Introducing Variables to Data Objects in BPMN

Maximilian K6nig, Tom Lichtenstein, Anjo Seidel, and Mathias Weske

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{firstname.lastname}@hpi.de

Abstract. The management of data is crucial in today’s organizations,
making it necessary to specify exactly how data is created, accessed, and
manipulated during business process enactment. Given the importance
of data, it comes as a surprise that approaches like BPMN only provide
limited support for modeling data and how it is read and written. In
particular, they cannot represent multiple data objects of the same type,
and they lack concise semantics for multi-instance data objects. Behind
this background, this paper proposes an extension to BPMN process
models by introducing variable identifiers to distinguish individual data
objects of the same class in a given process. The behavior is detailed using
translational semantics to Colored Petri nets, and a set of verification
mechanisms is presented that allow for a more precise analysis of data
objects in business processes.

Keywords: BPMN - Data in Processes - Translational Semantics - Col-
ored Petri Nets - Variables.

1 Introduction

Helping organizations to maintain an overview of the complex processes driv-
ing their value creation is an important aspect of business process management.
For that purpose, a variety of methodologies is provided to support the entire
lifecycle of business processes, from design and analysis to configuration, enact-
ment, and evaluation [33]. While control flow has been the main focus of process
modeling languages, recent endeavors emphasize data objects that are manip-
ulated through process activities. This can also be seen in object-centricity as
a novel paradigm [1,3,15], in which business processes are considered from the
perspective of data objects rather than process instances.

In industry and academia, BPMN process diagrams [24] are a widely used
activity-centric modeling language [12]. However, its support for data is lim-
ited [23]. While version 2.0 introduced concepts to approach that deficiency,
capturing the processing of multiple objects of the same class in a single pro-
cess is not well-supported. The current specification also does not allow for the
unique identification of two objects of the same class in the same process. For
example, one might want to single out the best paper and the runner-up from
the list of accepted papers at a conference. Unfortunately, BPMN does not al-
low us to independently refer to two data objects of class ‘paper’ in one process

2 M. Konig et al.

instance. Additionally, concise semantics that allow for verification and precise
enactment only have been introduced for control flow [8,10] and simple types
of data interactions [5,27,28|. Complex constructs involving lists of data objects
and the unique identification of different objects of the same class, on the other
hand, have not been addressed sufficiently.

To approach these issues, we propose a simple, but very relevant extension to
BPMN to include variable identifiers for data objects. Therewith, different ob-
jects of the same class can be defined and individually accessed in a given process
instance. The extension is underpinned with a concise execution semantics, and
verification properties to detect potentially erroneous behavior are discussed.

This paper is structured as follows: Section 2 introduces foundational knowl-
edge on BPMN and Colored Petri nets, based on which Section 3 motivates the
paper’s contribution. In Section 4 we then informally describe the proposed ex-
tension to BPMN before Section 5 formally specifies the behavior using Colored
Petri nets as formalism. Afterward, we show how the formalism can be used for
verification and compliance checking in Section 6. Section 7 provides an overview
of other works in the field, followed by Section 8 discussing the results of this
work and Section 9 outlining future research opportunities and concluding the

paper.

2 Foundations

This section presents the key concepts our approach utilizes. We provide an
overview of BPMN’s data representation capabilities and introduce Colored Petri
nets.

2.1 Data in BPMN

BPMN provides a widely used standardized modeling language for business pro-
cesses with an emphasis on control flow [24]. Activities, i.e., units of work per-
formed in the context of the process, and events, i.e., instantaneous, process-
relevant occurrences, can be ordered using control flow structures such as gate-
ways which allow the representation of decisions and concurrency. To address
the increasing significance of data in processes, version 2.0 of the standard in-
troduced concepts to describe relevant data and its interaction with the control
flow. Data object nodes (document shapes in Fig. 1) visualize the interaction of
activities and events with certain types of data. Specifically, each node speci-
fies a data class and a state denoted in square brackets. Data classes define the
structure of the objects belonging to them, while data states induce conditions
on the expected data an object contains. BPMN does not provide a notation to
define either data classes or data states in more detail.

The availability of data objects can be a precondition for activity instances’
enablement which is indicated by a read operation, i.e., a data object node
having an arc toward the activity. Otherwise, if the arc points toward the data
object node, a write operation is performed. Two kinds of write operations must

Introducing Variables to Data Objects in BPMN 3

be distinguished. If an object is written without being read, this constitutes the
creation of a new object. If an object of the same class is also read by the activity,
that object is updated to the state specified in the outgoing data object node. For
example, activity ‘Review paper’ in a BPMN process diagram in Fig. 1 requires
a ‘Paper’ in state ‘submitted’ for enablement. After terminating, the activity
writes that object in state ‘reviewed’.
According to the BPMN specification,
a data object node always refers to the
same data object per process instance [24,
p. 206]. Therewith, blind writes as known from
database terminology may occur. Given an ac-
tivity creating a new object. If an object of
the same class has previously been created,
the existing object’s content will be blindly
overwritten because we cannot distinguish the
objects on a model level. To reference a list
of data objects of the same class in the same
state, but not the objects within that list in- Fig. 1. Data object read and writ-
dividually, a data object node may be anno- ten by an activity
tated with the multi-instance marker Ill. In
that case, all objects in the specified state are accessed. If such an object list is
read by an activity, it must contain at least one object to enable the activity.
For BPMN activities, a set of markers exists to indicate that multiple in-
stances will be executed sequentially (= or O) or concurrently (II1). For the loop
marker, the number of instances can be specified using text annotations. For the
others, a data object list node in the precondition specifies that the activity will
be executed once for each element in that list. If there is no data precondition,
the number of instances is undefined.

