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Here we provide additional results to support our find-
ings in the main paper.

Simulation model. — Our simulation model is a
Kob-Andersen mixture [1-3] in either two or three dimen-
sions, modified to include a fraction ¢, of active Brownian
particles. This gives the following equation of motion for
each particle 4 [4-6]:

t= (¢ (Fi+ )+ &, (1)
Here, r; denotes the position of particle ¢, ¢ the friction co-
efficient, and F; and f; the interaction and self-propulsion
force acting on particle 4, respectively. Moreover, &, rep-
resents a Gaussian noise with zero mean and variance
(€;(1)&;(t'))noise = 2kpT ¢ '16;56(t — t'), with kpT the
thermal energy, T the temperature, kp the Boltzmann
constant (we set kg = 1), ¢t the time, and I the 3 x 3 unit
matrix. The total interaction force on particle i (of type
a = A,B) due to all other particles j (of type 8 = A, B)
is Fi = _Zj;éi ViVaB(rij), where Tij = |’l"ij| = |’I"j — ’I"i‘
is the radial distance between particles ¢ and j. We use a
standard Lennard-Jones interaction potential

0as 12 (005)6 .
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r> rgﬁ ,
(52)
with parameters eapn = 1, eag = 1.5, egg = 0.5, oapn =
1, oo = 0.8, and o = 0.88. The constant C,z fixes the
potential to zero at the cutoff radius r 5 = 2.5044. Setting
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the temperature to 7' = 0.6, the bulk density to p = 1.2,
and the friction coefficient to ( = 1, we can achieve high-
density conditions without any crystallization effects [1-3].

For the self-propulsion force, we use the active Brown-
ian particle (ABP) model [7-10] and let the absolute value
of the force I}, remain constant in time so that f; = F,e;.
For the passive particles F, = 0. The orientation of the
force e; undergoes rotational diffusion with a diffusion co-
efficient D,. This yields [4, 6]

éi =X; X €, (83)

with x, denoting a Gaussian noise process with zero mean
and variance (x;()X;(t'))noise = 2D, 16;;0(t —t').

Simulations are performed by solving the Langevin
equation [Eq. (S1)] via a forward Euler scheme using
LAMMPS [11]. We include periodic boundary conditions
in a cubic box and run the simulation sufficiently long (on
the order of 200 time units) to ensure that the system has
reached steady-state conditions. Note that all results are
presented in reduced units where oaa, €aa, €an/kp, and
(o3 A/€an represent the units of length, energy, temper-
ature, and time, respectively [3]. Afterward, we save the
configuration of the particles every 20 time units. This
time interval is an order of magnitude larger than the re-
laxation time of the fully passive reference system and
therefore allows each configuration to be considered statis-
tically independent of the previously saved one [12]. In to-
tal, we retrieve 2000 different independent configurations
for each studied setting.

Gradient Boosting model versus Multilayer per-
ceptron. — In this section, we compare the performance
of the Gradient Boosting model (GB), as discussed in the
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FIG. S1: Mean-squared displacements as a function of time
t for passive particles (F, = 0) and active particles with F, =
10. The inset shows a snapshot of the system, where active
particles are represented in red and passive particles in blue.

main text, with a Multilayer Perceptron (MLP). In fact
our static models (both Voronoi and shell-based), and even
the pseudo-static model, can be implemented with either
a MLP or a GB to perform the classification task. Here
we want to motivate the choice of GB that we make in the
main manuscript.

