. On the other hand, consider the theorem
stating the equality of the row and colum ranks of a
matrix M. A nonalgorithmic proof will argue that
both ranks must solve the feasible system,

min{k|M:Zkukvg},

and hence be equal. One can prove the same result
algorithmically via Gaussian elimination. The proof
is longer and less elegant, but it has two major ad-
vantages: first, it actually gives us the rank; second,
it can be adapted to other purposes. For example, a
few changes will show us how to invert a nonsingular
matrix; a few more will prove that the determinant is
multiplicative; further alterations will take us all the
way to the simplex algorithm. Both proofs express
duality in its simplest form. The difference is that
Gaussian elimination does it algorithmically, via piv-
oting, whereas the structural proof appeals to sym-
metry: specifically, the equivalence of (Jui3vg) and
(JurJug). Google’s PageRank follows the same idea
but takes it one step further: it converts the proof of
the spectral theorem into an algorithm.

As we said earlier, an algorithmic approach to com-
plex systems is nothing new. The works of Klein-
berg [21, 22] and others to model social processes
in an algorithmic language and integrate temporal
dynamics fit that mold. Henzinger et al [15] have
used model checking to automate the subdivision of
the phase space of hybrid systems into coarse-grained
classes and build approximate variants of Markov par-
titions. What distinguishes our approach from the
latter is its emphasis on asymptotic analysis: if the
system is scale-free, for example, we want to know its
power-law.

The complexity of systems prediction has received
considerable attention (eg, 3, 4, 20, 31, 38]). A limi-
tation of these results is that they tend to zoom in
on a corner of computational hardness that, most
likely, evolution has kept at bay. The intractability
of protein folding, for example, might simply mean
that hard instances did not make it down the tree
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of life [2, 36]. How adaptation navigates its way
across the problem instance hardness spectrum is one
of the most exciting open questions in science to-
day. For example, there is a well-studied evolutionary
arms race among species engaged in pursuit-evasion
contests [7]. This has produced birds with aston-
ishing powers to predict the short-term behavior of
their (Turing-complete) predators. This is algorith-
mic magic and a reminder that natural selection is
the ultimate software optimizer. It would be a pity if
algorithms research had nothing to say on the matter.

Natural algorithms shine especially as out-of-
equilibrium systems. Emergence in ant colonies or fish
schooling arises as heat is evacuated and low-entropy
energy is absorbed. This crucial point explains why
classical thermodynamics, despite its recognized role
in computer science [24], is probably ill-suited for nat-
ural algorithms. Jerrum and Sinclair [19] pioneered an
algorithmic approach to studying the complexity of
approximating the partition function of random fields
in statistical physics. Although it bears relevance to
phase transitions, this line of work is inherently about
equilibrium (as is the present paper, we should add).
This is not to say that statistical physics is irrelevant.
In fact, it may well be that one of the most promising
source of inspiration at this point is renormalization
group theory [16], which allows for multiscale analysis
of (self-similar) physical systems. The technique has
been extremely useful in the study of phase transi-
tions. To adapt it to natural algorithms is a challeng-
ing undertaking for future work. (Our third example
takes a baby step in that direction.)

2 Three Algorithmic Proofs

When used as proofs, algorithms are to be granted
more expressive power than usual: they may use ora-
cles and infinite loops; they may be nondeterministic;
they may break open a closed-loop dynamical system
and feed it an adversarial signal; etc. Our proofs do
all of that liberally.

2.1 Markov Chain Mixing

Let P be the transition matrix of a random walk
on a connected graph G with n vertices. We add a
self-loop to each vertex and let d; denote the degree of
vertex ¢ (counting the self-loop): the walk at ¢ hops
to any neighbor with probability 1/d;. We give an
algorithmic proof that the walk mixes rapidly, ie, that
for any initially distribution my, the linear system

T _ T
S:my =7 P
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converges exponentially close to the distribution p in
polynomial time, where p; = d;/>_d;. The idea of
the proof is to modify the algorithm S until the re-
sult essentially tumbles out. The pseudocode below
does not describe one algorithm but a sequence of
them defined by using operations from a simple algo-
rithmic calculus. For example, the difference between
two algorithms A, B is understood as the algorithm
defined by subtracting the outputs of A and B. The
same proof works unchanged for your favorite defini-
tion of a lazy walk. In fact, it applies to general ape-
riodic reversible Markov chains. Not only that, but
we can even change the chain at each time step and,
as long as we keep the stationary distribution invari-
ant, it will still work. This invariance is required be-
cause time-dependent Markov chains may otherwise
take exponential time to mix.

