
Supplementary Figure 1: Artificial datasets. A) To indicate the effect size, the baseline performance of no stopping

is shown. B) Shown is the performance gain over the no stopping condition for all methods, on several artificially created

datasets. For any method to be robust, it should not have negative gains, meaning it should not reduce performance with

respect to no stopping. With many outliers in the online data, all methods do reduce the performance. All methods show

a similar dependency on data separation, and apart from Liu and, to a much lesser extend, Jin and Rank diff, all methods

reduce to baseline for inseparable data. Liu as the only method is susceptible to all sorts of data distortion, including

drifts and scaling.



Supplementary Figure 2: Individual subject profiles. A) To indicate the effect size, the baseline performance of no

stopping is shown. B) Shown are for each subject and each stopping methods the achieved gains over the no stopping

condition. Numbers indicate the average gain per method per paradigm (see main manuscript, Figure 6). Negative gains

mean that a method reduced the performance for a subject (negative bar) or on average over an entire paradigm (negative

number).



Supplementary Figure 3: Estimating S†. The individually optimized scaling parameter S is plotted against the AUC

of the training data. High linear correlations are found between these, which leads to a set of coefficients for each methods

that allow the direct estimate of S† from the training data. The black line indicates the linear fit of all data, using an

iteratively reweighted least squares fit. The gray lines indicate the fit of all but one dataset, showing high resemblance

with the overall fit. Note that the α values for Höhne and Zhang are plotted on a log scale, given the nature of the

parameter.



Appendix A. Höhne method in depth

The method is based on the Welch’s t-test, which can be used to assess whether two normally distributed

samples with individual variance have equal mean. The test statistic can be calculated as
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where X i, s
2
i , and Ni are sample mean, sample variance and sample size, respectively.

In the BCI scenario, the two normally distributed samples are classifier outputs of class c vs. the joint

set of classifier outputs of all other classes c̃, thus t(Dc,1...j,t,Dc̃,1...j,t). The test statistic is transformed

into a p-value in order to obtain a measure which is independent of sample size.

In the early stopping problem, we are finally testing, if there is a class c that fulfills the stopping

criterion,

M(Dtest, t, j) < α (A.2)

Sub-function M(Dtest, t, j) is defined by

M(D, t, j) = min
c
p(t(Dc,1...j,t,Dc̃,1...j,t), ν) (A.3)

As one can see in Equation A.6, the transformation of the t-value into the p-value requires an

additional parameter ν, which can be directly computed from the data as well. The transformation from

the t-value into the corresponding p-value is implemented in numerous standard statistical toolboxes.

Nevertheless, a detailed analytic derivation is given below.
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Here, Γ denotes the Gamma-function, in contrast to its previous usage as the training function.



Appendix B. Classifier output distributions in Zhang

In practice, the classifier output distributions fa and fu are modeled as univariate Gaussians
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where the means and variances are estimated from the training data by
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Such modeling is in line with the LDA classifier assuming the features of the two classes to be normally

distributed as well. In fact, µ̂a/u and σ̂2
a/u can be obtained from the feature means and covariance matrix

ma/u and Σ estimated by LDA via

µ̂a/u = w>ma/u and σ̂2
a = σ̂2

u = w>Σw , (B.6)

where w is the LDA projection vector.