In general, a MLP consists of multiple layers of inter-
connected neurons. Specifically, we consider an MLP with
two hidden layers, consisting of 50 and 30 nodes, respec-
tively. Even though this particular architecture has been
selected after performing a coarse grid search, it is still
possible that a deeper architecture may achieve better per-
formance, at the cost of an increased computational cost.
In terms of accuracy, we have verified that the MLP is
comparable to the Gradient Boosting model. However,
it is important to notice that the computational time re-
quired for the MLP is significantly longer compared to
the Light GBM model, without even including the cost as-
sociated to the grid search in designing the architecture
of the MLP. In detail, the ratio of computational times
between the Light GBM model and the MLP is approxi-
mately 0.052, so using a predefined GB is at least 20 times
faster than an optimized MLP while achieving the same
accuracy. Furthermore, it should be highlighted that us-
ing a different MLP can lead to remarkably worse per-
formance. For these reasons, the results presented in the
main text correspond to the Light GBM model. Moreover,
since in Ref. [13] a linear regression model has been suc-
cessfully used to predict the propensity in purely passive
systems here we attempted to train a similar model using
both the Voronoi and the shell-based approach as input.
However, this model did not accurately predict whether a
particle is active or passive, achieving an accuracy of only
0.5. Therefore, we can conclude that for this classification
problem, a more advanced machine learning model such
as Light GBM is required.

Mean-squared displacement. —
the mean squared-displacement

Here we compute

N
(A1) = (3 Sl ~milt0) ) (54)
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FIG. S2: Model accuracy as a function of the active force
Flest — pirain with ¢, = 0.008. The pink triangles and the
orange circles represent scores obtained for a system with den-
sity p = 1.0 and p = 1.2, respectively.

where r; = (;,y;, 2;) represents the particle’s spatial co-
ordinates, N is the number of particles, ¢ is time, ty rep-
resents the time origin and (...) denotes the average over
different time origins. Figure S1 shows the mean-squared
displacements for passive particles (F, = 0) and active
particles with F, = 10, which confirms that active par-
ticles have faster dynamics compared to passive particles
[14,15]. The inset of Fig. S1 shows a snapshot of the sys-
tem, which is the input for the static approach that has
been explained in the main text.

Voronoi-based model for lower density. — Figure
S2 illustrates a comparison of the model accuracy using
a Voronoi-based approach for two different system densi-
ties: p = 1.0 and p = 1.2, both with a fraction of active
particles ¢, = 0.008. The results reveal that the system
with lower density exhibits higher performance compared
to the denser system, particularly for F, < 50. This in-
dicates that at lower activities, the spatial inhomogene-
ity caused by active particles is more pronounced at a
lower density. However, at higher activities, the model
still demonstrates good performance in distinguishing be-
tween active and passive particles, albeit slightly worse
than in the denser system.

Voronoi-based model in 3D. — In this section,
we present the results obtained by applying the Voronoi
model to a three-dimensional system. Figure S3 illustrates
the accuracy achieved by the Voronoi active/passive clas-
sifiers for three values of the active particle fraction ¢,,
while keeping F, fixed at 100. Consistent with the find-
ings in the two-dimensional case discussed in the main
text, when ¢, < 0.1, the static approach exhibits an ex-
cellent predictive capability when the model is trained and
tested at a specific ¢, value (indicated by orange circles).
Similarly, the radial approach demonstrates high accuracy
in scenarios with high activity and a low fraction of active
particles.

Model explanation: SHAP analysis. In addition to the
features discussed in the main text for the two-dimensional
system, the three-dimensional mixtures requires the addi-
tion of the following descriptors: Volume, minimum and
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FIG. S3: Accuracy of the Voronoi model in 3D as a function of
the fraction of active particles ¢, = ¢', with F, = 100. The
orange circles represent scores obtained from separate models,

where each one was trained using ¢Irai® = @est
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maximum perimeter, and the number of faces with a ver-
tex count ranging from 3 to 10. Figure S4 shows the SHAP
beeswarm plot, which indicates the six most important
features and how the values of these features influence
the model’s predictions. The first six most important fea-
tures are: the minimum distance between the particle and
its neighbors min(d(n,p)), the maximum distance between
the particle and its neighbors max(d(n,p)), face with the
maximum perimeter (max(perimeter)), volume, particle
type (A or B), and the number of neighbors N(n). In
Fig. S4, the colors representing the two most important
features, min(d(n,p)) and max(d(n,p)), indicate that the
model interprets low and high values of these features, re-
spectively, as indicative of active particles, and high and
low values, respectively, as indicative of passive particles.
As passive particles tend to accumulate in front of ac-
tive particles while creating voids behind them, we expect
that active particles will be closer to the passive particles
in the front and farther away from the passive particles in
the back. The SHAP analysis confirms this expectation,
as it demonstrates that the distance between the parti-
cle and its neighbors effectively captures this anisotropic
phenomenon.

