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Abstract: Ye showed recently that the simplex method with Dantzig pivoting rule, as well as Howard’s pol-
icy iteration algorithm, solve discounted Markov decision processes (MDPs), with a constant discount fac-
tor, in strongly polynomial time. More precisely, Ye showed that both algorithms terminate after at most
O

(
mn
1−γ log

(
n

1−γ

))
iterations, where n is the number of states, m is the total number of actions in the MDP, and

0 < γ < 1 is the discount factor. We improve Ye’s analysis in two respects. First, we improve the bound given
by Ye and show that Howard’s policy iteration algorithm actually terminates after at most O

(
m

1−γ log
(

n
1−γ

))
iterations. Second, and more importantly, we show that the same bound applies to the number of iterations
performed by the strategy iteration (or strategy improvement) algorithm, a generalization of Howard’s policy
iteration algorithm used for solving 2-player turn-based stochastic games with discounted zero-sum rewards.
This provides the first strongly polynomial algorithm for solving these games, resolving a long standing open
problem.

Keywords: Markov decision processes, turn-based stochastic games, strategy iteration, policy iteration, strongly
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1 Introduction

Markov Decision Processes (MDPs) are widely used
in operations research, machine learning and related
disciplines, to model long-term sequential decision
making in uncertain, i.e., stochastic, environments.
Stochastic Games (SGs), a generalization of MDPs to
a 2-player setting, are widely used to model long-term
sequential decision making in stochastic and adver-
sarial environments. MDPs were first introduced by
Bellman [2]. SGs, which form a more general model,
were introduced slightly earlier by Shapley [32]. Many
variants of MDPs and SGs were studied in the liter-
ature. The MDPs and SGs considered in this paper
are infinite-horizon discounted MDPs/SGs. The SGs
we consider are turn-based and we thus refer to them
as 2-player Turn-Based Stochastic Games (2TBSG).
MDPs may be viewed as degenerate 2TBSGs in which
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one of the players has no influence on the game. For
a thorough treatment of MDPs and their numerous
practical applications, see the books of Howard [18],
Derman [9], Puterman [29] and Bertsekas [3]. For a
similar treatment of SGs, see the books of Filar and
Vrieze [13] and Neyman and Sorin [28].

A 2TBSGs is composed of a finite set of states and a
finite set of actions. Each state is controlled by one of
the players. In each time unit, the game is in exactly
one of the states. Each state has a non-empty set of
actions associated with it. The player controlling the
state must play one of these actions. Playing an action
incurs an immediate cost, and results in a probabilis-
tic transition to a new state according to a probability
distribution that depends on the action. The process
goes on indefinitely. The first player tries to mini-
mize the total expected discounted cost of the infinite
sequence of actions taken, with respect to a fixed dis-
count factor. The second player tries to maximize this
total discounted cost. Discounting captures the fact
that a cost incurred at a later stage has a smaller ef-
fect than the same cost incurred at an earlier stage.
For formal definitions, see Section 2.
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A policy or a strategy for a player is a possibly proba-
bilistic rule that specifies the action to be taken in each
situation, given the full history of play so far. One of
the fundamental results in the theory of MDPs and
2TBSGs, is that both players have positional optimal
strategies. A positional strategy is a strategy that
is both deterministic and memoryless. A memoryless
strategy is a strategy that depends only on the current
state, and not on the full history. MDPs and 2TBSGs
are solved by finding optimal positional strategies for
the players.

MDPs can be solved using linear programming
(d’Epenoux [8], Derman [9]). The preferred way of
solving MDPs in practice, however, is Howard’s [18]
Policy Iteration algorithm. The policy iteration algo-
rithm maintains and iteratively improves a policy by
performing “obvious” improving switches (for details,
see Section 5). Howard’s algorithm may be viewed as
a parallel version of the simplex algorithm in which
several pivoting steps are performed simultaneously.
The problem of determining the worst case complex-
ity of Howard’s algorithm was stated explicitly at least
25 years ago. (It is mentioned, among other places, in
Schmitz [31], Littman et al. [23] and Mansour and
Singh [25].) Meister and Holzbaur [27] established,
decades ago, that the number of iterations performed
by Howard’s algorithm, when the discount factor is
fixed, is polynomially bounded in the bit size of the
input. Their bound, however, is not polynomial in the
number of states and actions of the MDP. The first
strongly polynomial time algorithm for solving MDPs
was an interior point algorithm of Ye [34].

Very recently, Ye [35] presented a surprisingly sim-
ple proof that Howard’s algorithm terminates after
at most O

(
mn
1−γ log

(
n

1−γ

))
iterations, where n is the

number of states, m is the total number of actions,
and 0 < γ < 1 is the discount factor. In particular,
when the discount factor is constant, the number of
iterations is O(mn log n). Since each iteration only in-
volves solving a system of linear equations, Ye’s result
established for the first time that Howard’s algorithm
is a strongly polynomial time algorithm, when the dis-
count factor is constant. Ye’s proof is based on a care-
ful analysis of an LP formulation of the MDP problem,
with LP duality and complementary slackness playing
crucial roles.