Paper
[submitted]

Paper

[reviewed]

2.2 Colored Petri Nets

Petri nets [26] are a formal modeling language initially introduced to describe
concurrent behavior. They are bipartite graphs consisting of transitions and
places connected by arcs. The state of a net is represented by the distribution
of tokens over all its places, called a marking. State changes occur upon the
execution of a transition. A transition can fire, if all places in its preset, i.e., the
set of places with an arc toward that transition, hold at least one token. Upon
execution, a token is consumed from every place in its preset, and a token is
produced in every place of its postset, i.e., the set of places with an arc from the
transition toward them.

Colored Petri nets (CPNs) are an extension of traditional Petri nets intro-
ducing colorsets, i.e., data types, for tokens [18]|. Therewith, tokens can be distin-
guished, enabling the representation of multiple different objects in the same net.
In addition, tokens may hold concrete data values based on which the behavior
of the net can be further specified.

4 M. Konig et al.

Arc expressions bind token values to vari- 1'5 INT [c < 10]
ables and specify the values of newly cre- ¢
ated tokens. Transition guards determine un-
der which conditions a transition is enabled counter
based on the values of tokens it would con-
sume. For example, Fig. 2 shows a small ex- Fig. 2. Example of a counter im-
ample CPN. The place counter of type INT plemented as Colored Petri net.
holds one token with value 5. Before transition Increment can fire, the value of
a token is bound to ¢ and the guard checks whether ¢ < 10 holds. In case the
guard evaluates to true, a token with value ¢ + 1 is returned.

Increment|

c+1

3 Problem Statement

Although BPMN provides basic data modeling capabilities, it has limited sup-
port for modeling multiple data objects of the same class within a process. Based
on the semantics of the standard, we identified three main limitations in this re-
gard. This section outlines and illustrates these limitations using the examples
shown in Figure 3.

Distinguishing Data Objects. As described in Section 2.1, data object nodes of
the same class always refer to the same data object upon their first assignment.
Consequently, several data objects of the same class cannot be referenced sepa-
rately within a process and therefore cannot be distinguished from one another.
In the example shown in the Figure 3 (a), the activities ‘SBP” and ‘SRP’ both
write to data object nodes of the ‘Paper’ class with the intention of referencing
the best and runner-up best paper separately for later use. However, according
to the BPMN standard, both activities are writing to the same data object,
resulting in the second activity overwriting the data written by the first activ-
ity. Given the current semantics, the intended behavior cannot be modeled for
objects of the same class.

i N
Paper Paper Paper ' Paper Paper
1
[acceptance [acceptance [acceptance | ! i
published] published] published] | ! [b°rdﬁ: line] [accelﬁted]
1
H Sed 7 ! M .
1
. Single out ! Discuss
gérs]%lga%létr runner-up i | borderline Paper
(SBP) bes(g l;{}z_j‘\)per ! FEaD%ePF)S [rejected]
! 11
i
1
1

(a)

(b)

Fig. 3. BPMN process model excerpts visualizing deficiencies in data handling.

Introducing Variables to Data Objects in BPMN 5

Distinguishing Data Object Lists. Similar to individual data objects, BPMN
does not support distinguishing between lists of the same class. In addition,
objects referenced by a list node must have the same state. These restrictions
imply that lists cannot be split or merged during process execution, as discussed
in [19]. In the example illustrated in Figure 3 (b), the ‘DBP’ activity writes to
two lists of papers in different states. While the intended behavior is to split the
list of ‘borderline’ papers into ‘accepted’ and ‘rejected’; the semantics require
the activity to write to only one of the lists during execution. Similarly, merging
multiple lists of the same class into a single list is not supported.

Referencing Data Objects from Lists. According to the standard, data object
nodes and list nodes must not overlap. Since this also applies to lists of the same
class, BPMN does not support creating a reference to an individual data object
contained in a list. For example, considering Figure 3 (a), the ‘SBP’ activity aims
to single out the best paper from a list of accepted papers. However, according
to the standard, the data object written by the activity must not be included in
the list.

In summary, the data semantics of BPMN restrict the handling of multiple
data objects of the same class within processes. These limitations, as illustrated
by the examples in Figure 3, can complicate the accurate modeling of data flow
in business processes.

4 Handling Data Object Nodes with Variables

To address the limitations of the current data semantics of BPMN outlined in
Section 3, we extend BPMN data object nodes with variables. A variable serves
as an identifier denoted on the data object node that is assigned to a concrete
object at runtime. If the variable is reused on another node in the model, the
same object can be referenced again. Therewith, we can lift the assumption that
every node of the same class refers to the same object, allowing for independent
processing of multiple objects of the same class in one process.

In the following, we will informally describe the notation and intended be-
havior for create, read, and update operations on objects alongside the extended
paper review process example depicted in Fig. 4, before Section 4 provides a
formalization.

Variables are specified in the labels of data object nodes as prefixes to the
data class, separated by a colon. For example, ‘P:Paper’ indicates that vari-
able ‘P’ references a certain set of objects of the class ‘Paper’ at runtime. As
a convention, variables starting with uppercase letters are used to identify data
object lists, e.g., ‘P:Paper’, while those starting with lowercase letters refer to
single objects, e.g., ‘bp:Paper’. In the example, that allows us to identify the
best paper ‘bp:Paper’ singled out from the list of accepted papers ‘Pa:Paper’
and reuse it later to prepare the award for the respective winner. At the same
time, we can assign the runner-up best paper to ‘rp:Paper’ without overwriting
the previous reference. Similarly, we can now split and merge lists. For exam-
ple, deciding on the reviewed papers’ acceptance (‘DA’) results in three lists of

M. Konig et al.

Apea.
siadey

‘se[qeLIeA Yim s399[qo eyep Jursn sseooid Jurmarisal teded e Jo [epowr

[paysiignd
2ouedadde]
) PP
(avd) Jaded:dq
aadedisaq (&
10} pieme
aJedaid
-
(dys) (
dgs)
ipded 520 L sodidzson
Ino 3j8uis o 3j3uls
g)
(¥vd)

aaded 1s2q H

dn-sauuni m

loj pJeme ...,

aiedaid sr-......| paysugnd [paysiignd
- J *+4{95ueidadde] 9oueldedde]
Jadeq:ds Jaded:ed

