Complex Systems 1 (1987) 453474

NP-Complete Problems in Cellular Automata

Frederic Green
Department of Mathematics and Computer Science, Clark University,
Worcester, MA 01610, USA

Abstract. An example of a cellular automaton (CA) is given in
which the following problems are NP-complete: (i) determining if a
given subconfiguration s can be generated after |s| time steps, (ii) de-
termining if a given subconfiguration s will recur after |s| time steps,
(iii) determining if a given temporal sequence of states s can be gen-
erated in |s| time steps. It is also found that the CA constructed has
an NP-hard limit language.

1. Introduction

Cellular automata (CAs) are examples of homogeneous systems of compo-
nents between which only local communication exists. There has recently
been a renewal of interest in CAs as paradigms for discrete dynamical sys-
tems as well as parallel computation (see [1]; for an extensive collection of
reprints and an annotated bibliography, see [2]). In reference (3], 2 num-
ber of open problems having to do with cellular automata were posed.
One of them is the question of how common NP-complete problems are
in cellular automata. The answer may have a significant bearing on our
practical ability to predict the outcome of various chaotic phenomena based
on computation. In addition, some of the practical difficulties of efficiently
programming parallel computers might be revealed [1]. To date, however,
there are no proven results in the literature on any NP-complete problems
in this area, let alone on how common they are. In this paper, we present
an example of a particular CA which has NP-complete problems associated
with it.

Most NP-complete problems [4] apparently deal with constructs con-
sisting of a large set of components having long-range connections between
them. For example, an instance of Hamilton path consists of a graph, the
nodes of which can be arbitrarily connected. Equally important is the lack
of regularity in the structure; in the graphical case, any constraints on a
problem which make the graph symmetric or homogeneous in some way
often tend to make the associated problem easier. Therefore, because of
their uniform construction, there is some intrinsic interest in examining the
nature of NP-complete problems associated with CAs.

© 1987 Complex Systems Publications, Inc.

454 Frederic Green

Informally, a CA (for our purposes) is a one-dimensional, two-way in-
finite array of cells. Each cell can be in one of a number of states. The
array is evolved in time by synchronously updating the state of each cell
according to a rule which depends on the value of a cell and its two nearest
neighbors. An infinite array of states at a given time is called a configu-
ration, and a finite array of contiguous states is called a sub-configuration.
We will see that there is a CA for which each of the following problems are
NP-complete:

1. CA Preimage: Given a subconfiguration of length K, is there a con-
figuration that could have led to it in K time steps?

2. CA Subconfiguration Recurrence: Given a subconfiguration of length
K, will it be the same K time steps later?

3. Temporal Sequence Preimage: Given a temporal sequence of K states
in a given cell, is there a subconfiguration that could have led to it in
K time steps?

Generalizations of problems 1 and 3 have previously been conjectured as
being NP-complete [3,5,6]. The generalizations simply ask the same ques-
tions, but with the number of time steps being independent of the size
of the input subconfiguration. As we shall see, it is not clear that these
generalizations are in NP. However, the results of this paper do prove that
these generalized versions are NP-hard. Both 1 and 3 have a direct bearing
on the problem of computing entropies [3]. Problem 2 has not been previ-
ously mentioned, and its NP-completeness is established as an interesting
by-product of the proof technique used for 1. The difficulty of problem 2
places limits on our ability to predict the outcome of a CA computation
on the basis of incomplete information, even when the active part of the
configuration is finite.

Another question raised in [3] is: what limit sets can CAs produce?
The limit set is essentially the set of configurations generable in infinite
time. Hurd [7] has constructed examples of CAs with strictly non-regular,
non-context-free, and non-recursively enumerable limit sets. The question
as to what classes of languages can be generated when they are classified
according to their computational complexity naturally arises. It is quite
possible that any set can be generated in the limit. Finding examples is,
however, nontrivial. It is found that the CA constructed in this paper has
an NP-hard limit set. In this case, this appears to be a direct consequence
of the NP-hardness of the preimage problem.

Previous work on computational complexity of CAs for the most part
deals with language recognition. There are many ways to define a language
recognized by a CA. One way is to specify a state, or set of states, to which
an input string must evolve in order to be included in the language. Such
characterizations are given in, for example, [8,9,10]. It is noted in [8] that
the set of languages recognized by bounded (i.e., finite) nondeterministic
CAs is the set of context-sensitive languages. This is true because it is

NP-Complete Problems in Cellular Automata 455

possible to simulate any linear bounded automaton with a bounded CA. In
fact, there are fixed deterministic linear bounded automata for which the
language acceptance problem is PSPACE-complete [4]. It follows immedi-
ately that there exists a particular deterministic bounded CA for which the
language recognition problem is PSPACE-complete.

In contrast, it is not at all clear how to prove results such as the
NP-completeness of the preimage problem for a particular CA. An NP-
completeness proof for a problem must provide either a generic reduction
of any language in NP to the problem of interest, or a polynomial time
reduction from a previously known NP-complete problem. To implement
the former strategy, it seems we must simulate any polynomial time com-
putation of any nondeterministic Turing machine with (for example) an
instance of CA preimage. This would require encoding the computation
of a nondeterministic Turing machine in the substring (as in the standard
proof of Cook’s theorem), the CA rules being such that the substring has
a preimage if and only if the Turing machine accepts in polynomial time.
This turns out to be prohibitively complicated, and leads to an enormous
number of states in the CA.