We significantly improve and extend Ye’s [35] analy-
sis. We show that Howard’s algorithm actually termi-
nates after at most O

(
m

1−γ log
(

n
1−γ

))
iterations, im-

proving Ye’s bound by a factor of n. Interestingly,
the only added ingredient needed to obtain this sig-

nificant improvement is a well-known relationship be-
tween Howard’s policy iteration algorithm and Bell-
man’s [2] value iteration algorithm, an algorithm for
approximating the values of MDPs.

More significantly, and more surprisingly, we are able
to obtain the same O

(
m

1−γ log
(

n
1−γ

))
bound also for

the Strategy Iteration (or Strategy Improvement) al-
gorithm for the solution of 2TBSGs. This supplies the
first strongly polynomial algorithm for solving 2TB-
SGs, with a fixed discount factor, solving a long stand-
ing open problem.

The strategy iteration algorithm is a natural gener-
alization of Howard’s policy iteration algorithm that
can be used to solve 2TBSGs. The strategy iteration
algorithm for discounted 2-player games is apparently
first described by Rao et al. [30]. Hoffman and Karp
[17] earlier described a related algorithm for a some-
what different class of SGs.

Prior to our strongly polynomial bound for the strat-
egy iteration algorithm, the best time available on the
problem of solving discounted 2TBSGs was a polyno-
mial, but not strongly polynomial, bound of Littman
[22], obtained essentially using value iteration. The
best time bound expressed solely in terms of the num-
ber states and actions was a subexponential bound of
Ludwig [24]. (See also Björklund and Vorobyov [4, 5]
and Halman [16].) Interestingly, these subexponential
bounds are obtained using randomized variants of the
strategy iteration algorithm that mimic the combina-
torial subexponential algorithms of Kalai [20, 21] and
Matoušek, Sharir and Welzl [26] for solving LP-type
problems.

What makes our analysis of the strategy iteration al-
gorithm surprising is the fact that Ye’s analysis re-
lies heavily on the LP formulation of MDPs. In con-
trast, no succinct LP formulation is known for 2TB-
SGs. (Natural attempts fail. See Condon [7].) Our
proof is based on finding natural game-theoretic quan-
tities that correspond to the LP-based quantities used
by Ye, and by reestablishing, via direct means, (im-
proved versions) of the bounds obtained by Ye using
LP duality.

Ye’s [35] results and our results, combined with
the recent results of Friedmann [14] and Fearnley
[12], supply a complete characterization of the com-
plexity of the policy/strategy iteration algorithm for
MDPs/2TBSGs. The policy/strategy iteration algo-
rithms are strongly polynomial for a fixed discount
factor, but exponential for non-discounted problems,
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or when the discount factor is part of the input. (In
non-discounted problems the discounting criteria is re-
placed by limiting average criteria. In a sense, this is
equivalent to letting the discount factor tend to 1. See,
e.g., Derman [9].)

The rest of this paper is organized as follows. In
Section 2 we define the 2-player turn-based stochastic
games (2TBSG) studied in this paper. In Sections 3,
4 and 5 we summarize known results regarding these
games. For completeness, these sections contain con-
cise, but complete, proofs of all results. (The proofs
in these three sections are not the innovative part of
this paper and may be skipped at first reading.) Fi-
nally, in Section 6 we obtain our innovative strongly
polynomial bound on the complexity of the celebrated
strategy iteration algorithm, solving a long-standing
open problem. We end in Section 7 with some con-
cluding remarks and open problems.

2 2-player turn-based stochastic
games

Discounted stochastic games were first studied by
Shapley [32]. In his games, the players perform si-
multaneous, or concurrent, actions. We consider the
subclass of turn-based stochastic games.

We briefly review the informal definition of 2-Player
Turn-Based Stochastic Games (2TBSGs), before giv-
ing a formal definition. A game is composed of states
and actions. It starts at some initial state and pro-
ceeds, in discrete steps, indefinitely. In each time step
one of the players plays an action. (The game is thus a
turn-based or perfect information game.) Each action
has a cost associated with it. This is the cost paid by
player 1 to player 2 when this action is played. (The
game is therefore a zero-sum game.) Each action also
has a probability distribution on states associated with
it. The next state, after playing a particular action, is
chosen randomly according to this probability distri-
bution. (The game is, in general, stochastic.) Finally,
the game is discounted. The first player tries to min-
imize the expected total discounted cost, while the
second player tries to maximize it.

Definition 2.1(Actions). An action a over a set
of states S is composed of a triplet (s(a), p(a), c(a)),
where s(a) ∈ S is the state from which a can be played,
p(a) ∈ ∆(S) is a probability distribution over states
according to which the next state is chosen when a is
played, and c(a) ∈ R is the cost of a.