Pseudo-static approach. —

Model definition. Here we introduce a modified ML
approach that can correctly classify the active and passive
particles in the regime where the purely static approach
fails. This so-called pseudo-static method uses multiple
unordered snapshots of the system as input (Fig. S5). For
this we employ a multilayer perceptron neural network
consisting of one hidden layer of 200 neurons. The con-
figuration of our neural network was optimized by per-
forming a grid search; i.e. a scan over the hyperparameter
space in order to select the ones providing the best per-
formance. The optimal hyperparameters that we used in
the final model are reported in Table S1. In the end, af-
ter calculating all the relevant structural input features,
the training of our model takes only several minutes on a
standard laptop.

As input features for the pseudo-static approach, we
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FIG. S4: Feature importance for the 3D Voronoi model, repre-
sented as a SHAP beeswarm plot at F, = 100 and ¢, = 0.008.
The position of the dots is determined by the SHAP values
of the features, and the color is used to display the value of
the features. The top six most important features include
the minimum distance between the particle and its neighbors
min(d(n,p)), the maximum distance between the particle and
its neighbors max(d(n,p)), face with the maximum perimeter
max(perimeter), volume, particle type (A or B), and the num-
ber of neighbors N(n).

include measures for the fluctuations of particle-resolved
local structural features. In principle we could consider
fluctuations of e.g. our Voronoi features or the shell-based
descriptors, but here we choose effectively a combina-
tion of them, namely Voronoi weighted order parameters.
These order parameters have previously also been shown
to describe local crystal structures, e.g., cubic (g4,6), BCC
(gs), and FCC (q12) [19], and they are faster to calculate
and easier to interpret than those of the shell-based ap-
proach.Explicitly, we use the [-th Voronoi weighted order
parameters [19]
! A 2
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Qi) = (S5)

where the inner sum is taken over all shared boundaries
(facets) f of the Voronoi cell containing particle i, A(f) is
the area of the facet, A(7) is the total area of the Voronoi
cell, and 0y and ¢ are the spherical angles of the outer
normal vector of the facet f. In addition, we use the [th
averaged Voronoi weighted order parameters

! NO) 2\ 2
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(36)
where the middle sum is taken over all the N neighbors
of the particle ¢, including particle 7 itself. The difference
between the parameters is that those in Eq. (S5) only de-
scribe the first shell of particles around particle i, while
the parameters in Eq. (S6) also describe the second shell
of particles around particle 3.

Importantly, since these are stochastic quantities, we
perform one additional processing step and calculate, for
each particle ¢, the mean, median, minimum, maximum,
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FIG. S5: Sketch of our pseudo-static approach for the identification of active particles in an active/passive mixture.

Parameter Value
solver ’1bfgs’
activation ’tanh’
alpha 0.05
max_iter 10 **x 9
max_fun 10**5
validation_fraction 0.1
early_stopping True
hidden_layer_sizes (200,)
n_iter_no_change 10
tol 0.0001

Table S1: The hyperparameters used for the multilayer per-
ceptron. The parameter names refer to the inputs for the
multilayer perceptron implementation provided by the scikit-
learn [16] library.

and standard deviation corresponding to the distribution
of Q;(7) averaged over the number of configurations in the
training set. To capture more static information, we also
calculate the 5th, 25th, 75th, and 95th percentile of these
distributions. It will be these statistics, which character-
ize the distribution of Q;(¢) with | = 2,...,12, as well as
the particle type (A or B), that are used as input for the
pseudo-static ML model. In total, this model considers
199 input quantities; note that this feature space is signif-
icantly smaller than that of the shell-based approach, but
larger than that of the static Voronoi approach.

