Abstract: Fault diagnosis plays a crucial role to maintain healthy conditions in rotating machinery. In real industrial applications, a Machine Learning based Classifier (ML-C) analyses data from a current machinery condition to detect abnormal behaviours. Usually, this is achieved through a previous training of the ML-C model, under supervised learning; however, for new machinery conditions, the classifier is not able to correctly identify these new condition. This paper proposes a framework to detect new patterns of abnormal conditions in gearboxes, that could be associated to new faults. The framework relies on an algorithm to build evolving models in simultaneous scenarios of…classification and clustering. The design is inspired by the main principles of the K-means and the One Nearest Neighbour (1-NN) algorithms. A heuristic metric is defined to analyse the new discovered clusters; as a result, these new clusters can be labelled as new classes corresponding to new faulty patterns. Once a new pattern is identified, the associated data feeds a dedicated supervised classifier which is updated through a new training phase. The proposed framework is tested on data collected from a gearbox test bed under realistic conditions of faults. Experimental results show that the algorithm is able to discover new valuable knowledge than can be identified as new faulty classes.
Show more
Abstract: Gearboxes and bearings play an important role in industries for motion and torque transmission machines. Therefore, early diagnoses are sought to avoid unplanned shutdowns, catastrophic damage to the machine or human losses; additionally, an appropriate diagnosis contributes to increase productivity and reduce maintenance costs. This paper addresses a methodological framework for the diagnosis of multi-faults in rotating machinery through the use of features rankings. The classification uses K nearest neighbors and random forest, based on the information that comes from the measured vibration signal. Thirty features in time domain are calculated from the vibration signal, twenty-four features commonly used in…fault diagnosis in rotating machinery, and six features are used from the field of electromyography. Feature ranking methods such as ReliefF algorithm, Chi-Square, and Information Gain are used to select the ten most relevant features, the same ones that enter the classifiers. Five databases were used to validate the proposed methodological framework. The results show good accuracy in classification for the five databases; furthermore, in all the databases in the first ten features ranked by the three rankings methods are present at least two nonconventional features.
Show more
Keywords: Feature ranking, multi-fault diagnosis, rotating machinery, time features
Abstract: Usually, time series acquired from some measurement in a dynamical system are the main source of information about its internal structure and complex behavior. In this situation, trying to predict a future state or to classify internal features in the system becomes a challenging task that requires adequate conceptual and computational tools as well as appropriate datasets. A specially difficult case can be found in the problems framed under one-class learning. In an attempt to sidestep this issue, we present a machine learning methodology based in Reservoir Computing and Variational Inference. In our setting, the dynamical system generating the time…series is modeled by an Echo State Network (ESN), and the parameters of the ESN are defined by an expressive probability distribution which is represented as a Variational Autoencoder. As a proof of its applicability, we show some results obtained in the context of condition-based maintenance in rotating machinery, where vibration signals can be measured from the system, our goal is fault detection in helical gearboxes under realistic operating conditions. The results show that our model is able, after trained only with healthy conditions, to discriminate successfully between healthy and faulty conditions and overcome other classical methodologies.
Show more
Keywords: Dynamical system modeling, deep learning, reservoir computing, variational inference
Abstract: Bearings are one of the most omnipresent and vulnerable components in rotary machinery such as motors, generators, gearboxes, or wind turbines. The consequences of a bearing fault range from production losses to critical safety issues. To mitigate these consequences condition based maintenance is gaining momentum. This is based on a variety of fault diagnosis techniques where fuzzy clustering plays an important role as it can be used in fault detection, classification, and prognosis. A variety of clustering algorithms have been proposed and applied in this context. However, when the extensive literature on this topic is investigated, it is not clear…which clustering algorithm is the most suitable, if any. In an attempt to bridge this gap, in this study four representative fuzzy clustering algorithms are compared under the same experimental realistic conditions: fuzzy c-means (FCM), the Gustafson-Kessel algorithm, FN-DBSCAN, and FCMFP. The study considers only real-world bearing vibration data coming from both a benchmark data set (CWRU) and from a lab setup where interference between bearing faults can be studied. The comparison takes into account the quality of the generated partitions measured by the external quality (Rand and Adjusted Rand) indexes. The conclusions of the study are grounded in statistical tests of hypotheses.
Show more