[paalai]

i Jaded:za
(Ns) dieid
uondafaige [
uoieayniou
puas

¢s1aded
auljsplog

siaded
aujlaaploq
ssnasig

mn
(VNS)
asueidadde
jo uonesyiou

[paidadde] [auisapaoq]

Jaded:qd

Jaded:zed

sseooxd NINAE ¥ *S1d

m
[payalfal]

Jaded:|id

(va)
asueldane
apnaq

(dD) saaded
129]]0)

[pa1dadde]

Jaded:Led

[pamainai]

Jaded:d

Introducing Variables to Data Objects in BPMN 7

accepted (‘Pal’), rejected (‘Prl’), and borderline (‘Pb’) papers, showing that
variables can effectively address the shortcomings detailed in Section 3.

Create. The semantics of create operations in BPMN originally depended on
the existence of an object of the same class, making it a blind write if an object
exists already. With our approach, we modify the semantics in a way that create
operations always create a new object. In addition, created objects are assigned
to the variable denoted in the respective node for future reference. This may also
include the reassignment of a variable, if it was previously assigned to another
object. The same concept applies to lists, where all created objects are assigned
to the same variable. In Fig. 4, this happens for the list ‘P:Paper’ created by
activity ‘Collect papers’.

Read. Reading a data object from a variable requires (1) that there is an object
assigned to the variable through a previous write operation and (2) that the
referenced object is in the state specified in the data object node in the model.
If that is not the case, the reading activity is not enabled, i.e., cannot be executed.

Reading an object list assigned to a variable follows a similar pattern. Instead
of one object, all referenced objects of the specified class in the required state are
accessed. For activity enablement, at least one object adhering to these criteria
must exist. If an activity reads multiple lists of the same class assigned to different
variables, they are merged before activity execution. It is sufficient if the union
of these lists contains at least one element for enablement. This is visualized in
Fig. 4 for activity ‘Send notification of acceptance’, where lists ‘Pal:Paper’ and
‘Pa2:Paper’ are both accessed.

Update. Updating a data object requires that the object is read and written by
the same activity. In that case, the object is assigned to the variable specified in
the outgoing data object node. If the target variable is the same as the source
variable, the assignment remains the same. However, an object might also be
assigned to a new variable. Therewith, multiple variables can reference the same
object. That also holds if a state change occurs. For example, activity ‘Send
notification of acceptance’ accesses two lists ‘Pal’ and ‘Pa2’ and assigns their
union to list ‘Pa’. After that, ‘Pal’ and ‘Pa2’ still refer to the same objects as
before and could be reused later on in the model. By allowing different variables
to reference the same objects, we address the third issue presented in Section 3.
Single objects can now be selected from a list. For example, ‘Single out best
paper’ now copies a reference to one of the incoming objects to the variable ‘bp’
for future use.

Another benefit of variables in the context of updating lists is that they can
now be split and merged. For example, ‘Discuss borderline papers’ takes the list
of reviewed papers ‘P’ and returns two lists of accepted and rejected papers,
which constitutes the desired behavior described in Section 3. The decision on
each individual object is made at runtime. As discussed in [19], this may result in
empty lists. With this behavior, we extend our previous approach in [19], where
a first semantics for splitting and merging lists is presented. However, the prior

8 M. Konig et al.

mapping distinguishes list data objects only via disjoint states. Extending on
that, the novel mapping also allows referencing the same object with different
variables, i.e., from different process perspectives.

Next, Section 5 proposes a translation of BPMN process diagrams with vari-
ables to colored Petri nets, providing a concise execution semantics of the de-
scribed behavior.

5 Formal Execution Semantics

The proposed notational extension allows for the specification of additional be-
havior in BPMN process models. To formally describe that behavior, this section
introduces a formal semantics for the introduced concepts by translating them
to CPNs.

Assumptions. To focus on the formalization of the new concepts and avoid un-
necessary complexity, we make several assumptions: (1) Data object lists must
contain at least one element to fulfill an activity’s data precondition. An excep-
tion is multiple lists of the same class being read in one activity. In that case,
their union is required to contain at least one element. With this assumption, we
avoid multi-instance activities being executed zero times, which would lead to
potentially inconsistent process states. (2) Every data object node in the BPMN
refers to a variable. If none is specified in the model, they implicitly refer to a
class-specific default variable.

Colorsets. For the translation to colored Petri nets, we first define the data types,
i.e., colorsets, for our places and tokens. As primitive units, we will use int for
integer values, unit for tokens without a specific value, and string. Colorsets
consisting of sets of another colorset are denoted as Set < colorset >. Based
thereon, we define Object : ID x State for data objects consisting of an ID of
type int and a state of type string. Any additional attributes of objects are
abstracted from in the course of this paper. Control flow tokens will be of type
CF : unit since we do not need any specific data to be transported by them.

Places. The first step of the translational semantics is to create a set of places.
For each data class in the data model, we create a single place of type Set <
Object > and an initial token of value [| (cf. Fig. 5 (a)). As a general rule, the set
of all objects of one class is always represented by exactly one token in exactly
one place, similar to a table in a database. That token can then be queried in
transition guards to access specific objects. Every variable introduced for data
objects is also mapped to a place. If the variable references a single object, that
place is of type ID with an initial token 0 (cf. Fig. 5 (b)), if it references a list
of objects the type is Set < ID > with [] as initial marking (cf. Fig. 5 (c)). To
generate new object IDs, we will use a unique counter place of type int with
an initial token of value 1 (cf. Fig. 5 (d)). Whenever a new object is created,
that token’s value serves as its ID and gets incremented by one. The initial value

Introducing Variables to Data Objects in BPMN 9

ensures that uninitialized variables can be recognized by holding a token of value
Oor[].