To quantify the network’s performance, we use two in-
dicators: (i) accuracy and (ii) fl-score. Accuracy is the
most basic metric for classification, defined as the number
of correct predictions divided by the total number of pre-
dictions. This metric, however, is not optimal when the
classes are unbalanced, which is the case here when the
fraction of active particles ¢, # 0.5. (Note that in the
main text we have always enforced a balanced data set
by discarding particles if needed, but for the pseudo-static
approach we cannot afford this in view of the required
data quality.) Hence, when we have a different number
of active and passive particles we evaluate the model with
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FIG. S6: Model accuracy for our pseudo-static approach as
a function of the active force F, = F!*** with ¢, = 0.5. The
black points represent scores obtained from separate models,
where each one was trained using F™" = Ff°st. The black
stars correspond to the score obtained from separate models
trained with the features computed with the static shell-based
approach. The red points represent scores obtained from a
single global model trained with data from F, = 10.

the fl-score

precision - recall

fl-score = 2 —
precision + recall

where the precision is the sum of true positives across all
classes divided by the sum of both true and false positives
over all classes, and the recall is the sum of true positives
across all classes divided by the sum of true and false neg-
atives across all classes. The fl-score reaches its largest
value of 1 when the model has perfect precision and re-
call, and its lowest value of 0 if either the precision or the
recall is equal to zero.

We implement this method in our three-dimensional
simulation system at a temperature of T'= 0.6. The con-
figurations of the particles are saved every 13th time unit.
This time interval is chosen to be significantly larger than
the relaxation time of the fully passive reference system.
As a result, each saved configuration is considered to be
statistically independent of the previously saved one. The
statistics are computed over 10000 independent configu-
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FIG. S7: The fl-score as a function of the fraction of active
particles ¢, = ¢2°**, with F, = 10. The black points represent
scores obtained from separate models, where each model was
trained using ¢i*" = ¢°**. The black stars correspond to the
score obtained from separate models trained with the features
computed with the static shell-based approach. The red points
represent scores obtained from a single model trained with data
from ¢, = 0.5. In the inset, we highlight the small score drop

that happens for ¢&* — 1.

rations.

Results for the pseudo-static approach. Figure S6
reports the accuracy that our pseudo-static ML model
achieves in the classification of a 50/50 active/passive mix-
ture, for different values of the active force F,. We com-
pare the accuracy that we get when the model is trained
and tested at a single specific value of F}, (black circles),
with the accuracy of a model trained when fixing F,, = 10
(red circles). When the active force F, is very small, it
is difficult to distinguish between motion related to ac-
tive forces and passive Brownian motion, so the pseudo-
static approach fails as much as the static approach, once
again confirming that the statics-dynamics connection is
extremely subtle for active systems in this regime.

For F, > 5 the pseudo-static approach achieves > 90%
accuracy, clearly outperforming any purely static method
that takes only instantaneous structural information as
input. As expected, we also see that the accuracy of
the pseudo-static approach increases when the activity is
strong, because the difference between passive and active
particles becomes more significant. Furthermore, a sin-
gle model trained at an intermediate value of F, = 10 is
able to produce good predictions for F, > F"8" thus
showing reasonable generalizability to unseen parameter
regimes, although the accuracy gets lower for F, < Ffrain,
In Fig. S6 the dashed line shows results corresponding to
the shell-based approach (similar results can be obtained
with the Voronoi model). Consistent with the findings
discussed in the main text, the static approach fails to
achieve even 60% accuracy for high fractions of active par-
ticles and low activity. This suggests that activity does not
leave a clear, simple signature in the instantaneous local
structure.

