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Appendix A. Additional neighbourhood analysis and comparisons
In this appendix, we provide 1) additional local-neighbour analysis for notable materials. Using the same analysis approach, we
also compare our approach with 2) its counterpart baseline methods and 3) existing hand-crafted descriptors1.

A1. Local neighbourhood analysis for 2D materials and permanent magnets
2D materials are an interesting class of materials whose structural variations can yield diverse functionality. Particularly,
2D ferromagnets are gathering increasing attention from the magnetic materials community2. Therefore, we here inspected
the neighbourhoods of Cr2Ge2Te6, a 2D van der Waals crystalline insulator whose ferromagnetism was discovered in 20173.
Interestingly, its immediate neighbour was CrSiTe3 (see the top-50 neighbour list in Table S1). This material was predicted to
be a possible 2D compound through data mining and first-principles calculations in 20134 and has been studied as a potential
2D ferromagnetic insulator5. Similarly, other 2D van der Waals materials that are recently studied for interesting properties
were in the neighbourhoods of Cr2Ge2Te6. For example, CrTe3 at the 4st neighbour has been studied for antiferromagnetism6.
Most interestingly, another 2D ferromagnetic material, CrI3

7, was found at 15th neighbour. Because the existence of 2D
ferromagnets had been long questioned, the discoveries of Cr2Ge2Te6 and CrI3 in 2017 have been of immense interest to the
magnetic materials community2. The structural similarity of two materials is only evident when the structures are visualised
with appropriate bonding and polyhedra (see Fig. 7), which often requires a certain level of expertise. Nevertheless, our model
places these materials close enough to be classified as ‘neighbours’, suggesting that the model captures their functionality-level
similarity in the structures.

We next examined ferromagnetic materials for permanent magnets. SmCo5 and Sm2Co17 are two major components in
the Sm-Co magnets and the structural similarity between them is well known among experts8. Because the 2-17 structure of
Sm2Co17 is reproduced by simply replacing some Sm ions in the 1-5 structure of SmCo5 with a Co-Co dumbbell, we expect
both materials to be closely located in the embedding space. The local-neighbour analysis showed that they were mutually
found at about the top 0.5% neighbourhoods of each other. Furthermore, if we look for other 1-5 structures including those
sharing same atomic positions but with different chemical compositions, we found DyGaCo4 at the 246th neighbour (top 0.2%)
of Sm2Co17 (see Table S2). This result seems satisfactory considering the abundance of binary materials with several atoms in
the unit cell located around SmCo5 effectively pushing SmCo5 out of the immediate neighbours of Sm2Co17.

Also interesting about the neighbours of Sm2Co17 is the presence of other structural families related to permanent
magnets. For example, the 2-14-1 family was found at the 60th (Tb2Co14B), 73th (TbNdCo14B), 77th (NdYCo14B), and
95th (Nd2Co14B). This family is famous for Nd2Fe14B, the main compound of the Nd-Fe-B magnet, which is essential for
the modern society. Unlike the aforementioned connection between the 2-17 and 1-5 structures, this family has no such
explicit structural connection with Sm2Co17 in a way reasonably understandable to humans. Thus, the embedding seems to
capture their functionality-level similarity as important structures of permanent magnets. Furthermore, the 1-12 (ThMn12 type)
structural families was observed as DyMn12 (44th), GdMn12 (45th), SmCo12 (255th) and many others. The 1-12 families is
gaining attention as parent compounds for next-generation permanent magnets9–11. The 1-12 and 2-17 structures of SmCo12
and Sm2Co17 have the known connection that both can be derived from SmCo5

8, 9. However, without the literature context

1



and proper visualisation, it is difficult for a human analyst to identify such a connection between a hexagonal structure and
a tetragonal structure (see Extended Data Fig. 8). This result demonstrates that our model connects materials with similar
functionality as neighbours by capturing their structural fingerprints that are obscure for human experts.

Since our embedding was learned solely from crystal structures without any human annotation, it is not constrained by
human bias in principle. The additional analyses indeed show the materials relationships that are known in the literature but not
evident to non-experts. Our analyses for the socially important, diverse material classes, from superconductors and battery
materials to 2D materials and permanent magnets, strengthen the claim that our model recognises various materials concepts
from crystal structures.

A2. Comparison with baseline approaches using DNN’s latent feature vectors
In the main text, we discussed the two key factors of our approach that supposedly enabled the learning of materials concepts
from crystal structures. Specifically, 1) explicit metric optimisation between embeddings via deep metric learning, and 2) cross-
modal learning between the two complementary factors (the local structure and periodicity) of crystal structures. To support
this hypothesis, we here compare our approach with its counterpart through local neighbourhood analysis. The counterpart
methods thus 1) learn embeddings as DNN’s latent vectors trained by a surrogate task without explicit metric optimisation,
2) using only a single form of input expression (either crystal structures or XRD patterns). Essentially, the existing material
embedding learning methods12–15 fall into this counterpart methodology with differences in training tasks, input expressions,
and encoder architectures.

Among various choices for a surrogate training task, we adopted the prediction of the total total energy by following the
existing approach by Xie et al.15. The total energy is a fundamental physical measure of crystal structures that is closely
related to their chemical bonds. Because the chemical bond is a basis for various properties of all materials including inorganic
compounds, the approach by Xie et al. can be justified based on the idea that if the total energy is predicted accurately from
an embedding, it well describes the crystal structure. Similar to Xie et al., our objective in this study is to build a single ML
model that can universally recognise various materials concepts. Therefore, we also consider the total energy as an appropriate
prediction target that is not directly coupled with specific functionality but is related to diverse characteristics of materials.

For comparison, we prepared two baseline methods by borrowing our two encoders (Fig. 2a). Each baseline adopted either
the crystal-structure encoder or the XRD pattern encoder, whose final layer was modified to output a scalar prediction value of
the total energy. See also the Appendix D for the detailed network architectures of our encoders. The two models were trained
to minimise the mean squared error between the predicted and simulated values of the total total energy. We conducted iterative
training for 500 epochs similarly to the procedures given in the Methods section. After the training, the latent vectors that are
fed to the middle layer (the one before the final layer) were collected as embeddings, which have the same 1024-dimensions as
ours.