In general, a control flow arc in BPMN corresponds to one place of type
CF without an initial marking in the CPN (cf. Fig. 5 (e)). Additional rules
considering gateways are discussed by Dijkman et al. [10]. Since the translation
of the control flow is not the focus of this work, we will utilize their mapping
rules for gateways.

Set<Object>1

ID 1 Set<ID> 1 INT 1 CF
1 . 1 1 1
<data <single ! ! !
class> object ! ! !
i >/ .« N
variable 1°0 : : 11 :
1 1 1
1 1 1
1 1 1

—
.
—
 —

(e)

Fig. 5. Created places for the translational semantics to CPNs. The top left denotes
a place’s colorset, its name is in the center, and the initial marking is specified on the
bottom right in the format < #tokens >\ < wvalue >. Mapped concepts are (a) all
objects belonging to one data class, (b) variables referencing a single data object, (c)
variables referencing a list of objects, (d) the counter to provide unique objects IDs,
and (e) control flow arcs.

Single-instance data access. Following [10], we map single-instance tasks to a
single transition each. The transition is connected to the places representing
preceding and succeeding control flow arcs. Additionally, we connect the transi-
tion bidirectionally to the places of all data classes on which the respective task
performs a read operation.

Aop!=0]

N
1 P; " "
. PU{(c,"exp") aper (P \op)u{(varp,"subm")}
p:Paper p:Paper 1
1 P P
[exp] [subm] 1 ¢ c+1 \
*) : 0 Export | () 0 Submit| ()
. N Paper Paper
1 ¢ var, lop={x€P]|
Export Submit 1 vary x.state == "exp"
paper paper 1 vary Axid == vary}
1
1

Fig. 6. CPN translation of basic data access operations. Export Paper creates a Paper
in state exp by incrementing the ID counter, adding a new object to the place holding
all Papers, and assigning the object’s ID to the variable p. Submit Paper queries the
list of all papers P for the object in state exp with the ID stored in p. If such an object
exists, its state is updated to subm in P.

10 M. Konig et al.

Creating an object in a specific state s requires the token holding all objects
of the respective class O and the token of the id counter place c. In the arc
expression returning O, a new object is added with id ¢ and state s: OU{(c, s)}.
In addition, ¢ 4 1 is returned to the ID counter place. If a variable is explicitly
specified in the BPMN model, the transition also overwrites the token in the
variable’s place to hold the id of the newly created object. Exemplarily, this is
shown in Fig. 6 with activity ‘Export Paper’.

Reading an object of class C in a state s is implemented through a guard
expression querying the list of objects of the class stored in a token O. The query
includes the required state as well as the id, as specified in the respective variable
v. The result is assigned to an arc variable. If the arc variable is empty, the guard
does not evaluate to true. Generally, the guard looks as follows: [oc(s) = {* € O |
x.state == s A x.id = var,} A ocs) # 0]. In Fig. 6, this is visualized for activity
‘Submit Paper’. In the example, variable p is used to uniquely identify the paper
object. After reading the paper object, ‘Submit Paper’ also performs a state
transition. To capture that, we extend the arc expression that returns the token
holding all papers P. We remove the outdated element stored in the variable o,
and add the updated element consisting of the ID stored in the variable and the
new state as specified in the model: (P \ {o,}) U {(vary,” subm”)}.

Multi-instance data access. Working with sets of objects of the same class re-
quires some adaptations to the previously introduced mappings, but the general
concepts remain identical.

The creation of a list iterates the behavior for creating a single object. Hence,
multiple transitions are required to represent that behavior, namely a starting
transition, a terminating transition, and a transition repeatedly creating new
objects. A running place holds the control flow token, and the creating transition
adds elements to a temporary list of objects. If at least one object has been
created, the terminating transition can fire, adding the temporary list to the
token holding all objects of the respective class. The set of IDs of the created
objects is added to the referencing variable’s place. An example is shown in Fig. 7
for activity ‘Collect papers’ from the example process in Fig. 4.

= Create
/<4 Paper[subm]

c Begin
Collect
Papers

Fig. 7. CPN representation of creating a data object list.

{id | (id,S) € Opey}

~ Terminate of
Collect
Papers

[Onew = 2]

Introducing Variables to Data Objects in BPMN 11

Reading a data object list retrieves all objects of the specified class in the
required state referenced by the assigned variable. Hence, instead of filtering for
the object with a specific ID as shown in Fig. 6, we select all objects with an
ID matching those stored in the variable’s place. If there is no suitable object,
the guard evaluates to false. An example can be found in Fig. 8, where transi-
tion ‘Begin Discuss Borderline Papers’ accesses all papers of list ‘Pb’ in state
‘borderline’. If multiple lists are read, the guard comprises the conjunction of
the expressions for each list. As per assumption (2), if multiple lists of the same
class are read, the union of all lists must contain at least one element, rather
than requiring each list to be non-empty.

State transitions for lists of objects build upon the mapping for reading lists.
To transition read objects to a new state, an arc expression is added to the
arc toward the place storing the objects. Essentially, all entries for read objects
Oc|q of a class C in state s are replaced with entries for the same objects in the
new state: (C'\ O¢(q) U {(id, "newState”) | id € varx} where C represents all
objects of class C and X refers to the read and written variable. If transitioned
objects are assigned to a new variable, the transition writes the list of their IDs
to that variable’s place. If multiple output lists may be created from one list,
multiple transitions are required. An initial transition reads the required objects
and temporarily stores their IDs, while removing them from the place holding all
objects of that class to avoid concurrent access. Afterward, transitions for each
target state can update the state of one ID at a time. Finally, a terminating
transition takes all temporary objects and assigns them to their variables, and
returns the objects to the place of their class. An example can be found in Fig. 8,
where the transition ‘Discuss Borderline Papers’ reads all borderline papers and
transitions all objects to either accepted or rejected, effectively splitting the list
and assigning the resulting sublists to new variables ‘Pa2’ and ‘Pr2’.