Proor

[1] Let g(x) be the dual system: xty1 =
Pxi_ -
[2] Let S (x)® S (y) be the joint algorithm
formed by running g(x) and g(y) si-
multaneously and, at each step ¢, pick-
ing a random vertex ¢ with probability
p: and returning the product (x¢):(y+):-
[3] Let R(x,y) denote the algorithm:
— — — —
S(Px)® S(y)— S(x)® S(Py).
[4] Run R(x, Px).

Pick a random 4 with probability p; and, for any
k > 0, let xj denote the i-th coordinate of x;1;. We
easily check that p;p;; remains unchanged if we per-
mute ¢ and j; therefore,

Z PiDijTiYi — Z PiDijTiY;
1,7 2

is identically zero. This implies that algorithm
R(x,y), and hence step [4], return only unbiased ran-
dom variables; therefore, E x3 = E xox2 and the dif-
ference var xo — var x7 is equal to

E(x§ —x1) = Exj — Exox
=" PP (xe): — (x1);)?

1<j

> m_?’((Xt)i - (Xt)j)2’

for any (i,7) out of the m edges of G; both laziness
and reversibility are used in (1). Because G is con-
nected, by the pigeonhole principle, following a path

(1)
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from the highest coordinate of x; to the lowest one
leads to an edge i, for which ((x¢); — (x¢);)? is at
least n~2 var xo. It follows by induction that

var y;, < (1 —n~ 0k

var o -
The variance of xj thus decays exponentially in k.
Since the initial vector xq is arbitrary, this implies
that the matrix P! has rows that have ¢y differences

_in—0® . . .
at most e~ ™" , which proves rapid mixing.

DISCUSSION.  Step [1] introduces the time-reversal
chain (hence the reverse arrow): we still use P be-
cause the chain is reversible. Steps [3,4] output only
unbiased random variables: this is the algorithmiciza-
tion of reversibility: technically, self-adjointness over
L?(p) (which is visually apparent in step [3]). Infor-
mally, the algorithm expresses the fact that the cor-
relation between yesterday and tomorrow can be in-
ferred today. This is the key to rapid mixing and the
basis, implicit or not, of every known proof. Recall
that Perron-Frobenius alone cannot prove better than
exponential-time mixing, and the crux of any eigen-
value proof is a bound on the spectral gap. Our proof
does this indirectly. Its use of the pigeonhole princi-
ple along a path mimics the Landau-Odlyzko spectral
gap proof [23], while the Dirichlet form in (1) follows
its use by Mihail [30].

2.2 Colored Random Walks

Colored random walks are an interesting variant of
the standard sort: each step brings in a new graph
to walk on. It was introduced to computer science in
the context of interactive proof systems [8, 9]. Being
all about inhomogeneous products of stochastic ma-
trices, however, the notion has been investigated in
many other areas [37]. Let G be a set of connected
graphs over the same set of n vertices: each graph is
assigned a random walk with every positive transition
probability bounded below by some parameter § > 0.
We also assume that the walk is bidirectional, mean-
ing that if the transition probability from ¢ to j is
nonzero then the same is true from j to ¢. (Note that
reversibility implies bidirectionality but not the other
way around.) Since graphs are thus annotated with
probability distributions at the vertices, the set G is
possibly infinite. A colored random walk is defined by
a starting vertex and a word GoG] - - - G, where the
G;s belong in G but need not be distinct. At step ¢,
the walk takes place in G.