Tables S3 and S4 list the top-50 neighbours of Hg-1223 and LiCoO2, respectively, comparing our embedding with the two
baselines. For these two materials, our embedding successfully captured high-Tc superconductors similar to Hg-1223 and the
important three families of lithium-ion battery cathode materials similar to LiCoO2, as discussed in the main text. Since these
results were produced by using the inputs and encoder that are essentially the same as those of the crystal-structure-based
baseline, this baseline should at least have the potential to produce similar results. Indeed, the list of neighbours of the two
baselines suggests conceptual material similarity at the level of roughly comparable to our approach. As Xie et al.15 point out,
the total energy is a fundamental materials parameter, so it is not surprising that DNNs could indirectly learn embeddings that
capture the concept of materials in a supervised learning framework with labels of total energy. From this result, we confirm
that our two encoders were both well enough to learn the material concept. We conclude that the two factors of our approach,
namely, explicit metric optimisation on embeddings and cross-modal learning, are comparable to supervised learning with
labels by large-scale ab initio calculation.

When these two factors are combined in our method, they form the training task of cross-modal retrieval, as discussed in
the Methods section. This task is to ensure that each embedding is uniquely identifiable among others as the nearest neighbour
of its paired embedding given as a query. The task of learning uniquely identifiable embeddings can be considered a more
direct approach to learning distinctive features and concepts of individual materials, compared to other surrogate tasks used in
the existing methods12–15. As the analysis in Appendix B reveals that our method successfully carried out the retrieval task, this
reasoning from the aspect of the training task could also account for the success of our approach.

A3. Comparison with traditional hand-crafted descriptors
We here provide comparative neighbourhood analysis of traditional hand-crafted descriptors, whose detailed discussions were
omitted from the main text. In particular, we examined Ewald Sum Matrix (ESM)1 and Sine Coulomb Matrix (SCM)1. We
also investigated other choices such as the Smooth Overlap of Atomic Positions (SOAP)16, 17 and the Bag of Bonds (BoB)18.
However, these methods could not scale to our dataset of 122,543 materials, as the dimensions of these descriptors can grow
extremely large for a dataset containing a large number of chemical elements. In our preliminary analysis, the descriptors of
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SOAP and BoB became 170k and 500k dimensions, respectively, for a random subset containing 5,000 materials (4%) of our
dataset. Thus, ESM and SCM were chosen as representative hand-crafted descriptors of crystal structures that were applicable
to the dataset scale of interest in this study.

ESM1 is viewed as an extension of the Coulomb matrix19 for periodic systems. ESM forms a symmetry matrix whose
elements model the electrostatic interaction between atoms, i and j, in the primitive cell of a crystal structure as follows.

MESM
i j =

{
xreal

i j + xrecip
i j + xself

i j + xbg
i j for i = j

2
(

xreal
i j + xrecip

i j + xbg
i j

)
for i ̸= j

(S1)

Here, xreal
i j and xrecip

i j encode the short- and long-range interactions between atoms in the real and reciprocal spaces, respectively,

xself
i j represents the self-energy correction, and xbg

i j is a constant term introducing a uniform background charge to neutralise the
system. Note that the formulation in Equation S1 follows the modified ESM definition used in the DScribe library20, which
fixes an issue related to the self-energy and the background-charge correction in the original work1.

SCM1 is another variant of the Coulomb matrix for periodic systems. Although ESM computes the correct electrostatic
interactions between atoms, this computation can be heavy for large systems. SCM aims to reduce the computational effort by
replacing the long-range interaction with a simpler expression1, 20.

For a crystal structure containing N atoms in the primitive cell, these Coulomb matrix variants produce a N ×N matrix
whose rows and columns are ordered by the indices of the atoms in the cell. This form is problematic when evaluating
the distance between two descriptors, because the descriptor sizes can be inconsistent among materials and the descriptor
representations depend on the ordering of atomic indices. To allow the distance evaluation between descriptors, we used the
schemes suggested by Himanen et al.20. Specifically, we computed the eigenvalues of ESM and SCM sorted by their absolute
value in descending order, and then applied the zero-padding to the eigenvalue vectors according to their maximum dimension
among the dataset. Consequently, ESM and SCM were converted to 444-dimensional vectors, which effectively compress the
original matrices that have at most 197k (4442) dimensions.

Tables 1 and 2 show the top-50 neighbourhoods of Hg-1223 and LiCoO2, respectively, obtained by ESM and SCM in
comparison with our embedding discussed in the main text. Likewise, Tables S1 and S2 show the comparisons for Cr2Ge2Te6
and Sm2Co17, respectively, discussed in the Appendix A1 above. As shown in these tables, the conceptual similarities of
materials captured in our embedding space are not observed in the results of ESM and SCM.

In addition to this superior ability in capturing conceptual material similarity, our method has other advantages in terms
of its scalability and representation over existing hand-crafted descriptors. As explained above, existing descriptors such
as SOAP16, 17 and BoB18 tend to suffer from the scalability issues when applied to a large-scale dataset. ESM and SCM
could also produce 197k-dimensional descriptors for our dataset if not compressed by eigenvalues. These scalability issues
stem from the fact that the dimensions of existing descriptors often vary according to, for example, the number of chemical
elements contained in the target dataset as in SOAP and BoB, or the system sizes of individual materials as in ESM and SCM.
By contrast, our method can produce embedding vectors of predefined fixed size, regardless of the sizes and scales of input
crystal structures and target datasets. This consistent representation is important for ML applications20. With the ML-friendly
fixed-size (1024-dimensional) vectors, our model was able to uniquely describe more than 10,000 materials, as revealed in
Appendix B, while recognising materials concepts in a dataset of over 120,000 materials, as demonstrated in the main text.
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Table S1. The top-50 neighbours of Cr2Ge2Te6 (CrGeTe3) in comparison with existing descriptors.

