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Supplementary material: A broad perspective on synaptic plasticity

A brief history of plasticity

The quest for understanding learning in human beings is a very old one, as the process of acquiring new skills
and knowledge was already a subject of debate among philosophers back in Ancient Greece where Aristotle
introduced the notion of the mind as a blank state (or tabula rasa) at birth that was then developed through
education [1]. It was in contrast to the idea of Plato, his teacher, who believed the mind was pre-formed in the
“heavens” then sent to earth to join the body. In modern times, the question of nature versus nurture is still being
debated, with the view that we are born without preconceptions and our brain is molded by experience proposed
by modern philosophers such as Locke [2], and the studies that emphasize the importance of pre-defined structure
in the nervous system and in neural networks, to guide and facilitate the learning process [3–5].

In the later half of the nineteenth century, learning and memory were linked for the first time to “junctions
between cells” by Bain [6], even before the discovery of the synapse. In 1890, the psychologist William James
postulated a mechanism for associative learning in the brain: “When two elementary brain-processes have been
active together or in immediate succession, one of them, on reoccurring, tends to propagate its excitement into
the other” [7]. In the same period, neuroanatomists discovered the two main components of the brain: neurons
and synapses. They postulated that the brain is composed of separate neurons [8], and that long-term memory
requires the growth of new connections between existing neurons [9]. These connections became known then as
“synapses” [10]. At the end of the nineteenth century, synapses were already thought to control and change the
flow of information in the brain, thus being the substrate of learning and memory [1].

The first half of the twentieth century confirmed this hypothesis by various studies on the chemical synapses
and the direction of information flow among neurons, going from the pre-synaptic axons to the post-synaptic
dendrites. Neural processing was associated to the integration of synaptic inputs in the soma, and the emission of
an output spike once a certain threshold was reached, propagating along the axon. Donald Hebb combined earlier
ideas and recent discoveries on learning and memory in his book “The Organization of Behavior”. Similarly to
the ideas of James 60 years earlier, Hebb published, in 1949, his formal postulates for the neural mechanisms of
learning and memory: “When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased” [11]. Although Hebb stated that this idea is old, strengthening
synapses (that is, increasing synaptic efficacy or weight) connecting co-active neurons has since been called
“Hebbian plasticity”. It is also called Long-Term Potentiation (LTP).

Even though Hebb wrote that “less strongly established memories would gradually disappear unless reinforced
through a slow “synaptic decay” [11], he did not provide an active mechanism for weakening synapses. Hence,
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the synaptic strengths or “weights” are unbounded and it is not possible to forget previously learned patterns
to learn new ones. The first solution proposed a few years later was to maintain the sum of synaptic weights
in a neuron constant [12]. In 1982, Oja proposed a Hebbian-like rule [13] that adds a “forgetting” parameter
and solves the stability problem with a form of local multiplicative normalization for synaptic weights. In the
same year, Bienenstock, Cooper, and Munro [14] proposed the Bienenstock Cooper Munro (BCM) learning rule
where during pre-synaptic stimulation, low-frequency activity of the post-synaptic neuron leads to Long-Term
Depression (LTD) while high-frequency activity would lead to LTP. This model was an important shift as it
introduced the so-called homo-synaptic LTD, where the plasticity was determined by the post-synaptic spike rate
with no requirement on the temporal order of spikes. The importance of the post-synaptic neuron in synaptic
plasticity was further demonstrated by showing how post-synaptic sub-threshold depolarization can determine
whether LTP or LTD occurs [15, 16].