Can the probability of hitting a certain vertex at
time ¢ be exponentially small in ¢ for arbitrarily large
t? If G consists of only one graph, then the answer
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is clearly no. But what if |G| > 1? Then, indeed,
some nonzero probabilities might decay exponentially
in ¢; see [6] for an example with |G| = 2. Colored ran-
dom walks are, indeed, different. Yet Lorenz [27] and,
independently, Hendrickx and Blondel [14], proved
the surprising result that nonzero probabilities can
be bounded from below uniformly as long as the walk
is lazy. In other words, assuming that the transition
matrix of each G has a nonzero diagonal, then, after ¢
steps of a colored random walk, the probability of hit-
ting a vertex is either 0 or at least (50("2), as opposed
to, say, 6°(). We improve the exponent to linear.
This is obviously optimal: consider the probability of
reaching one end of a chain from the other one in time
equal to the number of edges between them.

THEOREM 2.1. Any lazy bidirectional colored ran-
dom walk whose nonzero transition probabilities are
bounded below by 0 > 0 hits any vertex with probabil-
ity either O or at least ™~ '. This holds at any time
uniformly.

The proof of this result is quite easy. We enhance it
a little to establish a general result about ergodicity.
With each vertex v, we define an infinite sequence of

sets
5°(t1) 2 8%(t2) 2 ---5%(o0) 2 {v} (2)

such that, if the walk begins at ¢ = 0 in SY(¢x), for
k = 67°" with constant ¢ large enough, and hits v
at time tr, then there is no way to tell which ver-
tex of SY(tx) the walk started from other than by a
random guess (with exponentially small deviation).
These sets, called stabilizers in [6], play an important
role in products of inhomogeneous stochastic matri-
ces [14, 27]. What makes them highly useful is that
they depend only the communication process gener-
ated by the graph sequence and not on the random
walk itself.

First, we dualize the problem to view it as a
deterministic communication process. We consider
the graphs Gg - -- Gy in reverse order, ie, Hy--- Hy,
where H; = G _;. Each vertex v holds a water reser-
voir with an amount R,,. To H;-average the vertices is
to replace each R, by Zw Pow Ry at time t, where pyq,
is the probability of going from v to w. It is obvious
that, starting the walk at u at time 0, the probability
of being at vertex v at time N + 1 is precisely equal to
the reservoir amount R, after the vertices have been
H;-averaged, for t = 0,1,..., N, assuming that all
reservoirs are empty at time ¢t = 0, except for R, = 1.
Any vertex w with an empty reservoir is called dry;
otherwise (R, > 0) it is wet. We make the graph
sequence Hj --- Hy infinite by repeating it forever if
need be.
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Proor

[1] Initialize ¢, and all reservoirs to 0, except
for R, = 1. Set SY(0) = {v}.

[2] Repeat forever:
[2.1] For t =ty,te +1,...,00:

e H-average all the vertices.

o SU(t+1)— S'(t)U

{ all wet vertices dry at time
t}.

o If SY(t+1) D SY(t), then set t, to
t + 1 and make a record of all the
reservoirs.
[2.2] Restore all reservoirs to their values at
ty.
Let m = min R, and M = max R, over
all u € S¥(to).
[2.3] If Ry < (M + m), then set
Ry — M —R, forallu € S”(ty)
else set Ry «— Ry, —m for all u € §”(ty).

Whenever S?(t + 1) = S¥(¢), no new vertex is made
wet; so, by directionality, no wet vertex is averaged
with dry ones. This implies that the minimum reser-
voir amount cannot decrease. Suppose now that
SY(t+1) D SY(t) in step [2.1]. Then each newly wet
vertex inherits at least a fraction J of the minimum
nonzero reservoir amount. By laziness, a wet ver-
tex Hi-averages itself with its neighbors (all of which
could be dry prior to t), and so its reservoir level drops
by at most a factor of §. But this can happen at most
n — 1 times, so in step [2.2], m > §"~1; hence Theo-
rem 2.1.

To prove the ergodicity claim, let ¢ < to < --- be
the values of ¢, initializing the for-loop of step [2.1].
Since water flows between adjacent vertices and is oc-
casionally removed, (2) trivially holds. The trans-
formation R, «— M — R, ensures that, at the next
round in the infinite loop [2], the amount of water
at v is in the upper half of the range formed by the
wet vertices. This in turn guarantees that in the next
iteration the next value of m will always be at least
m/ > "1 (M —m)/2; so M decreases by a factor of
1— %(5"‘1. Note that the amount of water in the en-
tire system may sometimes increase: the decay is only
observable in the maximum reservoir level M. This
proves our claim that the colored random walk is er-
godic when starting in S¥(t3) at t = 0, for k = §=°),
in that all starting points have roughly the same prob-
ability of leading to v at time ty.