In Figure S7 we evaluate the performance of the ac-
tive/passive classifiers as a function of the percentage of
active particles ¢, at fixed F, = 10. Here the pseudo-
static approach achieves very good predictive power, quan-
tified by the very large fl-score of ~ 1, even when the
model is trained only at ¢, = 0.5 (red circles). Thus, the
model also generalizes well to other active/passive stoi-
chiometries. Once again, a static approach (dashed line)
is not effective for any value of ¢,. When the fraction
of active particles approaches 1, we highlight in the inset
that the model becomes slightly less accurate, though the
fl-score still remains above 0.97. Our interpretation of
this small score drop is that it is easier to identify a single
particle that is moving due to activity (small ¢,, black cir-
cles) rather than identifying a single passive particle with
many active neighbors (large ¢, ), since the activity of the
neighbors usually disrupts the local environment.

Model explanation. Having thus established an effec-
tive pseudo-static ML model that can accurately distin-
guish active from passive particles, let us now seek to gain
more insight into the decisions made by the model. That
is, rather than using it as a black box [20,21] we calculate
the model explanations. For this we use LIME [17,18]. In
brief, these explanations describe the correlation between
a given input parameter and the probability of predict-
ing a given particle to be active and can be considered
local approximations to the model. The correlation values
given by the explanations are used to assess the relevance
of certain parameters to the overall predictions made by
the model; the stronger the deviation from 0, the more
relevant a feature is for determining whether a particle is
active or not.

Figure S8 presents an aggregation of the explanations
over all particles in an active/passive mixture with ¢, =
0.5 and F, = 10. The boxplots in Fig. S8(a) show the dis-
tribution of the correlation between a given parameter and
the probability that a given particle is predicted to be ac-
tive by the model. For clarity, we show only the 23 most
important features, and we note that the ordering may
vary somewhat depending on the initialization settings of
the LIME algorithm. While there is no single dominant
feature, overall we see that the features related to Q5 (e.g.
its mean and its 50th, 75th, and 95th percentiles) are rel-
atively strongly correlated to the model prediction. In
Fig. S8(b) we average all the statistical features related to
the same physical (); observable, also confirming that Q05 is
a relatively important structural property. This finding is
consistent with recent work on densely disordered passive
Lennard-Jones particles, which found that @5 produces
the largest contribution in a principal component analysis
[22]. Thus, local 5-fold symmetries constitute relevant de-
scriptors of passive particles, and if we incorporate their
fluctuations using our pseudo-static technique, they also
provide informative structural signatures of active parti-
cles in a disordered mixture. However, our results indicate
that active/passive mixtures generally have a broad spec-
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FIG. S8: Importance of the structural features in the identification of active and passive particles, as determined by LIME [17,
18]. The parameters are ordered according to their mean importance. In (a) we report the 23 most important features, while in
(b) we average the features relative to the same physical observable [Eq. (S5) or (S6)|. In (a) the notation Qn_m} refers to the
mth percentile of the distribution of @,, with Qn_507% the median. The data was produced from the pseudo-static ML model

trained for a mixture with &, = 0.5 and F, = 10.

trum of structural features with no single dominant signal,
and hence we conclude that active particles do not assume
well-defined local structures, even at relatively small ac-
tivity. This lack of a single, unique feature underlying the
structure-dynamics relation is also similar to the case of
fully passive disordered systems [22,23].

Lastly, we notice the importance of the particle type «,
i.e. the species label A or B in the Kob-Andersen mixture
[the last feature listed in Fig. S8(b)]. While on average
the particle type is weakly correlated to the identifica-
tion of active particles, there are some significant outliers
(black circles) with a strong correlation. Our interpreta-
tion is that consistently with passive Kob-Andersen mix-
tures [24], type-B particles are smaller, which increases
their mobility. However, type-B particles only constitute
20% of our mixture [25]. We hypothesize that the model
implicitly knows that the particle identity is not important
for 80% of the cases (the majority of large particles), while
it is significant to differentiate the 20% of small particles.
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