Definition 2.2(2-Player Turn-Based Stochas-
tic Games). A 2-Player Turn-Based (Dis-
counted) Stochastic Game (2TBSG) is a tuple G =
(S1, S2, A, γ), where S1 and S2 are the set of states
controlled by players 1 and 2, respectively, and A
is a set of actions. We assume that S1 ∩ S2 = ∅
and let S = S1 ∪ S2. For every i ∈ S, we let
Ai = {a ∈ A | s(a) = i} be the set of actions that can
be played from i. We assume that Ai 6= ∅, for every
i ∈ S. We let A1 = ∪i∈S1Ai and A2 = ∪i∈S2Ai be the
sets of all actions that can be played by players 1 and
2, respectively. Finally, 0 < γ < 1 is a fixed discount
factor. If the infinite sequence of actions taken by the
two players is a0, a1, . . ., then the total discounted cost
of this action sequence is

∑
k≥0 γkc(ak).

If one of the players has only a single action available
from each state under her control, the game degener-
ates into a 1-player game known as a Markov Decision
Process. (This happens, in particular, when S1 = ∅ or
S2 = ∅.)

We next define the probability and action matrices of
2TBSGs. These matrices provide a compact represen-
tation of 2TBSGs that greatly simplifies their manip-
ulation. Throughout the paper, we use n = |S| and
m = |A| to denote the number of states and actions,
respectively, in a game.

Definition 2.3(Probability and action matri-
ces). Let G = (S1, S2, A, γ) be a 2TBSG. We assume,
without loss of generality, that S = S1 ∪ S2 = [n] and
A = [m]. We let P ∈ Rm×n, where Pa,i = p(a)i is the
probability of ending up in state i after taking action
a, for every a ∈ A = [m] and i ∈ S = [n], be the
probability matrix of the game, and c ∈ Rm, where
ca = c(a) is the cost of action a ∈ A = [m], be its
cost vector. We also let J ∈ Rm×n be a matrix such
that Ja,i = 1 if and only if a ∈ Ai, and 0 otherwise.
Finally, we let Q = J−γP be the action matrix of G.

It is interesting to note that a 2TBSG is fully speci-
fied by its action matrix Q = J − γP , its cost vector
c, and the partition of S = [n] into S1 and S2. (Ac-
tion matrices may be thought of as a stochastic and
discounted generalization of the incidence matrices of
directed graphs.)

Definition 2.4.(Strategies, strategy profiles). A
(positional) strategy πj for player j, is a mapping πj :
Sj → A such that πj(i) ∈ Ai, for every i ∈ Sj. We say
that player j uses strategy πj if whenever the game is
in state i, player j chooses action πj(i). A strategy
profile π = (π1, π2) is simply a pair of strategies for
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the two players. We let Πj = Πj(G), for j ∈ {1, 2},
be the set of all strategies of player j, and let Π =
Π(G) = Π1 × Π2 be the set of all strategy profiles in
G.

We note that a strategy profile π = (π1, π2) may be
viewed as a mapping π : S → A, i.e., as a strategy in a
1-player version of the game. All strategies considered
in this paper are positional. When convenient, we also
view a strategy πj or a strategy profile π as subsets
πj(S), π(S) ⊆ A. A strategy profile π = (π1, π2),
when viewed as a subset of A, is simply the union
π1 ∪ π2. We let Pπ ∈ Rn×n be the matrix obtained
by selecting the rows of P whose indices belong to π.
Note that Pπ is a (row) stochastic matrix. Its elements
are non-negative and the elements in each row sum to
1. Similarly, cπ ∈ Rn is the vector containing the costs
of the actions that belong to π. We conveniently have
Jπ = I and Qπ = I − γPπ, for every strategy profile
π.

Definition 2.5(Value vectors). For every strategy
profile π = (π1, π2) ∈ Π, we let vπ = vπ1,π2 ∈ Rn be a
vector such that (vπ)i, for every i ∈ S, is the expected
total discounted cost when the game starts at state i,
player 1 uses strategy π1, and player 2 uses strategy
π2.

Given two vectors u,v ∈ Rn, we say that u ≤ v if
and only if ui ≤ vi, for every 1 ≤ i ≤ n. We say that
u < v if and only if u ≤ v and u 6= v.

Definition 2.6(Optimal counter strategies) Let
G be a 2TBSG and let π2 ∈ Π2(G) be a strategy of
player 2. A strategy π1 for player 1 is said to be
an optimal counter-strategy against π2, if and only
if vπ1,π2 ≤ vπ′1,π2 , for every π′1 ∈ Π1(G). Sim-
ilarly, a strategy π2 for player 2 is said to be an
optimal counter-strategy against π1, if and only if
vπ1,π2 ≥ vπ1,π′2 , for every π′2 ∈ Π2(G). For every
π1 ∈ Π1(G), we let τ2(π1) be an optimal counter strat-
egy against π1, if one exists. For every π2 ∈ Π2(G),
we let τ1(π2) be an optimal counter strategy against
π2, if one exists.