DiscussioN. The algorithm has two infinite loops.
The outer loop models the infinite (time-reversed)
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random walk while the inner one goes through time
looking for stabilizers: their appearance can take ar-
bitrarily long. Indeed, an adversary can drive each t;
as high as it wants. The proof is an algorithmicization
of Schur’s Lemma. The flip/shift [2.3] is intended to
empty at least one reservoir and bring the water sup-
ply at v into the upper half of the range. This is the
“Gram-Schmidt” part of the algorithm: the shift cor-
responds to a (partial) projection of the water vector
along the principal right eigenvector. We use the fact
that all matrices share this eigenvector (but possibly
none others) without attempting to capitalize on in-
dividual spectral gaps, which would be futile. As in
Schur’s Lemma, the algorithm identifies an eigenvec-
tor and factors it out of the system by projection. The
main difference is that the dimension of that vector
may keep shrinking.

2.3 Multiagent Agreement Systems

Moreau introduced a general model for agreement
systems [32] and established several convergence cri-
teria, but with no quantitative analysis to go along.
We introduce an analytical tool for that purpose,
which we call the total s-energy. Moreau’s model
consists of n agents represented at time ¢ by points
21(t),...,2,(t) in R?, together with an infinite se-
quence of undirected n-vertex graphs Gg, G1, etc. At
time ¢ > 0, each agent is free to move anywhere in
the relative interior of the set consisting of its own
position and those of its adjacent agents in G;. As ob-
served in [1], there is nothing special about the convex
hull and the model can be generalized to other regions.
We use enclosing boxes for simplicity. Although this
gives more room for the agents to move about, all of
our upper and lower bounds apply to Moreau’s model
just the same.

We capture the dynamics of the system by defining
a generating function for the edge lengths. By anal-
ogy with the Riesz s-energy of points on a sphere, we
define the total s-energy of the system as

E@s)=) > lzt) — @)l

t>0 (4,7)€G,

3)

This sum is a general Dirichlet series. To see why,
assume that E(s) converges. All the terms are non-
negative, so they can be rearranged in nonincreasing
order. This allows us to match the standard definition
of the general Dirichlet series [12]:

E(s) = Z ane
n>1

where a, is the number of edges (i,7) such that
llzi(t) — z;(t)||2 = dn, and A, = —Ind,. Note that
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if each G were to consist of a single edge of length
t% then the total s-energy would be the Riemann
zeta function. We show that E(s) converges for all
s > 0 and diverges for s < 0. By classical results in
complex analysis [12], it then follows that the series
converges uniformly over any finite region D of the
complex plane within R(s) > ¢ > 0, for any o > 0;
furthermore E(s) defines an analytic function over D.
We prove that s = 0 is a pole of order n — 1. We use
this fact to bound the convergence time of multiagent
agreement systems.

Let u1,...,uq be an arbitrary unit coordinate sys-
tem in R, for constant d > 0; the vectors need not
be orthogonal. Given a set S, let pp(S) denote the
smallest parallelepiped . [a;, bjJu; 2 S, and let ||S||,
be the ¢,-norm of the vector »,(b; — a;)u;. Fix ar-
bitrary p > 0 smaller than a suitable constant and

shrink pp(.S) ever so slightly by defining

pp(S) = (1 — p)pp(S) + pc(S),

where ¢(S) is the mass center of pp(S). Note that
BB(S) C pp(S). Let X(0) = {21(0).....2a(0)} be
n points in R? specifying the locations of the agents
at time 0, and let Gy, G1,... be an infinite sequence
of undirected graphs over n vertices v1,...,v, (the
agents). We define the following adversarial process.
At each step t, the adversary moves each x;(t) any-
where inside the smallest (perturbed) parallepiped en-
closing its neighbors and itself; specifically, if we de-
fine

Neo = Jz;()| (vi,v;) € Gror j =i},

then z;(t + 1) can be anywhere in pp(N: ;). If 2;(¢) is
already inside pp(MNV;,;), note, of course, that motion
is allowed but not required. Since the sequence Gy is
infinite, the process goes on forever.