AOp 1= 0]

PUPauPr
Pb 1=
[9] Accept Pl var Pa2
p P\Op Pb \ {Pb[0]} Paper Pa Pa2
id | (i n A id | (id,s) € Pa
Begin (id | (id.s) {(Pb[0],"acc")} Terminate fid](ds) !
Discuss o] Discuss cf
Borderline Pb "] Borderline
Papers P.
= var,
[Op={x€P]| Pb \ {id | (id,s) € Pr}
x.state == "bdI" Reject
A X.id € varpp} Vaer Paper

(Po1=01 (Pbpo), rej)}
Fig. 8. CPN representation of splitting a list into two lists with different states.
With the presented translational semantics, we concisely define the intended

behavior of variables for data objects, effectively extending BPMN’s data model-
ing capabilities to handle multiple objects of the same class. The full application

12 M. Kénig et al.

of the mapping to the examples in Fig. 6 and Fig. 4 can be found on GitHub®.
To view and execute the CPNs, an installation of CPN Tools? is required.

6 Analysis

In this section, the formal semantics of Section 5 is used for compliance checking
and verification. For that purpose, we use BPMN-Q, a BPMN-based visual query
language for business processes [4]. It provides an easy-to-understand approach
to specify conditions for model verification and compliance checking. While the
initial version of the language exclusively considered control flow constructs, an
extension presented in [7] introduces data objects and their states to it.

An exemplary query can be found in
Fig. 9. It represents the constraint that there
must be a paper whose acceptance has been
published before the award for the best paper
can be prepared. ‘QA’ represents a variable ac-
tivity, indicating that there must be any activ-
ity fulfilling the required condition. The arrow
with the // marker means that we look for a @A , Jrepare
path from its source to its target, and the data <<precedes>> be?,‘,ﬂg;’er
condition implies that an object matching the
node must be written by the respective activ-
ity. Next to precedes relations, BPMN-Q also ¥ig-9. BPMN-Q query using a
supports leads to relations as shown in Fig. 10. data object node with variables.

As our approach integrates the declaration of variables into the labels of data
object nodes, it can be seamlessly integrated with the BPMN-Q notation. Instead
of requiring an unspecified object of a certain class in a state, queries may include
objects assigned to certain variables. For example, the query visualized in Fig. 9
specifies that the paper in state ‘acceptance published’ must be assigned to the
variable ‘bp’, i.e., the one being the result of ‘Single out best paper’ in Fig. 4.

Further, using BPMN-Q allows for the detection of erroneous behavior. For
example, ensuring that a variable is assigned before being accessed (cf. Fig. 10
(a)) or that a list of rejected papers must be written by activity ‘Decide accep-
tance’ before the notification of rejection can be sent (cf. Fig. 10 (b)). Notably,
the second query is not fulfilled in our example in Fig. 4, since all papers might
be accepted or borderline, resulting in an empty list that does not fulfill this
query. Therewith, we can identify situations where empty lists may result in
deadlocks. As a solution, the parallel gateway could be replaced with an inclu-
sive gateway and conditions requiring the lists of accepted and rejected papers
to be non-empty before the respective path gets enabled.

To evaluate BPMN-Q queries, Past Linear Temporal Logic (PLTL) [21] state-
ments are derived from each query [6]. For example, the PLTL query for Fig. 9
is: G(ready(PAB) — O(state(bp : Paper, acceptancepublished))) where ready is

bp:Paper

[acceptance
published]

! https://github.com /bptlab/bpmn-data-object-variables
2 https://cpntools.org/

https://github.com/bptlab/bpmn-data-object-variables
https://cpntools.org/

Introducing Variables to Data Objects in BPMN 13

Pb:Paper Pri1:Paper
[borderline]

[rejected]
11]

Discuss : send
> Decide ificati

@A i borderline acceptance I— B e eetion
<<leads to>> p(DpBP) (DA) <<precedes>> (SJN R)

(a) (b)

Fig. 10. BPMN-Q queries checking (a) whether borderline papers will always be dis-
cussed if list ‘Pb’ is written to state ‘borderline’ and (b) if activity ‘Decide acceptance’
writes a list of rejected papers ‘Prl’ before notifications of rejection are sent.

the function returning whether activity ‘PAB’ is control flow enabled in a mark-
ing, state determines whether an object is in the specified state, and G (always)
and O (once) are PLTL operators as introduced in [21]. To check the query for a
given process model, the model is translated into a Petri net and its state space
is generated [6]. In our case, this is done by applying the translational semantics
from Section 5 and computing the state space in CPN Tools. Based on the state
space, the PLTL queries can then be evaluated. The state space for Fig. 4 can
be found in the respective CPN file in the GitHub repository.

As stated in [6], a finite state space is required for such evaluations. However,
the translational semantics presented in this paper innately result in nets with
infinite state spaces if an activity creates a data object list, exemplified in Fig. 7.
To circumvent that, we introduce a guard to the creating transition (‘Create
Paper[subm]’) in the example), checking that the list of newly created objects
(‘Onew’) has at most as many elements as there are variables defined for that
data class in the BPMN model. If all variables defined for this data class depend
on the created list, this measure ensures that the state space includes a state
where each of them is assigned to at least one object.

7 Related Work

A number of BPMN extensions to improve data representation exist in related
work. Meyer et al. extend BPMN with foreign key relationships between ob-
jects and a mapping to SQL queries for read and write operations on data ob-
jects [23]. A similar approach is proposed by Combi et al., assigning an SQL
statement specifying the data abstracted from by a data object [9]. Haarmann
et al. address the issue of data objects shared by multiple processes [16], includ-
ing a translational semantics to colored Petri nets. However, neither approach
considers data object lists. Ghilardi et al. present delta-BPMN, combining an
SQL-based data specification language with BPMN instead of a visual represen-
tation through data nodes [14]. That greatly increases the modeling complexity

14 M. Kénig et al.

and required domain knowledge, which is why we stick to the abstract repre-
sentation of BPMN with data object nodes and data states. In a previous work,
we introduced an approach to cover list creation, splitting, and merging [19],
which we extend with this work. There, only data object lists were considered,
with the state serving as an additional identifier besides an object’s class. That
comes with a number of deficiencies that were addressed in this paper: On the
one hand, referencing single objects from lists is not defined with this approach.
On the other hand, multiple lists in the same state, as shown in Fig. 4, are not
supported. Hence, an object can always be referenced by one data object node.