We are therefore faced with the simpler alternative of reducing from
a known NP-complete problem. However, here we also have a problem.
When an instance of an NP-complete problem is encoded in the substring,
once again the CA rules must be such that (for example) the substring has a
preimage if and only if the problem is a “yes”-instance of the problem (using
the terminology of [4]). The difficulty is that widely separated parts of the
substring must communicate with each other, and this has to be effected
in the inherently local CA rules. This communication problem is solved
conceptually by breaking the CA up into two coupled CAs, where states in
one of the CAs can move, while states in the other one are “stationary.”
This is similar to separating any computing device into its control part (e.g.,
a Turing machine’s finite control) and its output part (e.g., the tape of a
Turing machine). The difference with Turing machines is that we will take
advantage of the parallelism of CAs. Actually, a similar difficulty would
exist if one were trying to prove NP-completeness of a preimage problem
for Turing machines. Unfortunately, the NP-completeness of any preimage
problem for Turing machines is apparently not known, so it is necessary to
reduce from some other NP-complete problem. The known NP-complete
problem we use is 3SAT. The fact that there are three literals per clause
actually does not impose any restrictions on any of the problems, but it
makes the encoding process simpler.

In section 2, the basic definitions and notational conventions used through-
out the paper are set down. Section 3 contains the proof of three of the
main results: NP-completeness of the preimage and substring recurrence
problems and NP-hardness of the limit language. In section 4, the NP-
completeness of the temporal sequence preimage problem is proved. Section
5 discusses the implications of these results.

456 Frederic Green

2. Preliminaries

A cellular automaton (CA) is a pair (Q, §), where Q is a finite set of states,
and § : Q X @ x Q — Q is a transition function. (The definition of a CA
often includes a distinguished gy € @ called the quiescent state. Here, there
is no special reason to separate gy from the other states, so it is not included
in the definition.) A configuration of a CA at timet € Z,C® : Z - Q, is
an assignment of a unique state to each “cell”, where a cell is represented by
an integer. C*)(1),4 € Z, is the “state of cell ¢ at time £.” A configuration
at time ¢ uniquely determines a configuration at time £ + 1 as follows:

¢t = {(4,q)g = §(c¥(i — 1),c¥(3),c(i + 1)),i € Z}

The definition of § can be extended so that we may write the above more
compactly as C(t+1) = §(C(")). We will generally refer to C{?) as an initial
or starting configuration. A computation of a CA of length n is a sequence
of configurations C(®,c®, ... ¢V, If ¢ and ¢, ¢ > j, are two config-
urations in a computation, then we say that C'¢) computes C’U], and write
C® |+ ¢U), To specify that a configuration C, computes a configuration
Cj in t time steps (i.e., C, = 6*(C,)), we write C, F C;.

A string associated with a CA (Q,§) is an element of @*. We write
8 = 818283 ... 8 where |s| = k is the length of s, s; € @ forall 1 € {1...k},
and s; is referred to as the *! element of s. A configuration substring or
subconfiguration is a string s = §;8;...8; where s; = C® (3 — 5) for some
J,t and each ¢ € {1...k}. Such a string s is said to be a substring of
C®) occupying cells 1 — j through k — j. All strings we will encounter are
configuration substrings, so unless there is danger of confusion, “string” or
“substring” will henceforth mean “configuration substring.”

Let s(*) be a substring of C*) occupying cells I through k and s¢+?) be a
substring of C(*+?) occupying the same cells. As with configurations, we say
that s() computes 5(t?) in p steps and write s F? s¢2) if C) |2 C(t+9),

If X FX Y, where X and Y are both substrings or both configurations,
then X is said to be a K*-preimageof Y. If X and Y are strings, and X is a
substring of configuration C, then we will also refer to C as a K*"-preimage
of Y, and write C F¥ Y,

A finite CA is the same as a CA, but with a configuration C : [1.N] — Q
defined on a finite array [1..N] of cells. Finite CAs will be taken to have per-
iodic boundary conditions, i.e., C(*+1) SN) =§(CH(N-1),c)(N),Cct(1))
and C1)(1) = §(CH(N),Cc® (1), Cl¥)(2)).

For conceptual reasons, it is advantageous to introduce the notion of a
coupled pair of CAs (CPCA). A CPCA is a quadruple (@1Q3,6;,6;) where
@, and @, are finite sets of states, and

by 1 (Q1 % Q2) X (Q1 %X Q1) X (Q1 XQ2) = Q1
621 (Q1 X Q2) X (@1 X Q) X (Q1 X Q2) = Q2

NP-Complete Problems in Cellular Automata 457

are transition functions. A CPCA (Q,,Q3,8;,6;) is nothing more than a
CA (Q, 6) with @ = Q; X Q3 and § = &, x 6;. However, we will find it helpful
to think of a CPCA intuitively as two CAs, CA4(Q1,6;) and CA,(Q3,6)
which interact via the transition functions 6, and §;,. Configurations can
be defined in like manner for CA; and CA,; in a CPCA. We will denote
configurations in CA; by C}‘) : Z — Qq and in CA; by Cét) 1 Z — Q.
Computations, strings, and configuration substrings of either C'lm or C.‘(f)
are also defined in analogy to the CA case. In particular, we will find it
necessary to refer to computations of strings in CA; or CA,. Thus, if s,!t)
is a substring of C{") and s{"® is a substring of C*'”, (i = 1 or 2), then
we write i 2 s&P if ¢ 1» C*?). We also need some notation for
adjacent strings in CA; and CA,, that is, strings occupying corresponding
sets of cells. Substrings in CA; will be written above substrings in CA,.
For example,