No. Formula ID Formula ID Formula ID
Query CrGeTe3 mp-541449 CrGeTe3 mp-541449 CrGeTe3 mp-541449

1 CrSiTe3 mp-3779 InSiTe3 mp-567931 Fe2Te3 mp-685077
2 Cd2As3Br mp-28900 CrSiTe3 mp-3779 Ga2Te3 mp-38970
3 Cr4Cu3Te8 mp-675546 Co(PdSe)2 mp-12464 Ni2SbTe2 mp-3250
4 CrTe3 mp-540922 Al2Te3 mp-1228524 Ga2Te3 mp-32580
5 Mg2SiSe4 mp-1192582 Ba4Al mp-1214528 K3AsI6 mp-1111178
6 In2Ag2GeSe6 mp-505607 K2YCuI6 mp-1112213 K3GaI6 mp-1111270
7 Cr2CuTe4 mp-22625 Rb3ScI6 mp-1114633 Te3As2 mp-484
8 Ba4Cd11Ge12 mp-1214704 Rb2AlInI6 mp-1114521 Sc2Te3 mp-32654
9 CsYZnSe3 mp-574620 K2GaAgI6 mp-1112466 K3YI6 mp-1113611

10 BaCu6Te6S mp-1228010 K2NaScI6 mp-1111618 K3ScI6 mp-1111693
11 Sc19(RuBr7)4 mp-1219646 Rb2GaAgI6 mp-1113726 CrSiTe3 mp-3779
12 BaCu6Te6Se mp-1228039 Sc2Te3 mp-32654 RbCrI3 mp-676553
13 Mn2In2Se5 mp-1222074 K3ScI6 mp-1111693 K2RbGaI6 mp-1111285
14 InSe mp-21405 K2AgMoI6 mp-1112093 Na3YI6 mp-1113485
15 CrI3 mp-1213805 Ti2Te3 mp-1217180 K2YCuI6 mp-1112213
16 In2Si(AgSe3)2 mp-640614 Cs3AlI6 mp-1112654 K2RbAsI6 mp-1111606
17 InAgS2 mp-1097000 Nb(SeI)2 mp-1205627 K2RbAlI6 mp-1111610
18 Rb2Cd3Se4 mp-16818 Yb(Mo3S4)2 mp-2945 K3AlI6 mp-1111183
19 Cd4GeSe6 mp-18163 Ba3LiN mp-13288 Cs2SnAs2 mp-8934
20 CsYMnSe3 mp-1213646 RbCu2I3 mp-1103650 K2NaScI6 mp-1111618
21 In4Se3N2 mp-1246310 Ba4Pd mp-1214438 Na3ScI6 mp-1113505
22 RbFe2Te3 mp-15121 Zr10HN8 mp-674456 LiGe3SbTe5 mp-1222357
23 TePdI2 mp-573321 Zr4Mo mp-1207454 K2NaYI6 mp-1111220
24 Cd2GeAs4 mp-5712 Cs2CoSe2 mp-8770 AlSiTe3 mp-31220
25 CsYCdSe3 mp-11116 Tm(Mo3S4)2 mp-1103493 K3MoI6 mp-1111267
26 HoAgS2 mp-1199297 Dy(Mo3S4)2 mp-1103518 K2LiYI6 mp-1111243
27 TbAgS2 mp-1208370 K2RbGaI6 mp-1111285 Al2Te3 mp-1228524
28 GdAgS2 mp-1200242 Cd2PCl2 mp-31276 K2CuMoI6 mp-1112050
29 Cr2AgTe4 mp-20118 Na6MnTe4 mp-14782 Rb3AsI6 mp-1114618
30 DyAgS2 mp-1200233 K2NaMoI6 mp-1111633 Rb3GaI6 mp-1114499
31 In6S7 mp-555853 Cs2As2Pd mp-8857 K2RbYI6 mp-1114560
32 Ba(ZnSb)2 mp-14207 KRb2AsI6 mp-1114510 K2NaMoI6 mp-1111633
33 Cd2As3I mp-27577 Cs2In3 mp-567752 Rb2NaScI6 mp-1114457
34 Mn2ZnTe4 mp-1104014 Zr2Ga3 mp-30686 Rb3YI6 mp-1114639
35 Mg(ScSe2)2 mp-1001019 Rb2LiYI6 mp-1114584 K2LiMoI6 mp-1111254
36 Mg2Al2Se5 mp-29624 SrCaI4 mp-1101345 Rb2YCuI6 mp-1112410
37 AlInSe3 mp-862787 K3MoI6 mp-1111267 Rb3ScI6 mp-1114633
38 K(FeTe)2 mp-1068789 Zr4Zn mp-1207459 K2RbMoI6 mp-1114406
39 ErAgS2 mp-36029 La4S7 mp-1223154 Rb2CuMoI6 mp-1112459
40 RbIn3S5 mp-542654 K2CuMoI6 mp-1112050 La2Fe2I mp-30223
41 Rb7(FeTe2)4 mp-1194713 Rb2NaYI6 mp-1114603 Rb3AlI6 mp-1114616
42 Cs5In3As4 mp-582182 K6MnTe4 mp-18246 K2ScAgI6 mp-1112086
43 Cs(SbSe2)2 mp-3312 Rb2YCuI6 mp-1112410 Rb2NaYI6 mp-1114603
44 Mn2SiSe4 mp-17367 SiI3 mp-1078195 K2GaAgI6 mp-1112466
45 Ti5Te8 mp-1208221 Rb3GaI6 mp-1114499 Rb2LiYI6 mp-1114584
46 Ag15P4S16Cl3 mp-560328 Rb2Te mp-383 Rb2NaMoI6 mp-1114447
47 V3Te4 mp-1028 Sr2CaI6 mp-754710 NbI3O mp-546285
48 Cr5Te8 mp-1213754 Ti5Sb2Rh mp-16687 Rb2LiMoI6 mp-1114569
49 YAgS2 mp-1207671 Rb3AsI6 mp-1114618 Ca2InPd2 mp-20792
50 TiCu2Te3 mp-541754 KRb2ScI6 mp-1110633 Na2GaAgI6 mp-1111188

Our embedding Sine Coulomb MatrixEwald Sum Matrix

We compare the top-50 neighbours of the 2D ferromagnet Cr2Ge2Te6 obtained by using our embedding and existing descriptors1. Our embedding well
captured 2D materials that are gathering attention as promising new electronic-device materials in the materials science community. As mentioned in the text,
CrSiTe3 (No. 1) is a potential 2D ferromagnet similar to Cr2Ge2Te6 (query), and CrTe3 (No. 4) are studied for ferroelectricity and antiferromagnetism,
respectively. In the lists of ESM and SCM, our first neighbour CrSiTe3 also exists but at lower positions, No. 2 and No. 11, respectively. Note that the other 2D
ferromagnet CrI3 mentioned in the text was in the 15th neighbours by our embedding but was absent in the top-1000 neighbours by ESM and SCM.
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Table S2. The top-50 neighbours of Sm2Co17 in comparison with existing descriptors.