It is not immediately clear that optimal counter strate-
gies always exist. (Note, that vπ1,π2 ≤ vπ′1,π2 and
vπ1,π2 ≥ vπ1,π′2 are vector inequalities. As defined, op-
timal counter strategies need to be optimal for every
initial state.) Furthermore, optimal counter strate-
gies, if they exist, need not be unique. It is well
known, however, that optimal counter strategies do
always exist, as we shall also show below.

In a two-player zero-sum game, an optimal strategy is
by definition one that secures the best possible guar-
antee on the expected payoff against any opponent.
As with finite games, pairs of optimal strategies in a
zero-sum stochastic game coincide with the Nash equi-
libria of the game. This was established by Shapley
[32]. For brevity, we take this characterization to be
the definition of an optimal strategy.

Definition 2.7(Optimal strategies). A strategy
profile π = (π1, π2) ∈ Π(G) is said to be optimal if
and only if π1 is an optimal counter strategy against
π2, and π2 is an optimal counter strategy against π1.
In such a case we also say that π1 is an optimal strat-
egy for player 1 and that π2 is an optimal strategy for
player 2.

Shapley [32] also established the following theorem.

Theorem 2.8. Every 2TBSG has an optimal strategy
profile. If π and π′ are two optimal strategy profiles
then vπ = vπ′ .

Theorem 2.8 immediately implies the existence of op-
timal counter strategies against any strategy. It is
easy to see that π1 is an optimal strategy for player 1
if and only if vπ1,τ2(π1) ≤ vπ′1,τ2(π′1), for every π′1 ∈ Π1.
An analogous condition clearly holds for player 2. The
main result of this paper is a proof that a pair of opti-
mal strategies can be computed in strongly polynomial
time, when the discount factor is constant.

3 Basic results

For any strategy profile π, the matrix (I − γPπ) plays
a prominent role in the sequel. (Recall that Pπ is the
matrix obtained by selecting the rows of P that corre-
spond to actions that belong to π.) We thus start with
the following lemma whose trivial proof is omitted.

Lemma 3.1. For any strategy profile π, the matrix
(I − γPπ) is invertible and

(I − γPπ)−1 =
∑

k≥0

(γPπ)k.

All entries of (I − γPπ)−1 are non-negative and the
entries on the diagonal are strictly positive.

Lemma 3.2. For every strategy profile π ∈ Π and
every 0 < γ < 1, we have

vπ = (I − γPπ)−1cπ.

P roof . When the players use the strategy profile π,
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the process becomes a Markov chain with rewards
with transition matrix Pπ. In particular, for every
i, j ∈ [n] and every k ≥ 0, (P k

π )i,j is the probability
that a game that starts at state i is in state j after
exactly k steps. The expected total discounted costs,
starting from all states are thus

vπ =
(∑

k≥0

(γkP k
π )

)
cπ = (I − γPπ)−1cπ. ¤

Definition 3.3(Modified costs). The modified cost
vector cπ ∈ Rm corresponding to a strategy profile π
is defined to be

cπ = c− (J − γP )vπ.

The modified cost vector cπ is obtained from c via
a potential transformation that uses vπ as a vector
of potentials. (If h : V → R is a function assigning
potentials to the states, then the modified cost ch(a)
is defined as ch(a) = c(a)− h(a) + γ

∑
j∈S p(a)jh(j).)

It is important to stress the difference between cπ ∈
Rn, the vector obtained by selecting the entries of c
corresponding to strategy profile π, and the modified
cost vector cπ = c − (J − γP )vπ ∈ Rm of Definition
3.3. (This distinction may be confusing at first, but it
is extremely useful.)

We let 0 be an all zero vector. (The dimension of
0 will depend on the context.) Using Lemma 3.2 we
immediately get the following basic but important re-
lation.

Lemma 3.4. For every strategy profile π we have
(cπ)π = 0.

Definition 3.5 (Modified value vectors). For ev-
ery two strategy profiles π, π′, we let vπ

π′ be the value
vector of π′ corresponding to the modified cost vector
cπ.

Lemma 3.6. For every two strategy profiles π′, π we
have

vπ
π′ = vπ′ − vπ.

P roof. By Definition 3.3 and Lemma 3.2 we have

vπ
π′ = (I − γPπ′)−1(cπ)π′

= (I − γPπ′)−1(cπ′ − (I − γPπ′)vπ)
= vπ′ − vπ.

¤

Recall that A1 = ∪i∈S1Ai and A2 = ∪i∈S2Ai.

Lemma 3.7 (Optimality condition). A strategy
profile π is optimal iff (cπ)A1 ≥ 0 and (cπ)A2 ≤ 0.