Previous convergence results makes various connec-
tivity assumptions [1, 5, 14, 17, 25, 27, 32, 33, 41].
These assumptions are often necessary for global con-
sensus (eg, infinitely recurring all-pair message pass-
ing) but they cannot be checked ahead of time: the
only way to tell if they hold is to run the system until
it converges. Our model avoids any such assumptions.
We restrict ourselves to undirected graphs and posi-
tive p because both are necessary for guaranteed con-
vergence. Relaxing either one opens the door to per-
petual macro-oscillations (easy exercise). This is not
to dismiss the nonbidirectional case, which is actually
highly interesting, but to say that different techniques
are likely to be required.

Let E,(s) be the maximum total s-energy for a sys-
tem of n agents with coordinates between 0 and L.
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Since F,(s) scales with L as L®, we can set L = 1
once and for all. Note that the quantity E,(s) is de-
fined adversarially by choosing both the infinite graph
sequence and the agent motion so as to maximize the
total s-energy.

THEOREM 2.2. For any 0 < s < 0.99,
Sl—np—Q(n) < En(S) < Sl—np—n2(l+o(1)).

Given € > 0, let T, be the number of times t
the graph G; contains at least one edge of length no
shorter than €. This quantity plays an essential role in
bounding the convergence time of agreement systems.

THEOREM 2.3. Given any e > 0,
7. < (log 1y 0470

Proof. Viewed as an infinite series, the total s-energy
adds €® or more to the sum for every graph G; with at
least one edge of length at least equal to . It follows
then that T, < e *FE,(s). Setting s = min{0.99, (1 —
n)/Ine} in the upper bound of Theorem 2.2 gives us
the desired result.

We now prove Theorem 2.2. We show that the total
s-energy satisfies the recurrence: Ej(s) = 0 and, for
n>2,

E.(s) <2nE,_1(s)+
(1= p*™)°En(s) 4+ d*/?n®.  (4)
As in the case of colored random walks, all agents are
initially dry, except for a selected agent vy, which will
spread “wetness” from one agent to the next, causing

the geometry to change in the process. Once wet, an
agent always remains so.

Proor

[1] Initially, all agents are dry except for v1.
Set S(0) = {z1(0)}.

[2] Fort=0,1,...,00:

[2.1] Declare wet any agent adjacent to
a wet agent in G.

[2.2] S*(t) < S(t)U { positions at time
t of dry agents just turned wet }.

[2.8] Move every agent adversarially
with respect to G¢. If no newly wet
agent, then we may carry all mo-
tion within S(t) in isolation from
the n — |S(t)| other agents.

[2.4] S(t+1) « { positions at time t+1
of agents in S*(¢) }.
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Let {tx} be the times ¢ at which |S*(¢)| > |S(¢)|. The
sets S*(tr) track wetness propagation. We interpret
both S(t) and S*(t) as multisets. No interesting ge-
ometry can be inferred from the latter but the same
is not true of S(t;). We can show that

1St o <1 p**. (5)

Consider the case d = 1. Let [a,b] C [0,1] be the
smallest interval enclosing S(t;). By flipping the in-
terval if necessary, we can assume that a +b > 1. By
induction, it follows that a > 1p?*. Since [|S(t)|
can increase only at times of the form ¢ = t;, we can
prove (5) for t11 by showing that [0, $ap) N S(ty +
1) = 0. We proceed by contradiction. Consider an
agent v; contributing to S(tx + 1) with z;(tx + 1) <
%ap. We distinguish between two cases:
o If x;(ty) is dry at time ¢y, then G¢, has at least
one edge (v;, v;) with v; wet, ie, z;(tx) > a. Since
x;(tr + 1) < a, it lies in an interval

(1= p)ler, 8] + 5+ B)p,
where 3 > a. It follows that

zi(ty +1) > $8p > sap.

o If x;(t) is wet at time ty, x;(tg) > a and x;(tg +

1) again lies in an interval

(1= p)le, 8] + 3 (e + B)p,
where a < z;(t) < 8. Tt follows that

zi(te +1) > Sap.