815283 ...8;
alalel...8}

means that C{(3) = s,C(i +1) = ss,...C 1 + k — 1) = s, and
cP6) = 8,CP0+1) = &,...CG + k—1) = s,. If two states are
vertically aligned as above (e.g., sz and s}, s3 and s, etc.) they will always
be understood to be in corresponding cells of the CPCA. Hence, the position
of the first cell of a string (¢ in the above example) will be omitted if it is
irrelevant. Similar notation is introduced for overlapping strings, e.g.,

81 89 ...8;
I ! I)
8189 v Spi_q Sp

indicates that s, and s},_,, and s; and s, respectively occupy correspond-
ing cells. Cells not given values are irrelevant to the discussion. Neighboring
strings in CA; and CA, are denoted by

s s
f or

s '

S

the former indicating that the rightmost element of &' is in the cell imme-
diately to the left of the cell containing the leftmost element of s, and the
latter vice versa. There is one final notation introduced for CPCAs. In
the encodings that follow, there will be a “quiescent state” which we will
denote by an underscore, . Strings of quiescent states, when there is no
ambiguity, will be denoted by a continuous line. Thus, for example,

5152 ...k
5185...8}

458 Frederic Green

means that s; (in C{) is in the cell immediately to the left of the cell
containing s} (in C{?), and all the cells (in C{) corresponding to the s! (in
Cé‘)),i =1,...k, contain the quiescent state “_”.

Polynomial-time reductions will be denoted by «. Thus, if A and B
are languages over some alphabet T, A o B means that there is a function
f :+ E* — I* such that for any @ € E*, f(a) is computable in a time
polynomial in |a|, and ¢ € A if and only if f(a) € B. Regarding A and
B as decision problems, the definition of A o« B is the same, except to
replace “a € A” by “a is a yes-instance of A” and “f(a) € B” by “f(a) is
a yes-instance of B.”

The reduction will be from 3SAT, for which we introduce our conven-
tions now. A literal is a symbol in one of two finite sets, L = {ly,l3,...l}
or L = {I;,1;,...I,}. The overbar denotes negation. A truth assignment
7 is an m-tuple (A1, Az,...An) where A; € {I;,[;} for each i € {1...m}. A
clause ¢ is a finite set of literals. In the case of 3SAT, |c| = 3 for any clause
¢. A conjunctive normal form (CNF) formula -y is a finite set of n clauses.
A CNF formula ~ is said to be satisfiable if there is a truth assignment
such that for every clause ¢ € + there is at least one literal); € ¢ such that
we also have \; € 1.

Henceforth, m will denote the number of literals and n will denote the
number of clauses in a CNF formula.

3. The preimage problems and limit languages
The CA Preimage (CAP) problem is stated formally as follows:

CAP:
Given: A fixed CA (Q,6) and a configuration substring s.

Question: Is there a configuration substring s(® such that s(® ¥ s where
K = |s]?

A more general version of this problem has been mentioned in [3,5,6] and
will be referred to as “Generalized CA Preimage” (GCAP). As input to
GCAP, we are also given a number T, and the question is altered in that
we ask if there is an s(9 such that s(® FT s. The only difference is that the
number of time steps T is independent of the size of the string K = |s|.
It is argued in [3] that GCAP € NP, using the following line of reasoning:
Only the T cells to the right of 5() and T cells to the left of 5% can affect
s, because of the finite rate of propagation. Therefore, if we are given a
subconfiguration (of length K + 2T) including those extra 2T cells in the
“environment” of s(), we can verify that it leads to s{¥) = s by running our
CA for T time steps (see figure 1 and the proof below). Unfortunately, this
is not a polynomial time algorithm. Any reasonable encoding [4] for the
input T is O(log(T)), so the run time for the verification algorithm (O(T?)
on a sequential machine) is exponential in this input. Of course, if T' had a
unary encoding, the algorithm would be polynomial, and is therefore pseu-

NP-Complete Problems in Cellular Automata 459

< K+2T —
~(0)

-— K—i

Figure 1: Illustration of the fact that only the string s, of length
K + 2T, can affect s.

dopolynomial. Hence, it is not at all clear that GCAP is in NP. However,
if we restrict T to be K, there is then no numerical input to the problem,
and the verification turns out to be polynomial (O(K?)) in the length of
the input. Therefore, we have

Lemma 3.1. CAP € NP.