Proof. Suppose that (cπ)A1 ≥ 0 and (cπ)A2 ≤ 0.
Let π = (π1, π2). We prove that π1 is an optimal
counter strategy against π2. By Lemma 3.4 we have
(cπ)π1 = 0, (cπ)π2 = 0 and hence vπ

π1,π2
= 0. For

every π′1 ∈ Π1, we have (cπ)π′1 ≥ 0, as π′1 ⊆ A1,
and hence (cπ)π′1,π2 ≥ 0. Thus clearly vπ

π′1,π2
≥ 0 =

vπ
π1,π2

, and π1 is indeed an optimal counter strategy
against π2. The proof that π2 is an optimal counter
strategy against π1 is analogous.

Suppose now that there is an action a ∈ Ai0 , where
i0 ∈ S1, such that (cπ)a < 0. (The case in which
i0 ∈ S2 and (cπ)a > 0 is analogous.) Again, let
π = (π1, π2). Let π′1 ∈ Π1 be a policy such that
π′1(i) = π1(i), if i 6= i0, and π′1(i0) = a. We then
have (cπ)π′1 < 0 and (cπ)π2 = 0. Thus vπ

π′1,π2
< 0.

(The strict inequality follows from Lemma 3.1. All
entries of (I − γPπ′1,π2)

−1 are non-negative, and the
entries on the diagonal are strictly positive.) Thus π1

is not an optimal counter strategy against π2. ¤

In the second part of the proof above, π′1 is obtained
from π1 by a profitable switch. Profitable switches
are closely related to the pivoting steps performed by
the simplex algorithm. They also lie at the core of
the strategy iteration algorithm whose analysis is the
main focus of this paper.

Definition 3.8(Flux vectors). For every strategy
profile π, let xπ ∈ R1×n be a row vector such that
(xπ)i, for every i ∈ S, is the sum of the discounted
costs, over all states, when the cost of action π(i) is
1, while the cost of all other actions is 0, and when
the players use strategy profile π.

We let e = (1, 1, . . . , 1)T ∈ Rn be an all one vector.
Using Lemma 3.2, we easily get

Lemma 3.9. For every strategy profile π, we have

xπ = eT (I − γPπ)−1.

It is in fact possible to view Lemma 3.9 as the defini-
tion of xπ. The meaning of the flux vectors given in
Definition 3.8 is not used in the sequel. (The flux vec-
tors are intimately related to the dual linear program
formulation of MDPs.)

Lemma 3.10. For every strategy profile π, we have

xπe =
n

1− γ
.
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Proof. By Lemma 3.9, Lemma 3.1, and the fact that
eT (Pπ)ke = n, for every k ≥ 0, we have:

xπe = eT (I − γPπ)−1e =
∑

k≥0

eT (γPπ)ke

= n
∑

k≥0

γk =
n

1− γ
.

Lemma 3.11. For every strategy profile π, we have

eT vπ = xπcπ.

P roof. By Lemma 3.2 and then Lemma 3.9, we get
eT vπ = eT (I − γPπ)−1cπ = xπcπ. ¤

Lemma 3.12. For every strategy profile π, we have

eT (vπ′ − vπ) = xπ′(cπ)π′ .

P roof. By Lemma 3.6 and then Lemma 3.11, we have
eT (vπ′ − vπ) = eT vπ

π′ = xπ′(cπ)π′ . ¤

4 Value iteration

If x ∈ Rm and B ⊆ [m], we let minB x =
minj∈B xj , and similarly maxB x = maxj∈B xj . We
also let argminBx = argminj∈Bxj and argmaxBx =
argmaxj∈Bxj .

Definition 4.1(Value iteration operator). The
value iteration operator T : Rn → Rn is defined as
follows:

(T v)i =
{

min Aic + γPv , if i ∈ S1,
max Aic + γPv , if i ∈ S2.

The operator T is a contraction with Lipschitz con-
stant γ.

Lemma 4.2. For every u,v ∈ Rn we have ‖T u −
T v‖∞ ≤ γ ‖u− v‖∞.

Proof. Assume that i ∈ S1 and that (T u)i ≥ (T v)i.
(The other cases are analogous.) Let a = argminAi

c+
γPu and b = argminAi

c + γPv. Then,

(T u− T v)i = (ca + γPau)− (cb + γPbv)
≤ (cb + γPbu)− (cb + γPbv)
= γPb(u− v)
≤ γ ‖u− v‖∞.

The last inequality follows from the fact that the ele-
ments in Pb are non-negative and sum-up to 1. ¤

Banach fixed point theorem now implies that the value
iteration operator T has a unique fixed point.

Corollary 4.3. There is a unique vector v∗ ∈ Rn

such that T v∗ = v∗.

We next define the strategy extraction operators that
play an important role in this section, and the central
role in the next section.

Definition 4.4(Strategy extraction operators).
The strategy extraction operators P1 : Rn → Π1 and
P2 : Rn → Π2 and P : Rn → Π are defined as follows:

(P1v)(i) = argminAi
c + γPv , i ∈ S1,

(P2v)(i) = argmaxAi
c + γPv , i ∈ S2.

and
Pv = (P1v,P2v).