To address the intersection of process control flow and data, object- and
data-centric process modeling approaches have been introduced. An overview of
existing approaches along with a framework to compare them is presented by
Steinau et al. [29]. Instead of focusing on control flow, many of these approaches,
e.g., PhilharmonicFlows [20], fragment-based case management [17] or object-
centric behavioral constraints [2]|, employ a data-first approach, focusing on the
object lifecycles more than control flow dependencies between activities. How-
ever, these approaches are not yet adopted in organizations. BPMN, on the other
hand, is an already established language in industry in academia [12], which is
why we focused on extending it regarding its data modeling capabilities.

Formalizing BPMN execution semantics is not a novel topic. Target for-
malisms include, but are not limited to, process algebras (e.g., CSP, m-calculus)
[8,34], graph rewrite rules [11], WS-BPEL [24,25], and Petri net-based languages
[5,10,19,22,27,28]. However, most of these approaches do not consider the data
dimension at all. Stackelberg et al. include data objects in their translational se-
mantics to Petri nets, but disregard data states and explicitly enforce the single
instance assumption introduced by the standard [28]. Similarly, Awad et al. also
implement that assumption while considering data states, but exclude data ob-
ject lists from their mapping [5]. Choosing CPNs as target language, Ramadan
et al. present another formalization including complex control flow constructs
such as subprocesses and boundary events [27]. However, they do not go into
detail regarding data object lists.

Our approach builds on BPMN-Q for data flow analysis in processes. In the
context of compliance checking on processes with data, Voglhofer et al. provide
an overview of contemporary literature [32]. A language-independent categoriza-
tion of data anomalies has been presented by Sun et al. [30], which was adapted
to BPMN by Stackelberg et al. [28]. Other approaches extend Petri nets with
data operations and define data flow error detection mechanisms for them [31,35].
Neither of these approaches, however, supports our extension out-of-the-box.

8 Discussion

The proposed approach does not consider all data modeling capabilities BPMN
provides. For example, input and output sets as well as input output specifications
describing the relations between them are not covered. Their inclusion would
further increase the expressiveness of the extension, for example, by allowing to

Introducing Variables to Data Objects in BPMN 15

model explicitly that the resulting lists might be empty after splitting. Further,
the semantics of BPMN multi-instance activities interacting with multiple data
object lists remain underspecified. If several object lists of different data classes
are read by a multi-instance activity, the activity could be executed once for each
element of each list. At the same time, objects could be correlated, meaning that
one activity instance processes one or multiple related objects of either list. For
example, the latter would be desirable if the decision on a paper’s acceptance
in Fig. 4 also depended on the reviews for each paper.

Besides colored Petri nets, other formalisms were considered to define the
semantics of the presented extension. While traditional Petri nets lack token
differentiation, recent works propose new Petri net-based languages tailored to
object-centric processes, namely object-centric Petri nets (OCPNs) [3], object-
centric Petri nets with identifiers (OPIDs) [15], and synchronous proclets [13].
All of these approaches include the capability to model single objects and ob-
ject lists. However, only OPIDs explicitly define identifiers for objects, and only
synchronous proclets define the use of labels as variables that can be reused for
synchronizing objects. In comparison, our approach allows for variables in the
model and explicit object identifiers in model instances. Further, OCPNs and
OPIDs cannot ensure that all objects with certain properties must be processed
by a transition, which is required for BPMN semantics as discussed in Section 2.

BPMN-Q cannot evaluate queries on infinite state spaces [6]. The introduc-
tion of variables to BPMN data objects introduces additional constructs that
may result in infinite behavior due to the added object identities. For exam-
ple, the cyclic reassignment of variables to newly created objects leads to un-
boundedly many different states. Even though this might be desired behavior,
it currently cannot be analyzed by our approach.

9 Conclusion

In this paper, we describe an approach to extend BPMN to capture complex
data behavior involving different objects of the same class. For that purpose, we
introduce the concept of variables to BPMN data object nodes to differentiate
individual objects and object lists within one process instance. The described
behavior is underpinned with a translational semantics to colored Petri nets. To
analyze models incorporating variables on data object nodes, we propose to build
on the visual query language BPMN-Q for verification and compliance checks.
The BPMN-Q queries can be applied to a formal representation of the process
model derived from the translational semantics.

The presented approach currently requires a manual translation of process
models to CPNs, which is tedious and error-prone. Hence, tool support is desir-
able and will be approached in future work. Additional research regarding the
incorporation of additional BPMN data concepts such as input and output sets
should be conducted. At the same time, to improve the usability of the approach
in general, a set of guidelines would help to draw attention to, for example, the
explicit handling of potentially empty lists.

16

M. Konig et al.

References

1.

10.

11.

12.