Proof: We must show that if we are given an s such that s© FX s
where K = |s|, we could verify that s ¥ s in a time polynomial in
K, which is the size of the input s. Let us write, as usual, C(® for the
configuration containing s(, and C¥) for the configuration containing s.
Then C© ¥ C¥), Suppose, without loss of generality, that CO)(3) = s{”
and C¥)(§) = s; for i = 1,2,... K. Clearly, any state C)(i) for 1 <i < K
is independent of any state C((;) for j < 0 or j > K + 1. By induction,
we can conclude that any state C¥)(7) for 1 < ¢ < K is independent of any
state CO(5) for j < —K+1 or j > 2K. Therefore, in verifying s -¥ s, we
need only compute with a finite CA using the rule § and starting with the
initial configuration C()(5) for —K +1 < j < 2K. Since the problem takes
a fixed CA as input, each computation of a new cell state, e.g. 6(q1,92,93),
takes O(1) time. This has to be done for 3K cells and K time steps, and
hence the time expended is O(K?). i

We now describe a CA for which we will find that CAP is NP-complete.
It should be re-emphasized that this is not part of the reduction 3SAT «
CAP, and once chosen, the CA will remain fixed. The CA (@, §) has states

Q = @ X Q, where
Q1= {-! #, l:?: 0, 1}

460 Frederic Green

Q2 = {—i #111?} Ov lal,ri'uluafusoas 18,011, lu}

and 4 is given in table 1. (Note only rules 1 through 11 apply for the
states we consider here, and rules 12 through 16 should be ignored for the
remainder of this section.) The functions IT, I, and U are defined below. We
will refer to the underscore “” as the “quiescent state.” The significance
of the s- and u-superscripts as well as the rules will become clear when
we describe how 3SAT oc CAP. Note that this CA has 84 states. It is
quite likely that CAs with many fewer states also have NP-complete CAP
problems, and it may be possible to find some of them by simulating the
one discussed here.

It will be helpful to regard this CA as a CPCA defined by (Q1, @2, 1,62)
where §; is the Q;-component of § = § x §. With this interpretation, the
proof strategy is as follows. The rules are designed so that all states in
CA, glide to the left at the rate of one cell per time step. States in CA,
will remain “stationary” although they may change by gaining or losing
a superscript (e.g., I* may become I, or 1 may become 1°, etc). Truth
assignments will be encoded as substrings of CA;, and CNF formulas will
be encoded as substrings of CA;. As a truth assignment of CA; passes over
a corresponding literal in CAj, if their truth values match, the encoding of
the literal in CA; will change so as to record the fact that that literal is
satisfied. The delicate part is designing the rules and encodings so that the
final string can be reached if and only if the CNF formula we started with
is satisfiable.

The reduction 3SAT oc CAP proceeds in stages. We start by specifying
the encoding scheme for literals. Recall that the alphabet for CA, (in which
the literal encodings reside) is @, = {_, #,/,1,1,0}. The encoding for literal
l; is written as

er(l;) = 1.6 P 60_. . pP

where b?) € {0,1} is the j*! bit in the binary representation of 7, and
k = [log; m] (not to be confused with the uppercase K which is the size of
the input to CAP). Similarly, ¢(%) = I..b{'.).bg").b_-(;)-. 2 ._bs:').el(l,-) (or &)
will be referred to as a literal encoding. The encoding of a truth assignment
7 is written e, (L, L):

e(L, L) = Ate(M)-a(ra)-... e An)#

where 7 = (A1, Az,... Am) and there are k quiescent states after the right-
most #. The special case of r = (l3,12,...l) is denoted by e,(L):

e.(L) = Aei(ly)-enlls)-. . . er(lm) H—

and plays an important role in our reduction. e.(L, L) is a truth assignment
encoding, and e, (L) is referred to as the all-true assignment. Note that in
both of them the left endmarker # has a “” preceding it, while the right

NP-Complete Problems in Cellular Automata 461

Rule Condition ' 62 Interpretation
1 q1 € Q; and qr CA,; states move to
(¢f #£1or gf # #) the left
2 g =+#and g =_ I(g;) -# in CA; makes s- and
and 2 EocUp u-states in CA, pure.
3 ¢ = # and ¢; € {1,0} Y(g2) 17 or O# in CA, propagates
and ¢f €0 s-states in CA; to left.
4 qf:la.ndqf=# l # in CA; makes ! in CA;
into an [
5 qe{l,l}and g1 =g ¥(g2) Matching I’s “satisfies”
the ! in CA,.
6 ¢F €0 and ¢; € {I,1} ¥(gs) s-superscript propagates
to the right if | is met.
T g €0 and ¢; € {1,0} and ¥Y(g2) s propagates to the right
(g1 € {-1,1} or g1 = q2) as long as state in CA; is
not a mismatch.
8 g2 € o0 and ¢ # ¢f U(g:) Bits do not match,
and ¢, ¢ff € {1,0} causing CA; bit to be
unsatisfied.
9 g2€pand gy €Eo II(g;) wu-states propagate left
leaving p-states behind.
10 gie{1%,0°}and gz € U(g;) u-states propagate left
until I(I) is met.
11 g2 € {I%,1%} T(g2) Make an {%(l“) into a
pure state.
12 g =3 $ $ in CA, moves right
13 g =8%8andgf € {#,}Uc A(gy) $ makes satisfied states
and gF # $ in CA, into left movers
14 g2=9%and ¢f € {#, }Uo _ $ “annihilates” other
states
15 g #$and g €A g¥ A-states move left
(except past §$)
16 g2 € Aand ¢f & A - A-states move left

Table 1: CA rules.