The following relation between the value iteration and
strategy extraction operator is immediate.

Lemma 4.5. For every v ∈ Rn we have T v = (c +
γPv)π, where π = Pv.

The following simple lemma provides an interesting
relation between the strategy extraction operator and
modified cost vectors.

Lemma 4.6. For every strategy profile π we have

(P1vπ)(i) = argminAi
cπ , i ∈ S1,

(P2vπ)(i) = argmaxAi
cπ , i ∈ S2.

P roof. Let v = vπ. If a ∈ Ai then,

(cπ)a = ca − (vi − γPav) = (c + γPv)a − vi.

Thus, if a, a′ ∈ Ai, then (c + γPv)a ≤ (c + γPv)a′ if
and only if (cπ)a ≤ (cπ)a′ . ¤

The following lemma supplies a simple proof of Theo-
rem 2.8. (This is, in fact, the original proof given by
Shapley [32].)

Lemma 4.7. Let v∗ ∈ Rn be the unique fixed point
of T and let π = Pv∗. Then, π is an optimal strategy
profile.

Proof. By Lemma 4.5, we get that v∗ = T v∗ = cπ +
γPπv∗. By Lemma 3.2 we get vπ = v∗. We next show
that π satisfies the optimality condition of Lemma 3.7,
and hence is an optimal strategy profile. Suppose that
i ∈ S1 and that a ∈ Ai. By Lemma 4.6, we have
π(i) = (P1v∗)(i) = argminAi

cπ. As (cπ)π(i) = 0, we
get that (cπ)a ≥ 0. Similarly, if i ∈ S2 and a ∈ Ai, we
get that (cπ)a ≤ 0. ¤
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The value iteration algorithm, given at the top of Fig-
ure 1, repeatedly applies the value iteration opera-
tor T to an initial vector u0 ∈ Rn, generating a se-
quence of vectors (uk)N

k=0, where uk+1 = T uk, until
the difference between two successive vectors is small
enough, i.e., ‖uk−1 − uk‖∞ < ε.

Figure 1: The Value-Iteration and Strategy-

Iteration algorithms.

Lemma 4.8. Let (uk)N
k=0 be the sequence of value

vectors generated by a call Value-Iteration(u0, ε),
for some ε > 0. Let v∗ be the optimal value vector.
Then, for every 0 ≤ k ≤ N we have

‖uk − v∗‖∞ ≤ γk ‖u0 − v∗‖∞.

P roof. By Lemma 4.2 and the fact that T v∗ = v∗,
we have

‖uk−v∗‖∞ = ‖T uk−1−T v∗‖∞ ≤ γ ‖uk−1−v∗‖∞.

The claim follows easily by induction. ¤

It follows immediately from Lemma 4.8, that for any
u ∈ Rn, the infinite sequence of vectors generated
by the call Value-Iteration(u0, 0) converges to the
optimal value vector v∗. Also, for every ε > 0, the call
Value-Iteration(u0, ε) eventually terminates.

5 Strategy iteration

The strategy iteration algorithm is given at the bot-
tom of Figure 1. It was first described for the MDP
case by Howard [18] and is called policy iteration or
Howard’s algorithm in that context. It was described
for 2-player stochastic games by Rao et al. [30]. (Their
algorithm actually works on more general imperfect
information games for which it is a non-terminating
approximation algorithm.)

The strategy iteration algorithm receives an initial
strategy σ0 of player 1, and generates a sequence
πk = (σk, τk) of strategy profiles of the two play-
ers, ending with an optimal strategy profile. Each
iteration of the algorithm receives a strategy σk and
produces an improved strategy σk+1 as follows. The
algorithm first computes an optimal counter-strategy
τk = τ2(σk) for player 2 against σk. (We assume here
that this can be done in strongly polynomial time.
One way of doing it is to apply the strategy itera-
tion algorithm on a restricted game in which σk is the
only strategy available to player 1). Next, it evaluates
the strategy profile πk = (σk, τk), by solving a sys-
tem of linear equations, and obtains its value vector
vk = vπk . It then lets σk+1 = P1vπk . Ties are broken,
if possible, in favor of actions that are in σk. (This is
important, as termination is not guaranteed without
this provision.) The algorithm terminates when two
consecutive strategies σk and σk+1 are identical.

The step σk+1 = P1vπk is the main step of the strat-
egy iteration algorithm. As we shall (implicitly) see
below, σk+1 is obtained from σk by performing a col-
lection of improving switches.

To prove the correctness of the Strategy-Iteration
algorithm we use the following lemma. (Note that π1

in the lemma is obtained from π0 using one iteration
of the Strategy-Iteration algorithm.)

Lemma 5.1. Let σ0 ∈ Π1, π0 = (σ0, τ2(σ0)) and
σ1 = P1vπ0 , π1 = (σ1, τ2(σ1)). Then vπ0 ≥ vπ1 .