13.

van der Aalst, W.M.P.: Object:centric process mining: Dealing with divergence and
convergence in event data. In: Olveczky, P.C., Salaiin, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 3-25. Springer (2019). https://doi.org/10.1007,/978-3-030-30446-1
1

. van der Aalst, W.M.P., Artale, A., Montali, M., Tritini, S.: Object-centric behav-

ioral constraints: Integrating data and declarative process modelling. In: Artale,
A., Glimm, B., Kontchakov, R. (eds.) Proceedings of the 30th International Work-
shop on Description Logics, Montpellier, France, July 18-21, 2017. CEUR Work-
shop Proceedings, vol. 1879. CEUR-WS.org (2017), https://ceur-ws.org/Vol-1879/
paper51.pdf

van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fundam.
Informaticae 175(1-4), 1-40 (2020)

Awad, A.: BPMN-Q: A language to query business processes. In: Reichert, M.,
Strecker, S., Turowski, K. (eds.) EMISA 2007. LNI, vol. P-119, pp. 115-128. GI
(2007), https://dl.gi.de/handle/20.500.12116/22195

Awad, A., Decker, G., Lohmann, N.: Diagnosing and Repairing Data Anomalies
in Process Models. In: Rinderle-Ma, S., Sadiq, S.W., Leymann, F. (eds.) BPM
Workshops 2009. LNBIP, vol. 43, pp. 5-16. Springer (2009). https://doi.org/10.
1007/978-3-642-12186-9 2

Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-
Q and temporal logic. In: Dumas, M., Reichert, M., Shan, M. (eds.) BPM
2008. LNCS, vol. 5240, pp. 326-341. Springer (2008). https://doi.org/10.1007/
978-3-540-85758-7 24

Awad, A., Weidlich_, M., Weske, M.: Specification, verification and explanation of
violation for data aware compliance rules. In: Baresi, L., Chi, C., Suzuki, J. (eds.)
ICSOC 2009. Lecture Notes in Computer Science, vol. 5900, pp. 500-515 (2009).
https://doi.org/10.1007/978-3-642-10383-4 37

Boussetoua, R., Bennoui, H., Chaoui, A., Khalfaoui, K., Kerkouche, E.: An au-
tomatic approach to transform BPMN models to Pi-Calculus. In: AICCSA 2015.
pp. 1-8. IEEE Computer Society (2015). https://doi.org/10.1109/AICCSA.2015.
7507176

Combi, C., Oliboni, B., Weske, M., Zerbato, F.: Conceptual modeling of inter-
dependencies between processes and data. In: SAC 2018. pp. 110-119. ACM (2018).
https://doi.org/10.1145/3167132.3167141

Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and Analysis of Business
Process Models in BPMN. Inf. Softw. Technol. 50(12), 1281-1294 (2008). https:
//doi.org/10.1016/j.infsof.2008.02.006

Dijkman, R.M., Gorp, P.V.: BPMN 2.0 Execution Semantics Formalized as Graph
Rewrite Rules. In: Mendling, J., Weidlich, M., Weske, M. (eds.) Business Pro-
cess Modeling Notation - Second International Workshop, BPMN 2010, Potsdam,
Germany, October 13-14, 2010. Proceedings. LNBIP, vol. 67, pp. 16-30. Springer
(2010). https://doi.org/10.1007/978-3-642-16298-5 4

Dumas, M., Pfahl, D.: Modeling software processes using BPMN: When and when
not? In: Managing Software Process Evolution. Springer (2016)

Fahland, D.: Describing behavior of processes with many-to-many interactions.
In: Application and Theory of Petri Nets and Concurrency - 40th International
Conference, PETRI NETS 2019, Aachen, Germany, June 23-28, 2019, Proceedings.
Lecture Notes in Computer Science, vol. 11522. Springer (2019). https://doi.org/
10.1007/978-3-030-21571-2 1, https://doi.org,/10.1007/978-3-030-21571-2 1

https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1
https://ceur-ws.org/Vol-1879/paper51.pdf
https://ceur-ws.org/Vol-1879/paper51.pdf
https://dl.gi.de/handle/20.500.12116/22195
https://doi.org/10.1007/978-3-642-12186-9_2
https://doi.org/10.1007/978-3-642-12186-9_2
https://doi.org/10.1007/978-3-642-12186-9_2
https://doi.org/10.1007/978-3-642-12186-9_2
https://doi.org/10.1007/978-3-540-85758-7_24
https://doi.org/10.1007/978-3-540-85758-7_24
https://doi.org/10.1007/978-3-540-85758-7_24
https://doi.org/10.1007/978-3-540-85758-7_24
https://doi.org/10.1007/978-3-642-10383-4_37
https://doi.org/10.1007/978-3-642-10383-4_37
https://doi.org/10.1109/AICCSA.2015.7507176
https://doi.org/10.1109/AICCSA.2015.7507176
https://doi.org/10.1109/AICCSA.2015.7507176
https://doi.org/10.1109/AICCSA.2015.7507176
https://doi.org/10.1145/3167132.3167141
https://doi.org/10.1145/3167132.3167141
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1007/978-3-642-16298-5_4
https://doi.org/10.1007/978-3-642-16298-5_4
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-030-21571-2_1

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Introducing Variables to Data Objects in BPMN 17

Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Delta-bpmn: A concrete lan-
guage and verifier for data-aware BPMN. In: BPM 2021. LNCS, vol. 12875, pp.
179-196. Springer (2021)

Gianola, A., Montali, M., Winkler, S.: Object-centric conformance alignments with
synchronization. In: CAiSE 2024. LNCS, vol. 14663, pp. 3—19. Springer (2024)
Haarmann, S., Weske, M.: Cross-case data objects in business processes: Semantics
and analysis. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM
Forum 2020. LNBIP, vol. 392, pp. 3-17. Springer (2020). https://doi.org/10.1007/
978-3-030-58638-6_ 1

Hewelt, M., Weske, M.: A Hybrid Approach for Flexible Case Modeling and Execu-
tion. In: Rosa, M.L., Loos, P., Pastor, O. (eds.) BPM Forum 2016. LNBIP, vol. 260,
pp. 38-54. Springer (2016). https://doi.org/10.1007/978-3-319-45468-9 3
Jensen, K., Kristensen, ..M., Wells, L.: Coloured petri nets and CPN tools for mod-
elling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf.
9(3-4), 213-254 (2007). https://doi.org/10.1007/s10009-007-0038-x