5((af> 7). (91, 92), 08, 03)) = (1((ar,a2), (g1, 22), (¢F, 03)),
&2((qF,97), (a1, 02), (g%, X))

is given above for all possible values of ¢*, ¢, and g. All rules
must be tried in the order given whenever § is computed. If two
different rules apply and yield different §’s, choose the rule with the
smaller number. A blank entry means that §; is unaffected by the
given condition. (Note that only rules 1 through 11 are relevant in
the CAP and CASR problems.)

462 Frederic Green

endmarker does not have a “” preceding it. This is because the left and
right endmarkers in CA; play different roles.

The encodings for CNF formulas reside in CA,, but they still use the al-
phabet @Q,. The encoding is expressed in terms of the formula’s constituent
literals. We encode the occurrence of literal [; as

e, (L) = 16 .. bl

(a literal occurrence encoding) where, again, bg,-"} is the 7%/ bit in the binary
representation of i. (The only difference with ¢(!;) is that there are no
intervening _’s). Suppose clause ~; contains the literals A, Az, and As. Then
we encode the clause as the string e.(v;) = e.(A1)eo(Az)e.(As). Finally, if
the CNF formula 4 = {v1,%2,.-.,7.}, We encode it as the string, e;(y) =
#-ec(n)-ec(v2)-ec(vs)----ec(v)- B

It is convenient to define = = {1,1,0,1},¢ = {I*,0°,0°,1%}, and p =
{1#,1%,0%,1"}, so that Q; = {#,-} Um U o U u. The states in 7 are called
pure states (or p-states), a state in o is called a satisfied state (s-state),
and a state in p is called an unsatisfied state (u-state). It is also convenient
to define functions which take a state from one of these sets to one of the
others by adding, eliminating, or changing a superscript. In particular,
define the three functions II, £, and U as follows:

II: Q; — = is defined so that I1(#*) = for any A€ 7UpUa,
¥ :Q, — o is defined so that £(8*) = 8° forany f*€nrUpUao,
U: Q; — p is defined so that U(§*) = " for any f* =nwrUpUo,

where z represents an s,u, or no superscript. II,E, and U have no ef-
fect on either # or _. We extend them to morphisms over @Q3: For
any string s = 81,82...8 in Q3, let TI(s) = II(s1)TI(sz)...TI(sk),E(s) =
E(s1)Z(sz) ... B(sk), and U(s) = U(s;)U(sz) ... U(sk)-

We are finally in a position to describe the instance of CAP to which
an instance of 3SAT gets transformed. Let 3SAT be specified by the CNF
formula ~, and the sets of literals L and L. The instance of CAP, described
with the CA that has been specified, is then given by the configuration
substring,

S = e(L)
o) &4
Note:

1. All the cells of S in CA; are quiescent if they correspond to cells in
Z(es()-

2. The cells in CA; corresponding to the cells in e,(L) are left unspeci-
fied, and their values are irrelevant to the argument.

NP-Complete Problems in Cellular Automata 463

3. The leftmost state of L(ey(7)) is in the cell immediately to the right
of the cell containing the rightmost state of e,(L).

The main result of this section, which establishes the NP-completeness
of CAP, is that S has a K*M-preimage (where K = |e,(L)| + |Z(es(7))]
= |8|) if and only if « is satisfiable. We must, of course, first establish
that the reduction 3SAT o CAP can be done in polynomial time. But
this is obvious. The instance of CAP, represented by S, is simply a rea-
sonable encoding scheme for 3SAT. S consists of a concise listing of the
literals, e,(L), and of the formula, T(e;(v)) (from which e;(y) can easily
be recovered in O(n - log(m)) time by applying II to each element of the
string, although this is not really necessary). To the extent that reasonable
encoding schemes are related by polynomial time transformations, we have

Lemma 3.2. The reduction 3SAT oc CAP as described above can be exe-
cuted in a time polynomial in m and n.

The following three lemmas comprise the rest of the proof that CAP is
NP-complete.

Lemma 3.3. If S, given by equation (3.1), has a K*™'-preimage specified
by some configuration C®), then there must be at least one such C©) which
contains the string,

S(O) = [(L, E)
er(7)

(3.2)

where 7' is some truth assignment, e;(7y) occupies the same cells as the
Z(es(7)) of S, and K = |es()| + |e-(L, L)|.

Proof: Rule 1 in table 1 says that all states in CA; propagate to the left
at the rate of one cell per time step. The only other way in which states in
CA, are altered is via the left endmarker, #, in CA; (rule 4). The sole effect
of the # in CA; on states in CA; is to change I’s to I’s. Therefore, the e, (L)
of S must have originated as a similar string in C(9), shifted over K cells to
the right. The only possible difference is that it may have started as some
other truth assignment e, (L,L). This is true provided the endmarker in
CA, remains unchanged. But according to rules 1 through 11 in table 1, the
only way a state in CA, can change is for some state in 7, ¢, or u to change
(or gain or lose) a superscript. Therefore, the only possible preimage of any
state & € Z(ez(n)) is &,1I(€), or U(£). Since # cannot have a superscript,
its only possible preimage in CA; is itself. Furthermore, we see that the
only difference between X(es(7y)) and its K™-preimage is that some of its
elements may have originally been p-states or u-states instead of s-states.
Note, however, that rule 2 dictates that the leftmost # of e;(L, L) causes
all s-states or u-states in CA, to become p-states as it passes them by. This
occurs for any state ¢' in the K*'-preimage of £(e;(~)) before any state in