Proof. We show that vπ0

π0 = 0 ≥ vπ0

π1 , which by
Lemma 3.6 implies that vπ0 ≥ vπ1 . To show that
vπ0

π1 ≤ 0, we show that (cπ0
)π1 ≤ 0. The fact

that (cπ0
)σ1 ≤ 0 follows from the fact that for ev-

ery i ∈ S1 we have σ1(i) = argminAi
cπ0

and hence
(cπ0

)σ1(i) ≤ (cπ0
)σ0(i) = 0. The fact that (cπ0

)τ1 ≤ 0
follows from fact that τ0 is an optimal counter strat-
egy against σ0, so in fact (cπ0

)A2 ≤ 0. ¤

Lemma 5.2. For every initial strategy σ0,
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Strategy-Iteration(σ0) terminates after a finite
number of iterations. If (vk)N

k=0 is the sequence of
value vectors generated by the call, then, vk−1 >
vk ≥ v∗, for every 1 ≤ k < N . Furthermore,
vN−1 = vN = v∗ and πN−1 = πN is an optimal
strategy profile.

Proof. The claim vk−1 ≥ vk, for every 1 ≤ k ≤ N
follows easily from Lemma 5.1 by induction. Next, we
note that if vk−1 = vk, for some k, then by the rea-
soning used in the proof of Lemma 5.1, we must have
(cπk−1

)A1 ≥ 0 and (cπk−1
)A2 ≤ 0. By the optimal-

ity condition, we get that πk−1 is an optimal strategy
profile. By the tie breaking mechanism used, we also
get that πk = πk−1. Finally, the fact that vk−1 > vk,
for every 1 ≤ k < N , implies that strategy profiles en-
countered cannot repeat themselves. As there is only
a finite number of such profiles, the sequence of strat-
egy profiles generated must be finite. ¤

We next relate the sequences of value vectors ob-
tained by running Strategy-Iteration(σ0) and
Value-Iteration(vπ0 , ε), where π0 = (σ0, τ2(σ0)).
The following lemmas for the case of MDPs are well-
known and appear, e.g., in Meister and Holzbaur [27].
The proofs for the 2-player case are essentially identi-
cal. (They may be folklore.)

Lemma 5.3. Let σ0 ∈ Π1, π0 = (σ0, τ2(σ0)), and
σ1 = P1vπ0 , π1 = (σ1, τ2(σ1)). Then T vπ0 ≥ vπ1 .

Proof. Let i ∈ S1. As σ1(i) = argminAi
c + γPvπ0 ,

vπ0 ≥ vπ1 , and cπ1 + γPπ1vπ1 = vπ1 , we have

(T vπ0)i = min
Ai

c + γPvπ0 = (c + γPvπ0)σ1(i)

≥ (c + γPvπ1)σ1(i) = (vπ1)i.

Similarly, if i ∈ S2, then

(T vπ0)i = maxAi c + γPvπ0 ≥ (c + γPvπ0)τ1(i)

≥ (c + γPvπ1)τ1(i) = (vπ1)i. ¤

Using Lemma 5.3, we immediately get:

Lemma 5.4. Let (vk)N
k=0 be the value vec-

tors generated by Strategy-Iteration(σ0), and
let (uk)∞k=0 be the value vectors generated by
Value-Iteration(vπ0 , 0), where π0 = (σ0, τ2(σ0)).
Then, vk ≤ uk, for every 0 ≤ k ≤ N .

Proof. We prove the lemma by induction. We have
v0 = u0. Suppose now that vk ≤ uk. Then, by
Lemma 5.3 and the monotonicity of the value iteration

operator, we have:

vk+1 ≤ T vk ≤ T uk = uk+1. ¤

Combining Lemmas 4.8 and 5.4, we get

Lemma 5.5. Let (vk)N
k=0 be the sequence of value

vectors generated by Strategy-Iteration(σ0), for
some σ0 ∈ Π1. Let v∗ be the optimal value vector.
Then, for every 0 ≤ k ≤ N we have

‖vk − v∗‖∞ ≤ γk ‖v0 − v∗‖∞.

6 Strongly polynomial bound

In this section, the main section of the paper, we
present our strongly polynomial bound on the num-
ber of iterations performed by the strategy iteration
algorithm. We begin with some technical lemmas.

Lemma 6.1. Let π′, π be two strategy profiles such
that vπ′ ≥ vπ and let a = π′(i) where i ∈ S. Then,

(vπ′ − vπ)i ≥ (cπ)a.

P roof. By Lemma 3.2 and Definition 3.3 we have:

(vπ′)i − (vπ)i = (c + γPvπ′)a − (vπ)i ≥
(c + γPvπ)a − (vπ)i = (cπ)a. ¤

Lemma 6.2. Let π′′, π be two strategy profiles such
that vπ′′ ≥ vπ and let a = argmaxπ′′c

π. Then,

‖vπ′′ − vπ‖1 ≤ n

1− γ
(cπ)a.