We get a contradiction in both cases, which proves (5).
The same argument can be repeated along each di-
mension, so (5) holds for arbitrary d. Note that the
set S(tr) can only gain agents, as k grows, but the
set may stop growing before it absorbs all of them.
When ¢ is not of the form ¢, step [2.3] indicates that
the adversary can act on S(t) in isolation from the
rest. It follows that the s-energy between t;_1 and ¢
is bounded by E|S(tk)|(3) + En—lS(tk)\(s)- At time ty,
the extra energy involved is

S n S
> et -0l < (5 )
(1,5)€GY,

Using obvious monotonicity properties, it follows
that, up to the highest value of ¢y, the s-energy is
bounded by

g {Ez(s) + En_i(s) + <Z> ds/2}

< 2nE,_1(s) + d*/?*n’.

38

When tj, reaches its highest point ¢, if |[S(t + 1)| <
n then all the energy has been accounted for above.
Otherwise, we must add the future energy of the n
agents in X (¢t + 1). By (5), however, their {.-norm
has been reduced: || X (t+ 1)|loc <1 — p?". So, all we
need to do is add (1 — p?")*E,(s) inductively to the
s-energy; hence (4). We may assume that 0 < s < 1
for the purpose of the upper bound proof.

The case n = 2 is worth special attention. The
problem is inherently one-dimensional, so we can as-
sume that the two agents start at 0 and 1, respectively,
and move toward each other by the minimum allowed
distance of p/2. This gives us the equation

Es(s) =14 (1 —p)°Ex(s).
Scaling up to d dimensions gives us:
ds/2
T1-(-pr

We now consider the case n > 2. For s < 1, (1 —
p?™)* <1 — 1sp®; it then follows from (4) that

2ds/2
sp

E2(S)

(6)

< AnE,_1(s) + 2n3d/?

En<8) 3p2n

We verify that the numerator is at most 2n3E,,_1(s);
therefore,

2n3E, _1(s)
SpZn

—n?(1+o(1))

Slfnp .

En(s) < <

This proves the upper bound of Theorem 2.2. A
much better asymptotic bound can be derived for the
special case s = 1 (which, analytically, is indeed very
special). But our proof is long and complicated and it
will be reported elsewhere. It is easy to find forbidden
structures and exploit them to derive upper bounds
for general s. Briefly, we can show the existence of
regions that can never be occupied by any agents and
that can be “crossed” only in a special direction. This
alone allows us to bound the total s-energy, but the
result is not as tight and so far we have not been able
to beat the algorithmic proof of Theorem 2.2.

To establish the lower bound, we show that the
pole at s = 0 is, indeed, of order n — 1. We de-
scribe an algorithm .4 that moves n agents initially
within the smallest enclosing interval of [0, 1] toward
a single point x(n) while producing a total s-energy
S(n). Place n — 1 agents at position 0 and one at
position 1. The graph Gy consists of a single edge
between the agent ¢ at 1 and any one, j, of those at 0.

At time 0, agent j moves to position « def p/2 while
1 shifts to 1 — a. The n — 2 other agents stay put.
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Next, apply A to the set of all agents but ¢. This
brings them to position ax(n — 1). Finally, apply A
to all the agents. The attractor point x(n) satisfies
the recurrence z(1) = 1 and

z(n)=azx(n — 1)+ (1 — azx(n — 1) — a)x(n).
This implies that
I 1 )
w1

therefore x(n) = 1/n. It should not be a surprise that
z(n) does not depend on p. The operations of A leave
the center of mass invariant, so if z(n) exists it must
be 1/n. The total s-energy S(n) satisfies the relation:
S(1) = 0; and, for n > 1, by (6),

S(n) =a’S(n—1)
+(1—-azx(n—1)—a)’S(n)+1
a*S(n—1)+1 aln=2)s
T 1-(1-2a) T (1-(1-2a)" 1"

Since o = £ is small enough, (1 —2a)® > 1 —3as and

S(?’L) > Sl—np—Q(n).