464 Frederic Green

CA,; to the right of the # in e.(L, L) has had a chance to affect £'. Hence,
we may assume without loss of generality that all of the K*'-preimages of
states in E(es(7)) can start out as pure states, i.e., that the K**-preimage
of Z(ep(7)), if it exists, is ep(y). B

Lemma 3.4. Let S be given by equation (3.1), and suppose the v from
which we constructed S is satisfiable. Then S has a K*'-preimage, where
K=]5

Proof: Suppose ~ is satisfiable but that S does not have a K*-preimage.
We will contradict this by constructing a K'P-preimage from the fact that
~ is satisfiable. In fact, let C(®) be a configuration which contains the string
5 given in equation (3.2), where 7' is a satisfying truth assignment of ~.
It will now be demonstrated that C{® ¥ §, thus proving the lemma.

The rules are such that the string e(I;), as it passes by the string e,(l;),
causes all states in e,(l;) to become satisfied states. More precisely, if e/(I;)
is a substring of e,(L, L), then e,(l;) F¥ Z(e,(})). To see this, first observe
that

€] ([.‘)_ I‘j Eg(l,') =
eo(k) (e, (1))

where 7 = |e,(l;)|- Initially, in the above computation, the leftmost states
of e;(l;) and e,(l;) are in the same cell, and after j steps the quiescent state
- (which trails (l;)) and the rightmost state of £(e,(l;)) are in the same
cell. This can be proven by induction on the number of time steps, using
rules 1, 5, and 7. Intuitively, the rules work in this case by propagating
s-states to the right as long as the characters in ¢/(/;) and e,(/;) match. It
is best to give an illustration at this point, for ¢(l;) and e,(l;), in the case
of m = 2:

1110 1.0 1.1.0. L1.9:.
- - F
{10 I°10 'r’o 1’1°o0°

In order to establish that e,(!;) F¥ Z(e, (%)), we must still show that no
states to the right of €;(l;) subsequently change the s-states in £(e,(l;)). The
only rules in which an s-state can be altered are 2, 8, and 10. However, rule
2 only applies for the left endmarker of e,+(L, L), which has already bypassed
€,(l;). The right endmarker (also #) of e,1(L, L) has a non-quiescent state
immediately to its left, so that rule 2 does not apply for it. Rule 10 is
invoked only if the state immediately to the right of a CA; cell is 1% or QY.
However, once (e, (l;)) is generated, this cannot be true for any element
of E(e,(l)). This is because the state immediately to the right of X(e,(l:))
cannot be in {1%,0"}, so that by induction rule 10 leaves X(e,(l;)) intact.
Rule 8 is invoked for a given cell only if the cell immediately to its right
contains a 1 or 0 in CA;. However, we can argue as we did for rule 10

NP-Complete Problems in Cellular Automata 465

that rule 8 will not apply to any state in E(e,(l;)) once it is generated.
Hence, we have that e,(l;) F* Z(e,(L)) if e(l;) is a substring of e (L, L).
The same is true of negated literals, i.e., if (J;) is a substring of e/(L, L),
then e,(I;) F¥ Z(e,(I;)). In other words, if a literal is “true” according to
the truth assignment, its encoding in the formula is made “true” by an
application of .

Now that we have shown that true literals get “satisfied”, we must
show that a clause gets satisfied if it contains a true literal. That is, it
is necessary to show that if e,(l;) is a substring of e.(7y;) and if ¢(l;) is
a substring of e (L, L), then e (v;) F¥ Z(e.(7;)). This follows from the
preceding argument and rules 3, 6, and 7. By the preceding argument,
eo(li) F¥ Z(e.(l:)). We consider the fate of the clause string containing
2(es(l;)) after the right endmarker of e.+(L,L) has reached the leftmost
state of £(e,(l;)). Since the right # of e, (L, L) always has a 1 or 0 to its
left, rule 3 applies and any state in CA; in the same cell as the # becomes
an s-state if there is an s-state to its right. Hence, the s-states propagate
to the left (along with the # in CA;) until a quiescent or # state is reached
in CA;. Z(e,(l;)) similarly infects any pure states to its right in the same
clause string, by rules 6 and 7 (recall that there are at least |es(y)| + k
quiescent states to the right of the rightmost endmarker in eq(L, L), so
that s-states will be allowed to propagate to the right).

The same argument holds for negated literals: if e.(v;) contains e,(;)
and e, (L, L) contains ¢/(%;), then e.(v;) H¥ Z(e.(v;)). But since 7' is a
satisfying truth assignment, each e.(v;) contains a e,(I;) (resp. e,(I;)) such
that e(l;) (resp. e(l)) is in eqs(L,L). Thus, e.(y;) F* (e.(v;)) for all
7 €{1,2,...n}, so that e;(v) FX Z(e;(v)).

Finally, note that as the string e, (L, L) passes the left endmarker # of
CA,, each I becomes an ! by rule 4. Thus, by time K, e,/(L, L) has changed
into the all-true assignment e,(L). But, this establishes lemma 3.4 since we
have shown that C© X 5. B

Lemma 3.5. Suppose S, given by equation (3.1), has a K'*-preimage,
where K = |S|. The « from which we constructed S is then satisfiable.