No. Formula ID Formula ID Formula ID
Query Sm2Co17 mp-1200096 Sm2Co17 mp-1200096 Sm2Co17 mp-1200096

1 Gd2Co17 mp-1201816 Ho2Fe5Co12 mp-1197249 Sm2Ni17 mp-1203310
2 PrErCo17 mp-1220026 Tb2Co17 mp-1199370 Sm4Ga3Fe31 mp-1219432
3 Ce2Co17 mp-2216 Ho2Co12Ni5 mp-1204922 Sm4Fe31Co3 mp-1219400
4 Tb2Co17 mp-1199370 NdEr3Fe34 mp-1220311 Sm4CrFe33 mp-1219321
5 SmGdCo17 mp-1219295 Dy2Ni17 mp-1197654 Eu2Ni17 mp-1201182
6 Dy2Co17 mp-569638 Yb2Fe17 mp-1195706 Sm4ZrFe33 mp-1219455
7 Eu2Ni17 mp-1201182 Ho2Ni17 mp-1202187 Sm4TiFe33 mp-1219364
8 Ce2VCo16 mp-1227655 Tm2Ga2Fe15 mp-1203778 Sm4Cr3Fe31 mp-1219348
9 YbPrCo17 mp-1215870 Lu2Fe17 mp-1195842 TbNd3Fe34 mp-1217543

10 Ce2Co16Cu mp-1227675 Dy2Mn12Ga5 mp-1237201 Gd2Co17 mp-1201816
11 Nd2Ni17 mp-570596 Lu2Ni17 mp-1202260 Nd2Ni17 mp-570596
12 PrSmCo17 mp-1219785 Lu2Co17 mp-1204082 Gd2Ni17 mp-580102
13 YbPr3Co34 mp-1215883 Tm2Co17 mp-1196360 Gd2Fe17 mp-1196805
14 SmYCo17 mp-1219047 Tm2Ga3Fe14 mp-1197720 Pr3DyFe34 mp-1219904
15 Sm2Ni17 mp-1203310 Tm2Fe15Si2 mp-1200417 Nd3ErFe34 mp-1220953
16 CeYCo17 mp-1226612 Er2Fe17 mp-1724 Sm4V20(CuO4)15 mp-1219719
17 Nd2Co17 mp-356 Yb2Ni17 mp-1199108 Tb3SmFe34 mp-1217679
18 Gd2Ni17 mp-580102 Tm2Ni17 mp-11527 Tb3NdFe34 mp-1217666
19 Ho2Co17 mp-1023 Ho2Fe17N3 mp-1212403 Sm2ZrCo16 mp-1219324
20 Ho2Co12Ni5 mp-1204922 Lu2Mn17C3 mp-1211163 Pr3ErMn6(FeCo13)2 mp-1220144
21 Er2Co12Ni5 mp-1203663 Tb2Fe17H3 mp-1208578 Tb2Co17 mp-1199370
22 Er2Co17 mp-2531 Er2Mn17C3 mp-1213058 Tb2Fe17 mp-1194635
23 Tb2Ni17 mp-569945 Ho2Mn17C3 mp-1212558 Sm4Fe31Si3 mp-1219345
24 Tb2Ga3Co14 mp-1217733 Dy2Al2Fe15 mp-1196052 Tb2Ni17 mp-569945
25 Sm2ZrCo16 mp-1219324 Ce2Co17H3 mp-1213920 Pr2Mn12Co5 mp-1232416
26 Ho2Fe5Co12 mp-1197249 Er2Fe17H3 mp-1213007 CePr3Fe34 mp-1227066
27 TbCo9Si2 mp-1191366 Tm2Fe17H3 mp-1208090 Pr4AlFe33 mp-1219956
28 Pr2Co16Cu mp-1219957 Tm2Fe17C3 mp-1208084 YbPr3Co34 mp-1215883
29 Pr2Cr2Co15 mp-1219992 Dy2Fe17H3 mp-1213248 Ce2Co16Cu mp-1227675
30 Sm2Fe4Co13 mp-1219231 Tm2Al2Fe15 mp-1198100 Sm4Fe27Co7C2 mp-1219288
31 La4TaCo33 mp-1224958 Ho2Fe17 mp-1196975 Ce2Co17 mp-2216
32 Dy2Ni17 mp-1197654 Tb2Fe17 mp-1194635 Ce2Fe17 mp-1195962
33 SmMn5Co7 mp-1219042 Dy2Fe17 mp-1196404 Pr2Zn17 mp-976812
34 Tm2Co17 mp-1196360 Ho2Fe17C mp-1224658 NdErFe17 mp-1220296
35 Yb4ZrCo33 mp-1216133 Yb2Co17 mp-1199900 Dy2Fe17 mp-1196404
36 Yb2Co17 mp-1199900 SmEr3Fe34 mp-1219139 Dy2Co17 mp-569638
37 La2VCo16 mp-1223090 Gd2Fe17 mp-1196805 Ce2VCo16 mp-1227655
38 Sm2Ga2Co15 mp-1188906 Tm2Fe17 mp-30640 Dy2Ni17 mp-1197654
39 Er2Ni17 mp-30608 Ho2Co17 mp-1023 Tb2Zn17 mp-30880
40 ErCo9Si2 mp-1191958 Er2Co17 mp-2531 Dy2Ga3Fe14 mp-1203342
41 Ce2Co17H3 mp-1213920 Er2Co12Ni5 mp-1203663 Sm4Fe34C3 mp-1219344
42 Ce4AlCo25 mp-1227640 Dy2Co17 mp-569638 Nd4Fe29Si5 mp-1220603
43 Sm2Co16Ag mp-1219201 Er2Al3Fe14 mp-1199551 Eu2Ni12P5 mp-1213550
44 DyMn12 mp-20656 Er2Ni17 mp-30608 Ce2ZrCo16 mp-1227870
45 GdMn12 mp-639892 Ce2Co17 mp-2216 Ce2Zn17 mp-978252
46 SmCo9Si2 mp-17623 AuSCl7 mp-556587 Dy2Mn12Ga5 mp-1237201
47 Y2Co14Cu3 mp-1199930 NaHo(PO3)4 mp-1195468 Gd4Fe34C3 mp-1225869
48 NdCo9Si2 mp-1191853 Gd2Ni17 mp-580102 TbMn5Ge3 mp-623463
49 Ce2Si2Ni15 mp-1202894 Dy2Zn17 mp-570071 Nd2Ni12P5 mp-1210070
50 Y2Co17 mp-570718 Tb2Ni17 mp-569945 Pr4Fe29Si5 mp-1220120

Our embedding Ewald Sum Matrix Sine Coulomb Matrix

We compare the top-50 neighbours of the Sm2Co17 permanent magnet obtained by using our embedding and existing descriptors1. In the above lists, the
similarity of the R2M17 family, with different rare-earth metals R and transition metals M, was captured by all of the three methods. Our embedding further
captured another major permanent magnet family RM12, the candidate for parent compounds for next-generation permanent as the neighbours at No. 44–45.
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Table S3. The top-50 neighbours of Hg-1223 in comparison with latent vectors obtained via a surrogate task (total energy prediction).