Time is inherently present in any associative learning since it only relies on co-occurring events. McNaughton,
Douglas, and Goddard [17] were the first to experimentally explore the importance of the pre- and post-synaptic
spike timing in plasticity. Fifteen years later, Gerstner, Ritz, and van Hemmen [18] hypothesized that these
pre/post spike times contain more information for plasticity compared to spike rates. Their hypothesis would be
confirmed by experiments conducted by Stuart and Sakmann [19] who discovered that the post-synaptic spike
is back-propagating into the dendrites, as well as by Markram, Helm, and Sakmann [20] who showed that a
single spike leaves behind a Calcium trace of about 100ms which is propagated back into the dendrites. These
findings were highly influential in the field because they provided evidence that synapses have local access to the
timings of pre-synaptic and postsynaptic neurons spikes. In their subsequent experiments, Markram, Helm, and
Sakmann [20] provided additional evidence that precise timing is important in neocortical neurons: They showed
that using a pre/post pairing with a time difference of 10ms led to LTP, while using the same time difference
of 10ms in an inverted post/pre pairing led to LTD [21]. Larger time differences of 100ms did not lead to any
change in the synaptic weights. Almost concurrently, Bi and Poo [22] performed similar experiments and found
a 40ms coincidence time window using paired recordings. These experiments proved that in addition to mean
rates, also spike-timing matters. This phenomenon was later formulated in a learning rule named Spike-Timing
Dependent Plasticity (STDP) [23].

In this respect, the Hebbian learning formula proposed by Shatz [24] that “cells that fire together wire
together” could be misleading, as Hebb [11] postulate is directional: “axon of cell A is near enough to excite a
cell B”, which may be interpreted as implicitly time-dependent since cell A has to fire before cell B. On the other
hand, STDP had been later found to only partially explain more elaborate learning protocols, which showed
that while both LTP and LTD are compatible STDP at low frequencies, only LTP occurs at high frequencies
regardless of the temporal order of spikes [16]. As pair-based STDP models do not reproduce the frequency
dependence of synaptic plasticity, Pfister and Gerstner [25] proposed Triplet-based STDP (T-STDP) rule where
LTP and LTD depend on a combination of three pre- and post-synaptic spikes (either two pre- and one post or
one pre- and two post). Both pair-based and triplet-based STDP were then shown to be capable of reproducing
the BCM like behavior [26]. Furthermore, the same frequency dependent experiments [16] showed that the state
of the post-synaptic membrane voltage is important for driving LTP or LTD under the same pre/post timing
conditions, confirming previous studies on the role of the neuron membrane voltage in plasticity [15]. Therefore,
these recent findings supported computational plasticity models that depend on the arrival of the pre-synaptic
spike and the voltage of the postsynaptic membrane [27–29], and which were also compatible with the STDP
model. The more recent three-factor learning rules aim at bridging the gap between the different time scales of
learning, specifically from pre-post spike timings (milliseconds) to behavioral time scales (seconds) [30].

Today, after more than two millennia of questioning, experimenting and more recently modeling, synaptic
plasticity is still not fully understood and many questions remain unanswered. However, it is clear that multiple
forms of plasticity and time scales coexist in the synapse and in the whole brain [31]. They link to each other by
sharing locality as an essential computational principle.

Experimental perspective

Synaptic weights are correlated with various elements in biological synapses [32] such as the number of docked
vesicles in the pre-synaptic terminal [33], the area of the pre-synaptic active zone [34], the dendritic spine
head size [35, 36], the amount of released transmitters [37–39], the area of the post-synaptic density [40], and
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the number of AMPA receptors [41]. Synaptic plasticity is known to be heterogeneous in different types of
synapses [42, 43], and there is no unified experimental protocol to confront the different observations. Here we
present the experimental results that led to the bottom-up definition of multiple plasticity rules.

Spike-timing dependence. Multiple experiments have been performed to demonstrate the dependence of
plasticity on the exact pre- and post-synaptic neurons spike times [16, 21, 22]. From a computational point
of view, these experiments led to the proposal of the STDP learning rule [1, 42], and its variants, such as
T-STDP [25]. Typically in these experiments, a pre-synaptic neuron is driven to fire shortly before or shortly
after a postsynaptic one, by injecting a current pulse to the specific soma at the desired time. Specifically, these
pre-post and post-pre pairings are repeated for 50 to 100 times at a relatively low frequency of about 1Hz to
10Hz [44]. Experimental results reveal synaptic plasticity mechanisms that are sensitive to the difference in
spike times at the time scale of milliseconds [18]. LTP is observed when the pre-synaptic spike occurs within
10ms before the post-synaptic spike is produced, while LTD is observed when the order is reversed [21, 22].
In biology, this precise spike timing dependence could be supported by local processes in the synapses that
have access to both the timing information of pre-synaptic spikes and to the postsynaptic spike times, either by
sensing their local membrane voltage changes or by receiving large depolarizations caused by output spikes that
are back-propagated into the dendrite [19].