Proof: By the proof of lemma 3.3, the only possible K*-preimages C(©
of S must contain an S(® of the form given in equation (3.2), or can be
obtained from (3.2) by changing any number of the pure states in e;(7y) to
s-states or u-states. However, the left endmarker of e,:(L, L) makes these
states pure, so any initial s- or u-states in S(°) are irrelevant in determining
S. Hence, we can exhaust all candidate K'"-preimages of S by considering
only those C(©)’s containing 5(© as given in equation (3.2).

Now suppose « is not satisfiable. Then there is no r' which satisfies .
Consider all possible strings S given by equation (3.2), which differ only
in the choice of 7'. We will demonstrate that for no such S contained in
€ do we have C(©) X S, contradicting the assumption of lemma 3.5.

Since no 7' satisfies -y, for any 7' there is at least one clause ~y; such that
no literal in «; is also in 7', For a given 7' consider such a «;. It is now

466 Frederic Green

argued that e,(~y;) F e.(v;). For this, it is essential to show first that for
any i # 1,
8;([()_81 (‘.’4.1) |‘K E;(I,')l_ez(l.q.l) eo(l,-r)leo(l;r) (3.3)

where k = |e;(l;)|. This makes use of rules 1, 5, 7, 8, 9, 10, and 11. Before
demonstrating this, it helps to give an example:

11.6. l1.0. 110 1.0

F b F
111 11 11 A0 b
140, . 350,
F F
111 11

In the above computation, the second substring results from rule 5, the
third from rule 7, the fourth from rule 8, the fifth from rules 9 and 10, and
the sixth from rule 11. (The states to the right of /_1.0_ cannot affect the
resulting /11 in CA, until the next time step.)

The only way of producing an s-state if there are no neighboring s-states
is through rule 5. (We will find, by induction, that after any computation
of the form (3.3), there will be no neighboring s-states.) Once an s-state is
created in e,(l), it propagates to the right (by rule 7) as long as the binary
expansions of 1 and 1 are the same (i.e., they “match”). That is, starting
with

16 . 50
1Y | pl)
we find
1668 bl et pepdeple b;")*b;‘j; bl

if and only if bf) = b") for all r from 1 through p. However, since i # ',
there is an r such that b{) # b("'), Then, by rule 8, b,(.‘_)’l becomes U(bE‘_)al =
b,(.'l'; Thus,

5 o) e geelnle el L o)
and the s-states cease propagating to the right. Furthermore, by rules 9
and 10, u-states propagate to the left up to the !, which then becomes a
p-state by rule 11:

IS S ol 1 N

NP-Complete Problems in Cellular Automata 467

Since |e;(l;)| = 2k+1 > 2r +1, this occurs before the rightmost element
of ¢/(l;) has passed the cell to the left of e,(l#). Hence, in the time during
which e;(l;) scans past e,(l), no states to the right of e;(l;) have a chance
to create any new s-states, and e,(lis) returns to its original form. Since
no new s-states are created, we conclude that the next literal assignment
string, €;(li+1), or endmarker #, that bypasses e,(l;#) cannot create new
s-states except via rule 5. Thus, when (or if) the matching process starts
again, there will be no s-states in the neighborhood of the leftmost ! of
€,(l). By induction, this continues to be the case until time K.

Since none of the literal strings in e.(7;) are ever completely satisfied,
all s-states in it are erased and we find e.(7;) F¥ e.(7;) as claimed.

We have shown that for any 7', there is at least one «; € « such that
e:(7;) F¥ e.(7;). But this means that the substring in C(Kl) corresponding
to es(vy) cannot be I(es(v)) for any 7', i.e., that S cannot be reached in
K time steps for any r'. This contradicts our assumption that S has a
K*"-preimage, so 4 must be satisfiable. B

From lemmas 3.4 and 3.5, we conclude that S has a K*M-preimage if
and only if + is satisfiable. From this and lemmas 3.1 and 3.2, we conclude

Theorem 3.1. CAP, for the CA described in this section, is NP-complete.

In addition, since CAP is a special case of GCAP described at the beginning
of this section, we immediately have

Corollary 3.1. GCAP, for the CA described in this section, is NP-hard.

Further note that the proof of theorem 3.1 can be applied to a finite CA
whose size is equal to the size K of the input string S. Because of the
periodic boundary conditions of a finite CA, the e, (L, L) which is in the
initial configuration that computes S occupies the same cells as the final
e;(L), K time steps later. Hence, we have

Corollary 3.2. CAP, defined for a finite CA in which the input S com-
prises an entire configuration, is NP-complete for the CA defined in this
section.

We next turn our attention to the CA Subconfiguration Recurrence
(CASR) problem, stated formally as follows:

CASR:
Given: A fixed CA (Q,8) and a configuration substring s.
Question: Is it possible to have s F¥ s, where K = |s|?

The proof of theorem 3.1 can be used almost without change to prove
the following.

Theorem 3.2. CASR is NP-complete.

468 Frederic Green

Proof: If we are given some initial configuration C(®) containing s, we can
easily check if C® FX s using only the K cells to the left and the K cells
to the right of s. As in lemma 3.1, this requires O(K?) time, so CASR €
NP.

We now show that 3SAT o« CASR using the CA introduced in this sec-
tion. Simply set s = S, where S is given by equation (3.1). The reduction
is clearly polynomial time in m and n.