We observe that Algorithm A4 cannot start the sec-
ond recursive call before the first one is finished. Of
course, that takes an infinite amount of time. This
technicality is easy to overcome, however. This com-
pletes the proof of Theorem 2.2.

DiscussioN. Self-confidence usually plays a crucial
role in the convergence of agreement systems. This is
the requirement that any agent should include itself
in the averaging. What our result shows is that this
condition can be relaxed. The shrinking by 1 — p,
which is necessary, has less to do with self-confidence
than with the necessity of not following extremes (for
the example, the boundary of the enclosing box). Of
course, if one’s opinion is itself extreme then by that
same logic one must move away from it at least a little

bit.

2.4 Flocking, Opinion Consensus, and Syn-
chronization

Theorem 2.2 leads to new, or exponentially im-
proved, bounds for flocking, consensus dynamics, and
synchronization. We give a quick summary, leaving
the technical details for the full version of the paper.
Following Vicsek et al [42] and Cucker & Smale [10],

the dynamics of bird flocking is expressed in [6] by:
{x(t) =a(t—1)+o(t);

v(t+1) = (P, @ Ig)v(t). @
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The vectors z(t), v(t) encode the positions and veloci-
ties of the n birds in dimension d > 0. The consensus
matrix P; is the stochastic transition matrix of the
flocking network, which links any two birds within a
fixed distance of each other.

Instead of an adversary, the system has a closed
loop determined by the (intricate) geometric dynam-
ics of the flocks. The evolution of the velocity vector
fits our model, however, with p = n= %M. Let 2 11 n
denote the tower-of-twos of height n. We proved that
n birds may require as many as 2 1T logg steps
before reaching steady state and never more than
2 17 4logn [6]. We also showed that the maximum
number of times the flocking network can change is
nO®") . Theorem 2.3 improves this bound to nO™*).
(Obviously, this cannot have any incidence on the
asymptotic convergence time, which is already opti-
mal.) A similar improvement applies to the time for
convergence in the Hegselmann-Krause opinion dy-
namics model [13]: this is a popular model in soci-
ology to measure polarization in political opinions in
a population. (Technically, this is not an improve-
ment but a new result, since we are not aware of any
previous asymptotic bound.)

Theorem 2.3 does not require linearity—both flock-
ing and opinion dynamics are piecewise linear sys-
tems. It can therefore be used for collective synchro-
nization. The Kuramoto model is a general framework
for coupled oscillators with so many applications it is
worth a brief mention here. Examples include flash-
ing fireflies, chirping crickets, microwave oscillators,
yeast cell suspensions, circadian neurons, and pace-
maker cells in the heart (which keep our heart beating
at roughly the same pace). After Winfree’s pioneering
work, Kuramoto set out to explain how huge systems
of coupled oscillators can reach synchrony with no
centralized control [39, 44]. He introduced a hugely
influential model that is easy to describe. The system
consists of n oscillators: the i-th one has phase 6; and
natural frequency w;. Kuramoto followed the same
mean-field approximation as Winfree’s and assumed
that all pairs of oscillators were coupled. This gives
the set of differential equations (for 1 <i < n):

do; K~
% = w; + g ZSIH(GJ' — 91)

Jj=1
Many authors have considered a more realistic refine-
ment of the model where the sum applies only to the
neighbors of each agent in a network and where delays

1The tensor notation ® distributes the averaging over each
coordinate. We skip the details of the model (including noise
and hysteresis) to keep the discussion simple.
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might occur [11, 18, 26, 28, 29, 32, 34, 35, 43, 45]. Fur-
ther work introduced a discrete version of the model,
again out of concern for realism [28, 32, 40]. Assum-
ing all oscillators share the same natural frequency, a
fixed phase shift gives the dynamics:

0i(t + 1) = 0i(t)

KAT

+W D" sin(0;(t) — 0i(t)),

JEN;(t)

where N;(t) is set of neighbors of vertex i in Gj.
Convergence to synchrony, when it happens, can be
bounded by applying Theorem 2.3.
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