No. Formula ID Formula ID Formula ID
Query Ba2Ca2Cu3HgO8 mp-22601 Ba2Ca2Cu3HgO8 mp-22601 Ba2Ca2Cu3HgO8 mp-22601

1 Ba2Ca3Cu4HgO10 mp-1228579 Ba6Ca6Cu9Hg3O25 mp-1228760 Ba6Ca6Cu9Hg3O25 mp-1228760
2 Ba2CaCu2HgO6 mp-6879 Ba2Ca3Cu4HgO10 mp-1228579 Ba4Ca4Cu6Hg2O17 mp-1228265
3 Ba6Ca6Cu9Hg3O25 mp-1228760 Ba2CaCu2HgO6 mp-6879 La21Fe8Sb7C12 mp-582023
4 Sr2CaCu2(BiO4)2 mp-1218930 Ba8Ca4Cu8Hg4O25 mp-1228371 La2BiN mp-1078349
5 Ba10Ca5Cu10Hg5O31 mp-1229139 Ba4Ca4Cu6Hg2O17 mp-1228265 La11(MnC6)3 mp-1195612
6 SrCa2Cu2(BiO4)2 mp-1208800 Ba10Ca5Cu10Hg5O31 mp-1229139 La21Mn8Sn7C12 mp-1201735
7 Ba8Ca4Cu8Hg4O25 mp-1228371 Ba6Ca3Cu6Hg3O19 mp-1228161 Ba6Ca6Tl5Cu9O29 mp-680433
8 Ba2Ca3Tl2(CuO3)4 mp-556574 Ba6Ca12Cu15Hg3O37 mp-1229082 CeS mp-20560
9 Ba2Mg3Tl2(WO3)4 mvc-129 Ba6Ca15Cu18Hg3O43 mp-1229281 Ba8Ca8Tl7(Cu4O13)3 mp-1204270

10 Ba2TlV2O7 mvc-2978 Ba4Ca8Cu11CO20 mp-1228570 Rb2P mp-1101799
11 Sr2YCu2(BiO4)2 mp-1208863 BaCa2Cu3O5 mp-1214453 Sr2CaCu2(BiO5)2 mp-1218932
12 Sr2LaCu2HgO6 mp-1208803 Ba2Ca3Tl2(CuO3)4 mp-556733 ZnAgF3 mp-998537
13 Ba2CaTl2(CuO4)2 mp-573069 Sr3La(CuO2)4 mp-1218623 Cs2MnCl4 mp-1025252
14 Ba4CaCu6(HgO8)2 mvc-15237 CaCuO2 mp-554775 Sr11(SiN5)2 mp-1246141
15 Ba4Ca4Cu6Hg2O17 mp-1228265 SrCa3(CuO3)2 mp-1218400 LiNdTiO4 mp-10520
16 Ba2AlTlCo2O7 mvc-2977 Ba3CaLa2Cu6O13 mp-1228590 Ba2CaCu2HgO6 mp-6879
17 Sr8Pr4Cu9(HgO8)3 mp-1218674 SrCaCuO3 mp-1218361 CeAl3Pt mp-1226648
18 Ba6Ca3Cu6Hg3O19 mp-1228161 Ba6Ca6Tl5Cu9O29 mp-680433 TlBSe3 mp-29959
19 Ba8Ca8Tl7(Cu4O13)3 mp-1204270 Ba8Ca8Tl7(Cu4O13)3 mp-1204270 RbLa2Ti2NbO10 mp-1219633
20 Ba4Ca4Tl3Cu6O19 mp-542197 Ba2Ca3TlCu4O11 mp-1228589 Ba4Ca4Tl3Cu6O19 mp-542197
21 Ba6Ca6Tl5Cu9O29 mp-680433 Ba2Pr(CuO2)3 mp-1214585 Gd3MnAlS7 mp-1191013
22 Ba2AlTlCo2O7 mp-1266279 Ba2Nd(CuO2)3 mp-614981 Nd3GaCoS7 mp-1192335
23 Ba2Ca2Tl2Ni3O10 mvc-3067 SrCa(CuO2)2 mp-1218417 Sr11(GeN5)2 mp-1245458
24 Ba2Ca2Tl2Cu3O10 mp-653154 Ba2Ca3Tl2(CuO3)4 mp-556574 Sr3RuN3 mp-1029750
25 Ba2Ca2Tl2Co3O10 mvc-3021 Sr2Ca2Ga(CuO3)3 mp-1209020 La21Mn8Sb7C12 mp-1203312
26 Sr2CaCu2(BiO4)2 mp-555855 Ba4Ca4Tl3Cu6O19 mp-542197 Rb2SbBr6 mp-568477
27 Ba4Tl2Cu2HgO10 mp-561182 Ba2Y(CuO2)3 mp-1021507 MnTlCuSe2 mp-1221565
28 Ba6Ca12Cu15Hg3O37 mp-1229082 Ba4Pr2Cu6O13 mp-1228176 BaTb2O4 mp-18258
29 BaCuReO5 mvc-7248 Sr8Pr4Cu9(HgO8)3 mp-1218674 Tl5NO5 mp-1101007
30 Ba2Ca3Tl2(FeO3)4 mvc-145 Ba8CaY3(CuO2)12 mp-1228323 LaNb2O7 mp-1079978
31 Sr10Cu5Bi10O29 mp-667638 Sr3Ca(CuO3)2 mp-1218473 TbOF mp-14093
32 Ba2Ca3TlCu4O11 mp-1228589 Sr16Cu8O23 mp-759634 SrNdMnO4 mp-1217982
33 Ba2Ca3Tl2(CuO3)4 mp-556733 Ca3Cu2(ClO2)2 mp-23095 LiEu4C3(IN2)3 mp-638276
34 La2B3Br mp-568985 Ba2Sm(CuO2)3 mp-622576 Yb2Be2GeO7 mp-1207637
35 BaTl(SbO3)2 mvc-10727 Ba2NdCu2HgO7 mp-1214587 NaNdTiO4 mp-20980
36 Sr10Cu5Bi10O29 mp-652781 Sr2CaCu2(BiO4)2 mp-1218930 Sr2EuCu2(BiO4)2 mp-1208972
37 Ba2Tl2Zn2Cr3O10 mvc-3164 Ba10Sm5(Cu5O11)3 mp-1229115 SrAgTeF mp-1080438
38 Ba2Ca2Tl2Fe3O10 mvc-3027 Ba2CuO3 mp-8790 Ba10BrN5Cl4 mp-1228725
39 Ba2Ti3Tl2O10 mvc-2939 Ba4Nd2Cu6O13 mp-1228184 Ba2Ca3Tl2(CuO3)4 mp-556574
40 Sr2TaAlCu2O7 mp-1251503 Ba3SrSm2(CuO2)6 mp-1228212 Ce4Cu3(SO)4 mp-1226848
41 Ba2Mg3Tl2(SnO3)4 mvc-10576 Sr9Nd3Cu12(PbO4)8 mp-1218827 AgCNO mp-561891
42 Sr2AlTlCo2O7 mp-1252241 Ba2CuC(NO)2 mp-1021669 Pr2BC mp-1078268
43 Ba2AlTlV2O7 mp-1265780 Sr6Pr3Cu6O17 mp-1218599 Sr3TiN3 mp-1245686
44 Ba2CaTl2(CuO4)2 mp-6885 Ca2CuO3 mp-5869 SrLaMnO4 mp-1218183
45 Sr2LaCu2(BiO4)2 mp-1209034 Ba2Ca2Tl2Cu3O10 mp-653154 La21Fe8Sn7C12 mp-607917
46 Ba2AlTlV2O7 mvc-3002 Sr4Cu2O7 mp-766217 La16Ni8O33 mp-867595
47 Ba2Mg3Tl2(FeO3)4 mvc-28 Ba6Sm3Al(Cu2O5)4 mp-1228395 La20Mn8Te7C12 mp-1223565
48 Sr2DyCu2(BiO4)2 mp-1209149 SrCuO2 mp-5787 Bi3PbWClO8 mp-1227592
49 Ba2CuHgO4 mp-6562 Ba4La2Cu6O13 mp-1228239 Sm10As8Au3O10 mp-1194552
50 Ba2Tl2W3O10 mvc-3144 BaSrSm(CuO2)3 mp-1227431 Rb2LaNb2ClO7 mp-1209483