P roof. As vπ′′ ≥ vπ, we get using Lemma 3.12 and
then Lemma 3.10 that

||vπ′′ − vπ||1 = eT (vπ′′ − vπ) = xπ′′(cπ)π′′

≤ xπ′′e (cπ)a =
n

1− γ
(cπ)a. ¤

Lemma 6.3. Let π′′, π′, π be three strategy profiles
such that vπ′′ ≥ vπ′ ≥ vπ. Let a = argmaxπ′′cπ and
suppose that a ∈ π′. Then,

||vπ′ − vπ||1 ≥ 1− γ

n
‖vπ′′ − vπ‖1.

P roof. Let i ∈ S be the state for which π′′(i) =
π′(i) = a. By Lemma 6.1 and Lemma 6.2 we get

‖vπ′ − vπ‖1 ≥ (vπ′ − vπ)i ≥ (cπ)a

≥ 1− γ

n
‖vπ′′ − vπ‖1. ¤
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Lemma 6.4. Let (σk)N
k=0 be the sequence of player

1 strategies generated by the Strategy-Iteration
algorithm, starting from some initial strategy σ0. Let
L = log 1/γ

n2

1−γ . Then, every strategy σk contains an
action that does not appear in any strategy σ`, where
k + L < ` ≤ N .

Proof. Let (πk)N
k=0, where πk = (σk, τk), be the se-

quence of strategy profiles generated by the strategy
iteration algorithm. By the correctness of the strategy
iteration algorithm, π∗ = πN is composed of optimal
strategies for the two players. Let a = argmaxπkcπ∗ .
By Lemma 3.7, we have (cπ∗)a ≥ 0 for every a ∈ A1,
and (cπ∗)a ≤ 0 for every a ∈ A2. We may assume,
therefore, that a ∈ A1, i.e., that a is an action con-
trolled by player 1. Suppose, for the sake of contra-
diction, that a ∈ π`, for some k + L < ` ≤ N . Using
Lemma 6.3, with π′′ = πk, π′ = π` and π = π∗, we
get that

‖vπ` − vπ∗‖1 ≥ 1− γ

n
‖vπk − vπ∗‖1.

On the other hand, using Lemma 5.5, we get that

‖vπ` − vπ∗‖∞ ≤ γ`−k‖vπk − vπ∗‖∞.

Thus,

‖vπ` − vπ∗‖1 ≤ n ‖vπ` − vπ∗‖∞
≤ nγ`−k ‖vπk − vπ∗‖∞
≤ nγ`−k ‖vπk − vπ∗‖1.

It follows that nγ`−k ≥ 1−γ
n and hence

γL > γ`−k ≥ 1− γ

n2
,

a contradiction. ¤

Theorem 6.5. The Strategy-Iteration algo-
rithm, starting from any initial strategy, terminates
with an optimal strategy after at most (m + 1)(1 +
log 1/γ

n2

1−γ ) = O( m
1−γ log n

1−γ ) iterations.

Proof. Let L̄ = b1 + log 1/γ
n2

1−γ c. Consider strategies
σ0, σL̄, σ2L̄, . . .. By Lemma 6.4, every strategy in this
subsequence contains a new action that would never
be used again. As there are only m actions, the total
number of strategies in the sequence is at most (m +
1)L̄ = (m + 1)(1 + log 1/γ

n2

1−γ ). Finally, note that
log 1/γ x = log x

log 1/γ ≤ x
1−γ . ¤

7 Concluding remarks

We have shown that the strategy iteration algorithm
is strongly polynomial for 2TBSGs with a fixed dis-
count factor. Friedmann [14], on the other hand, has
recently shown that the strategy iteration algorithm is
exponential for non-discounted 2TBSG, or when the
discount factor is part of the input.

The existence of polynomial time algorithms for 2TB-
SGs when the discount factor is part of the input,
or for the non-discounted case, remains an intrigu-
ing and a challenging open problem, with many possi-
ble consequences for complexity theory and automatic
verification. As shown by Andersson and Miltersen
[1], this is equivalent to finding a polynomial time
algorithm for Condon’s [6] Simple Stochastic Games
(SSGs). Such an algorithm will immediately provide
polynomial time algorithms for Mean Payoff Games
(MPGs) (see [10], [15], [36]) and Parity Games (PGs)
(see, e.g., [11], [33], [19]).

We believe that our results give some hope of obtain-
ing a polynomial time algorithm for this problem. In
an earlier work, Ye [34] gave a polynomial time al-
gorithm for the analogous MDP problem. His algo-
rithm uses interior point methods and its analysis re-
lies again on the LP formulation of the MDP problem.
Given the “deLPfication” of Ye’s [35] analysis of the
policy iteration algorithm carried out here, one could
speculate that looking at interior point methods for
the two-player case, with Ye’s [34] algorithm for MDPs
as a starting point, would be a fertile approach.
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