Konig, M., Weske, M.: Multi-instance data behavior in BPMN. In: Fonseca, C.M.,
et al. (eds.) ER Forum. CEUR Workshop Proceedings, vol. 3618. CEUR-WS.org
(2023), https://ceur-ws.org/Vol-3618 /forum _paper 4.pdf

Kiinzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object-
aware process management. J. Softw. Maintenance Res. Pract. 23(4), 205-244
(2011). https://doi.org/10.1002/smr.524, https://doi.org/10.1002/smr.524
Laroussinie, F., Schnoebelen, P.: A hierarchy of temporal logics with past. Theor.
Comput. Sci. 148(2), 303-324 (1995). https://doi.org/10.1016/0304-3975(95)
00035-U

Meghzili, S., Chaoui, A., Strecker, M., Kerkouche, E.: An Approach for the Trans-
formation and Verification of BPMN Models to Colored Petri Nets Models. Int. J.
Softw. Innov. 8(1), 17-49 (2020). https://doi.org/10.4018 /1JS1.2020010102
Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex
data dependencies in business processes. In: BPM 2013. LNCS, vol. 8094, pp. 171-
186. Springer (2013)

OMG: Business Process Model and Notation (BPMN), Version 2.0.2. Tech. rep.,
Object Management Group (2014), https://www.omg.org/spec/BPMN/2.0.2
Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: From
BPMN Process Models to BPEL Web Services. In: (ICWS 2006). pp. 285-292.
IEEE Computer Society (2006). https://doi.org/10.1109/ICWS.2006.67

Petri, C.A.: Kommunikation mit Automaten. PhD Thesis, Institut fiir instru-
mentelle Mathematik, Bonn (1962)

Ramadan, M., Elmongui, H.G., Hassan, R.: BPMN formalisation using coloured
petri nets. In: Proceedings of the 2nd GSTF annual international conference on
software engineering & applications (SEA 2011). pp. 83-90 (2011)

von Stackelberg, S., Putze, S., Miille, J., Béhm, K.: Detecting Data-Flow Errors
in BPMN 2.0. Open Journal of Information Systems (OJIS) 1(2), 1-19 (2014)
Steinau, S., Marrella, A., Andrews, K., Leotta, F., Mecella, M., Reichert, M.:
DALEC: a framework for the systematic evaluation of data-centric approaches
to process management software. Softw. Syst. Model. 18(4) (2019)

Sun, S.X., Zhao, J.L., Jr., J.F.N., Sheng, O.R.L.: Formulating the Data-Flow Per-
spective for Business Process Management. Inf. Syst. Res. 17(4), 374-391 (2006).
https://doi.org/10.1287 /isre.1060.0105

Trcka, N., van der Aalst, W.M.P., Sidorova, N.: Data-Flow Anti-patterns: Dis-
covering Data-Flow Errors in Workflows. In: van Eck, P., Gordijn, J., Wieringa,

https://doi.org/10.1007/978-3-030-58638-6_1
https://doi.org/10.1007/978-3-030-58638-6_1
https://doi.org/10.1007/978-3-030-58638-6_1
https://doi.org/10.1007/978-3-030-58638-6_1
https://doi.org/10.1007/978-3-319-45468-9_3
https://doi.org/10.1007/978-3-319-45468-9_3
https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1007/s10009-007-0038-x
https://ceur-ws.org/Vol-3618/forum_paper_4.pdf
https://doi.org/10.1002/smr.524
https://doi.org/10.1002/smr.524
https://doi.org/10.1002/smr.524
https://doi.org/10.1016/0304-3975(95)00035-U
https://doi.org/10.1016/0304-3975(95)00035-U
https://doi.org/10.1016/0304-3975(95)00035-U
https://doi.org/10.1016/0304-3975(95)00035-U
https://doi.org/10.4018/IJSI.2020010102
https://doi.org/10.4018/IJSI.2020010102
https://www.omg.org/spec/BPMN/2.0.2
https://doi.org/10.1109/ICWS.2006.67
https://doi.org/10.1109/ICWS.2006.67
https://doi.org/10.1287/isre.1060.0105
https://doi.org/10.1287/isre.1060.0105

18

32.

33.

34.

35.

M. Konig et al.

R.J. (eds.) CAIiSE 2009. LNCS, vol. 5565, pp. 425-439. Springer (2009). https:
//doi.org/10.1007/978-3-642-02144-2 34

Voglhofer, T., Rinderle-Ma, S.: Collection and Elicitation of Business Process Com-
pliance Patterns with Focus on Data Aspects. Bus. Inf. Syst. Eng. 62(4), 361-377
(2020). https://doi.org/10.1007/s12599-019-00594-3

Weske, M.: Business Process Management - Concepts, Languages, Architectures,
Third Edition. Springer (2019). https://doi.org/10.1007/978-3-662-59432-2
Wong, P.Y.H., Gibbons, J.: Formalisations and applications of BPMN. Sci. Com-
put. Program. 76(8), 633650 (2011). https://doi.org/10.1016/j.scico.2009.09.010
Xiang, D., Liu, G., Yan, C., Jiang, C.: Detecting data-flow errors based on petri
nets with data operations. IEEE CAA J. Autom. Sinica 5(1), 251-260 (2018).
https://doi.org/10.1109/JAS.2017.7510766

https://doi.org/10.1007/978-3-642-02144-2_34
https://doi.org/10.1007/978-3-642-02144-2_34
https://doi.org/10.1007/978-3-642-02144-2_34
https://doi.org/10.1007/978-3-642-02144-2_34
https://doi.org/10.1007/s12599-019-00594-3
https://doi.org/10.1007/s12599-019-00594-3
https://doi.org/10.1007/978-3-662-59432-2
https://doi.org/10.1007/978-3-662-59432-2
https://doi.org/10.1016/j.scico.2009.09.010
https://doi.org/10.1016/j.scico.2009.09.010
https://doi.org/10.1109/JAS.2017.7510766
https://doi.org/10.1109/JAS.2017.7510766

	Introducing Variables to Data Objects in BPMN