Post-synaptic membrane voltage dependence. Another feature of synaptic plasticity is its dependence on
the post-synaptic neuron membrane voltage [15]. To study this dependence, the pre-synaptic neuron is driven to
fire while the post-synaptic neuron is clamped to a fixed voltage. The clamped voltage level will determine the
outcome of the synaptic changes: If the voltage is only slightly above the resting potential of the neuron, then
LTD is observed while if it is higher, then LTP is observed [15, 45]. These experiments show that post-synaptic
spikes are not strictly necessary to induce long-term plasticity [46, 47]. Moreover, even in the presence of a
constant pre/post timing (10ms) at low frequencies (0.1Hz), the post-synaptic membrane voltage determines
whether LTP or LTD can be induced [16, 44]. These findings suggest that the post-synaptic membrane voltage
might be more important than the pre/post spike timing for synaptic plasticity.

Frequency dependence. While both spike-timing and post-synaptic membrane voltage dependence are
observed in experimental protocols when relatively low spike frequencies are used, at high frequencies LTP tends
to dominate over LTD regardless of precise spike timing [16]. This spike-rate dependence, which is correlated
with the Calcium concentration of the postsynaptic neuron [16], is captured by multiple learning rules such as
BCM [14] or the T-STDP [25] rule. In these rules, high spike rates produce a strong / rapid increase in Calcium
concentration that leads to LTP, while low spike rates produce a modest / slow increase in Calcium concentration
that decays over time and leads to LTD [48].

Theoretical perspective

Theoretical investigations of plasticity have yielded crucial insights in computational neuroscience. Here, we
summarize the essential theoretical and practical requirements for long-term synaptic plasticity.

Sensitivity to pre-post spikes correlations. Synaptic plasticity must adjust synaptic weights depending on
the correlation between pre- and post-synaptic neurons [11]. Depending on how information is encoded, this can
be achieved using spike times, spike rates, or both [49]. It is important to note that the objective behind the
detection of correlation is to detect causality which would ensure a better prediction [50]. Even if correlation
does not imply causality [49], correlation can be considered as a tangible trace of causality in learning.

Selectivity to different patterns. By associating local plasticity with a Winner-Take-All (WTA) network, it is
possible to create internal models of the probability distributions of the input patterns. This can be interpreted as
an approximate Expectation-Maximization algorithm for modeling the input data [51]. Recently, the combination
of STDP with WTA networks has been successfully used to solve a variety of pattern recognition problems in
both supervised [52] and unsupervised scenarios [53–56].
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Stability of synaptic memory. Long-term plasticity requires continuous adaptation to new patterns but it also
requires the retention of previously learned patterns. As any physical system has limited storage capacity, the
presentation of new experiences will continuously generate new memories that will eventually lead to saturation
of the capacity. When presenting new experiences, the stability (and retrieval) of old memories is a major
problem in Artificial Neural Networks (ANNs). When learning of new patterns leads to the complete corruption
or destruction of previously learned ones, then the network undergoes catastrophic forgetting [57, 58]. Both
catastrophic forgetting and continual learning are critical problems that need to be addresses for always-on neural
processing systems, including artificial embedded processors applied to solving edge-computing tasks. The main
challenge in always-on learning is not its resilience against time, but its resilience against ongoing activity [59].

Different strategies can be used to find a good balance between plasticity and stability. A first solution is to
introduce stochasticity in the learning process, for example by using Poisson distributed spike trains to represent
input signals to promote plasticity, while promoting stability using a bi-stable internal variable that slowly drives
the weight between one of two possible stable states [28]. As a result, only a few synapses will undergo a LTP
or LTD transition for a given input, to progressively learn new patterns without forgetting previously learned
patterns. A second solution is to have an intrinsic stop-learning mechanism to modulate learning and not change
synaptic weights if there is enough evidence that the current input pattern has already been learned.

Depending on the particular pattern recognition problem to be solved and the learning paradigm (offline/online),
specific properties can be more or less important.
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