Our embedding Crystal structure encoder XRD pattern encoder

Our embedding is compared with its two counterpart baseline methods through the neighbourhoods of the Hg-1223 superconductor. These baselines used
either our crystal-structure encoder or XRD pattern encoder to learn embeddings as latent vectors in the DNNs, which were trained to predict the total energy.
As also discussed in Tables 1, our embedding successfully captured high-Tc superconductors similar to Hg-1223. The majority of the two baseline
neighbourhood lists are also occupied by high-Tc superconductors. It is worth noting that our approach, using a self-supervised learning framework, achieves
embeddings comparable to those obtained using total energy labels, even though no annotations by ab initio calculations or experts. See also Table S4 for
another comparison.
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Table S4. The top-50 neighbours of LiCoO2 in comparison with latent vectors obtained via a surrogate task (total energy prediction).

No. Formula ID Formula ID Formula ID
Query LiCoO2 mp-22526 LiCoO2 mp-22526 LiCoO2 mp-22526

1 Li14MgCo13O28 mp-769537 Li14MgCo13O28 mp-769537 Li14MgCo13O28 mp-769537
2 Li4Co3NiO8 mp-867537 Li4Co3NiO8 mp-867537 Li9Co7O16 mp-1175469
3 Li3Fe(CoO3)2 mp-761602 Li2CoO2F mp-764063 Li9Co7O16 mp-1175381
4 Li3(CoO2)4 mp-850808 Li3MnCo3O8 mp-758163 Li20(CoO2)21 mp-532301
5 Li3MnCo3O8 mp-774219 Li3(CoO2)4 mp-850808 Li3(CoO2)4 mp-850808
6 Li20(CoO2)21 mp-532301 Li10Fe3Co7O20 mp-760848 CrCo3O8 mp-754623
7 Li3CrCo3O8 mp-849768 Li3MnCo3O8 mp-774219 Li2CoNi3O8 mp-752703
8 Li3MnCo3O8 mp-758163 Li20(CoO2)21 mp-532301 Li14Co13O28 mp-777836
9 Li8FeCo9O20 mp-764865 Li3Fe(CoO3)2 mp-761602 Li(NiO2)2 mp-774941

10 Li3Co2NiO6 mp-765538 Li4MgCo3O8 mp-754576 MnCo3O8 mp-773602
11 Li3CrCo3O8 mp-759149 Li8FeCo9O20 mp-764865 Li4Co3NiO8 mp-867537
12 Li3TiCo3O8 mp-757214 Li4FeCo3O8 mp-765603 Li7Co5O12 mp-1174196
13 Li4MgCo3O8 mp-754576 Li10FeCo9O20 mp-764262 Li4MgCo3O8 mp-754576
14 Li5Co2Ni3O10 mp-769553 Li20Co21O40 mp-685270 Li2FeCo3O8 mp-867710
15 Li(CoO2)2 mp-552024 Li14Co13O28 mp-777836 Li2(CoO2)3 mp-758539
16 Li14Co13O28 mp-777836 Li3Mn(CoO3)2 mp-761633 Li3MnCo3O8 mp-774219
17 Li3(NiO2)5 mp-762165 Li2(CoO2)3 mp-758539 Li4Co2Ni3O10 mp-778996
18 Li2CoO2F mp-764063 Li5Fe2Co3O10 mp-769566 Li8FeCo9O20 mp-764865
19 Li2(CoO2)3 mp-758539 Li7Co5O12 mp-771155 Li7Co5O12 mp-771155
20 Li5Fe2Co3O10 mp-769566 Li7Co5O12 mp-1174196 Co3NiO8 mp-752738
21 Li2CoNi3O8 mp-752703 Li4Mn3(CoO4)3 mp-755918 Li7Si2(NiO4)3 mp-756986
22 Li10Fe3Co7O20 mp-760848 Li3CrCo3O8 mp-849768 Li9Co7O16 mp-1175409
23 Li7Co5O12 mp-771155 Li2NbCo3O8 mp-757558 Li2VCo3O8 mp-754294
24 Li3(NiO2)4 mp-755972 Li4Mn3Co5O16 mp-754275 Li2CrCo3O8 mp-761748
25 Li9Ni15O28 mp-759153 Li2MnCo3O8 mp-761940 Li2FeCoO4 mp-1222775
26 Li20Co21O40 mp-685270 Li3TiCo3O8 mp-757214 LiAlO2 mp-8001
27 Li7(NiO2)11 mp-768079 Li2MnCo3O8 mp-757572 Li9Co7O16 mp-1175506
28 Li2(NiO2)3 mp-762391 Li9Co7O16 mp-1175469 Li7Ni5O12 mp-755638
29 Li4Co2Ni3O10 mp-778996 Ca(CoO2)2 mp-17544 MnCoO4 mp-752945
30 Li2Co3NiO8 mp-757851 Li3Co2NiO6 mp-765538 Mn3NiO8 mp-775810
31 LiCoNiO4 mp-754509 Li20Co21O40 mp-705640 Li9Ni15O28 mp-759153
32 Li4(NiO2)7 mp-774600 Li9Co7O16 mp-1175409 Li2VSi3O8 mp-766402
33 Li(CoO2)2 mp-774082 Li2VCo3O8 mp-757835 Li7Ni13O24 mp-758593
34 Li(CoO2)2 mp-752807 Li2(CoO2)3 mp-758725 Li(NiO2)2 mp-752531
35 Li8(NiO2)11 mp-758772 Li5Co3(NiO5)2 mp-755076 Li5Co2Ni3O10 mp-769553
36 Li3CoNi3O8 mp-774300 Li8Fe3Co7O20 mp-764985 Li3CrCo3O8 mp-849768
37 Li2CoNi3O8 mp-1178042 Li2VCo3O8 mp-754294 Li9Co7O16 mp-1175418
38 Li7(NiO2)8 mp-690528 Li2(CoO2)3 mp-705847 Mn3NiO8 mp-757044
39 Li10Co3Ni7O20 mp-769555 YHfRh2 mp-1097261 Li11Ni13O24 mp-758517
40 Li7Ni13O24 mp-758593 Li9Co7O16 mp-1175381 Li(NiO2)2 mp-25388
41 Li9Co7O16 mp-1175506 Li3V2(O2F)2 mp-764429 Li9Si2Ni5O16 mp-867679
42 Li3Cr(CoO3)2 mp-761831 YZrTc2 mp-1096721 Li5Fe2Co3O10 mp-769566
43 Li2Co3NiO8 mp-778768 Li3V2(O2F)2 mp-760200 Li10Fe3Co7O20 mp-760848
44 Li2FeCo3O8 mp-1177976 Li9Co7O16 mp-1175506 Li3(CoO2)4 mp-759191
45 Li4Co3(NiO4)3 mp-777850 Li3(CoO2)5 mp-774507 Li2Co3NiO8 mp-755696
46 Li3Al2CoO6 mp-1222591 Be(CoO2)2 mp-757006 Li7Ni5O12 mp-756913
47 Li(NiO2)2 mp-752531 VMoN3 mp-1246912 NiO2 mp-25210
48 LiFeO2 mp-19419 Li3CrCo3O8 mp-759149 Li10CoNi9O20 mp-759912
49 Li4AlNi3O8 mp-1222534 Li3Cr(CoO3)2 mp-761831 NiGe3O8 mp-543103
50 Li3CoNi3O8 mp-757871 Mg(CoO2)2 mp-756442 Li3Fe(CoO3)2 mp-761602

Our embedding Crystal structure encoder XRD pattern encoder

Our embedding is compared with its two counterpart baseline methods through the neighbourhoods of the LiCoO2 lithium-ion battery cathode. See Table S3
for baseline procedures. All three embeddings successfully captured materials of the layered family and lithium oxides similar to LiCoO2 (more discussed in
Table 2). Note that our embedding achieved comparable performance to baselines, although ours exploits only crystal structure information and does not
require manual annotations.
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Appendix B. Performance validation as metric learning
As mentioned in the Methods section, our training task for metric learning is essentially the retrieval across two data expressions.
That is, when a query embedding from one expression is given, we expect that its paired embedding is uniquely identified
among the database of embeddings from the other expression via the nearest-neighbour search. Therefore, when validating our
trained ML models, we evaluated the performance in terms of top-k retrieval accuracy, i.e., the probability of including the
requested embedding in the top-k nearest neighbours. We used the top-k accuracy with XRD pattern queries as the primary
evaluation, because the retrieval in this direction should be more difficult than in the other due to the information loss in
converting crystal structures to XRD patterns.

For model validation and hyperparameter tuning, we randomly split the dataset into training (64%), validation (16%), and
test subsets (20%). We tuned hyperparameters such as the DNN architectures, learning rate, batch size based on the retrieval
accuracy on the validation subset. Once appropriate hyperparameters were chosen, we trained our model on the whole dataset
and obtained the results reported in the main text.

Table S5 reports retrieval accuracies evaluated on the test set of 24,508 materials in terms of the top-1, top-5, and top-
10 metrics, comparing our final settings (bold type) with other hyperparameter settings. Notably, our model achieved the
remarkably high top-1 accuracy of 65.969%, considering its chance rate of 0.0041% (the probability by the random selection
among 24,508 materials). From this result we can conclude that our model successfully composed unified expressions of the
two complementary factors (the local structure and periodicity) of crystal structures.

Table S5. Retrieval accuracy evaluations on the test set (XRD pattern queries).

Settings Top-1 Top-5 Top-10
Proposed 65.969 97.977 99.768 ←dim1024, batch512
Embedding dimension 1024 65.969 97.977 99.768 ←batch size 512

512 60.491 96.260 99.274
256 62.437 96.965 99.404
128 62.090 97.724 99.710

Batch size 1024 66.467 97.810 99.706 ←embedding dim 1024
512 65.969 97.977 99.768
256 63.616 97.504 99.653
128 54.091 91.756 97.341

Retrieval accracy on test-set (%)

We evaluated the retrieval accuracy on the test set of 24,508 materials as an indicator for the success of training. In
the top row, we show the top-1, top-5, and top-10 retrieval accuracies by the proposed settings. Our top-1 score is
remarkably high, given the chance rate of 0.0041% (the probability by the random selection). From the second row, we
compare results of hyperparameter search, in which the proposed settings and best scores are highlighted.
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Appendix C. Performance validation as a materials descriptor
This appendix aims to provide more insight into characteristics of embeddings for interested readers. Particularly, we analyse
the performance of prediction of material properties using trained embeddings as input.

We trained DNNs with the proposed deep metric learning approach to export embeddings from materials data in Materials
Project. For the prediction tasks, we used 80% of the embeddings for training and the remaining 20% for testing. Random
forest21 was used as the machine learning model for the prediction, and four regression (density, total energy, bandgap,
magnetization) and one classification (space group) tasks were performed. As a baseline for comparison, we used the output of
a middle layer of CGCNN22 trained to predict total energy.

Although the proposed embedding was not designed to predict material properties, it competed with the baseline on the
prediction tasks of total energy and magnetisation, and excelled on the density and space group predictions (Fig. S1). The
density and space group predictions cannot be solved without information of crystal structures such as the unit cell size and
periodicity. These results indicate that multi-modal learning successfully led to embeddings that reflect both local structures
and periodicity of crystal structures.
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Figure S1. The prediction performance comparison of materials properties using various embeddings. We evaluated prediction performance for
materials properties using our embeddings and baseline (middle layer output of a DNN trained to predict total energy) as the materials features.
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Appendix D. Detailed network architectures
We summarise the network architectures for the crystal-structure encoder and the XRD pattern encoder in Table S6 and Table S7,
respectively. Our ML codes are also available at https://github.com/quantumbeam/materials-concept-learning. The GraphConv
operations in Table S6 are defined as

x′i = GraphConvi(x,e) = ∑
j∈N (i)

σ(zi jW f )⊙g(zi jWs) (S2)

where zi j = [xi,x j,ei j] denotes the concatenation of central node features, neighboring node features, and edge features. σ and
g denote the sigmoid and softplus, in which Batch Normalization is inserted before the activation functions.

Table S6. The network architecture of the crystal-structure encoder (CGCNN).

Layers Output shape
1 Input Atom features (64, N )
2 Edge features (41, E )
3 Initial transform Linear ([1]) (64, N )
4 Graph convolution GraphConv ([3], [2]) (64, N )
5 BatchNorm (64, N )
6 Add ([3]) (64, N )
7 Softplus (64, N )
8 Graph convolution GraphConv ([7], [2]) (64, N )
9 BatchNorm (64, N )

10 Add ([7]) (64, N )
11 Softplus (64, N )
12 Graph convolution GraphConv ([11], [2]) (64, N )
13 BatchNorm (64, N )
14 Add ([11]) (64, N )
15 Softplus (64, N )
16 Global pooling Mean ([15]) (64, 1)
17 Fully-connected layers Linear* 1024
18 Linear* 1024
19 Linear* 1024
20 Linear 1024

Our crystal-structure encoder borrows the network architecture from Crystal Graph Convolution Neural Network (CGCNN)22 (the top part of Fig. 2 (a)), a deep
neural network for the property prediction from crystal structures. Each crystal structure is represented as a set of atoms in the unit cell and their connections,
i.e., a graph of atoms. Each atom is represented as a 64-dimensional vector encoding its elemental properties such as the group and period numbers of the atom.
When multiple species occupy one atomic site (i.e., when structures have site mixing), a mixture of multiple atomic feature vectors is assigned. Edge features
are defined between atoms within a radius of 8 Å, and each is represented as a 41-dimensional vector encoding the distance between two atoms. These inputs
are encoded through three GraphConv layers. This architecture can encode a set of arbitrary number of unordered atoms into a fixed-size feature vector in a
fashion invariant to permutations of atoms and translations and rotations of the Cartesian coordinate system. This invariance is essential for our crystal-structure
inputs. The Linear* layers are followed by the batch normalisation23 and ReLU activation layers.

Table S7. The network architecture of the XRD pattern encoder (1D CNN).

Output shape
Input X-ray diffraction patterns (2theta 10˚-110˚, 0.02˚ step) (1, 5000)
1D convolution kernel size 50, stride 5, padding 10 (80, 995)
1D convolution kernel size 50, stride 5, padding 5 (80, 200)
Average pooling kernel size 3, stride 2 (80, 99)
1D convolution kernel size 3, stride 3, padding 0 (80, 33)
Average pooling kernel size 3, stride 3, padding 0 (80, 11)
Flatten 880
Fully-connected layers Linear 1024

Linear 1024
Linear without batch normalization and activation 1024

Layers

Our XRD pattern encoder uses a standard feed-forward 1D convolutional neural network architecture (the bottom part of Fig. 2 (a)) designed following existing
studies on XRD pattern encoding24. Similar to the crystal-structure encoder, each convolution/linear layer except for the final layer is followed by the batch
normalisation and ReLU activation layers. Although the previous work did not use the batch normalisation, it was essential to stabilise the training of our
model, as discussed in the Methods section.
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Appendix E. Re-discovery of superconductors in COD
We conducted an additional analysis on our embedding to show whether our method can re-discover superconductors that are
known by the literature but not included in the training data. This analysis simulates the screening of new material candidates
by an ML model built on a database of known materials.

We borrowed test materials from the Performance validation as a materials descriptor in the main text, which provides the
crystal structures of 469 superconductors collected from Crystallography Open Database (COD) (see also Data acquisition for
the concept classification tasks in the Methods section). These materials were further filtered to ensure there was no overlap
with the Materials Project (MP) dataset used to train our model, resulting in 357 superconductors. We then obtained the
embeddings of their crystal structures and mapped them in the t-SNE visualization in Fig. 3 (a), to see if they correlate with the
cluster of superconductors from MP.

Fig. S2 below compares the distributions of the embeddings from MP and COD. Despite the fact that the model does not
know these COD’s superconductors, they are most intensively concentrated around the superconductor cluster in the MP’s
training materials, suggesting that the model successfully re-discovered superconductors in COD.

Note here that all of the 357 superconductor materials from COD are structures having site mixing. On the other hand, our
model was trained on the MP dataset consisting of only structures without site mixing. Despite this difference between the
training (MP) and testing (COD) datasets, our model outputs reasonable embeddings for COD’s superconductor structures.
This is practically important because structures obtained through experiments often have site mixing.

Superconductors

(a) (b)

Figure S2. A comparison of superconductor clusters in MP and COD. a, A t-SNE visualisation of the embeddings of the MP dataset (the same as Fig. 3 (a)
in the main text) in which a superconductor cluster is identified via manual inspection. b, The distribution of superconductor materials registered in COD (red
points) overlaid on the materials of MP (gray points). Superconductors in COD are most intensively concentrated around the manually identified
superconductor cluster in MP (a).
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