Now, if the 4 from which S is constructed is satisfiable, then S F¥ S.
For suppose that ~ is satisfiable but it is not true that § F¥ S for any
choice of C(®) which contains S. We contradict this (as in lemma 3.4) by
constructing a C such that C(©) FX S. Choose C(® to contain the string,

e(L) ‘ es(L, L)

(3.4)

E(es(7))

where 7' is a satisfying truth assignment. Then the e,(L) on the left moves
to the left and has no effect on the string Z(es(<y)). Furthermore, the s-
states in I(e;(v)) are erased by the left endmarker of e,(L, L) and do not
survive until time K. However, because 7' is a satisfying truth assignment,
we nevertheless have, by the proof of lemma 3.4, that £(es()) H* Z(ef(7)),
so that C(O) X g,

Now suppose S ¥ S. Then 1 is satisfiable. For suppose it isn’t. Then
no 7' is a satisfying truth assignment. But by the proof of lemma 3.3, we
lose no generality by assuming that the only way we can end up with the
string S in K steps is by starting out with a substring of the form given in
(3.4) for some 7'. But since for any 7' there is at least one clause which is
not satisfied, we do not have Z(e;(7)) H* Z(es(7)) for any such 7', by the
proof of lemma 3.5. Therefore, we cannot have § ¥ S, a contradiction.
Thus, ~ is satisfiable if and only if S F¥ 5. B

We conclude this section with the observation that the limit language
generated by the CA defined here is NP-hard. Before doing this, we must
specify what is meant by the language generated by a CA. Let us denote
the set of all possible configurations by (1. Then, the set of configurations
generated by CA (Q,) in t time steps is defined by 6*(1) = {C®|C®) =
§*(C),C € N1}. The language generated in t steps by CA (Q,6) is defined
as

Qf = ni_,6'(N)

and the limit language is 0° = lim;_ 1*. We also find it convenient
to define the set of generable substrings in t time steps, which is the set
of substrings of configurations in 02* : T* = {s|s is a substring of some
C € N'}. T* is thus the set of strings which have p*™-preimages for all
p < t. The limit substring language generated by a CA is I'® = lim, I
It has been shown [5] that (1 (and also T*), for any fixed ¢, is a regular
language. Empirical results indicate that for many CAs the complexity
of the regular languages (1!, as measured by the minimal finite automata

NP-Complete Problems in Cellular Automata 469

required to recognize them, increase with ¢. This suggests that the limit
languages, while they can be regular, are more often not regular languages.
In fact, CAs have been constructed in which the limit languages are strictly
non-regular, non-context-free, and non-recursively enumerable [7]. In this
paper, we have an example of a CA for which the limit language is NP-hard.

Theorem 3.3. (1 is NP-hard.

Proof: Consider any finite substring s. We can make it into a configuration
by concatenating an infinite number of quiescent states to its left and right.
Since any substring can be so extended, it follows that I* o« f1* for any .
Therefore, ' o« 1. We claim that I'*® is an NP-hard language. Since
1*° therefore is also NP-hard, the theorem will be proved.

By lemmas 3.4 and 3.5, I'! contains strings of the form S given in equa-
tion (3.1), where |S| = ¢, if and only if the ~y from which S is constructed is
satisfiable. But I also contains S’s of the form (3.1) where |S| < ¢ if and
only if v is satisfiable. The latter is easy to see, since S has a t*"-preimage
if and only if it also has a p*P-preimage for any p > t. Such a preimage can
be constructed from the #"-preimage of S (which is of the form given in
equation (3.2)) by displacing the e(L, L) in its t*-preimage p — ¢ cells to
the right. By induction we can then conclude that I'*® contains any S if
and only if v is satisfiable. That is, 3SAT o« I'*°, so that I'*® is NP-hard. B

4. The temporal sequence problem

A temporal sequence is a sequence of states in one given cell. We will use
the same notational conventions for temporal sequences as for substrings.
A temporal sequence W = W, W, ... Wy is said to be computed by a con-
figuration C(© in T time steps if and only if there is some cell ¢ such that
c(3) = W;,CO(4) = W3,...CT) (i) = Wr, where CO |- ¢ |- @)
CT), If there is a C(® which computes W in K time steps, C(® is said
to be a K*'-preimage of W. As with substrings, we need only consider a
substring S© of C® in order to determine if C®) computes some tempo-
ral sequence W. The CA Temporal Sequence Preimage problem is stated
formally as follows (resisting the temptation to refer to it as “TSP”, it is
abbreviated as “CATS”).

CATS:

Given: A fixed CA (Q,6) and a temporal sequence w.

Question: Is there a configuration substring s(°) which computes w in K
time steps, where K = |w|?

The proof of the following sufficiently resembles the proof of lemma 3.1 that
it is omitted.

Lemma 4.1. CATS € NP.

470 Frederic Green

The CA for which CATS is NP-complete is an extension of the CA used in
section 3. The set of states Q; is the same as before, but now we take

Q:={,#,3}urUupUocUA

where 7, u, and o are defined as in section 3, and
A= IR 15 15 05

The additional rules needed are given by rules 12 through 16 of table 1.
Analogously to II, £ and U we define a function A: @, — A so that A(8*) =
BE for any B € m and A(B) = B for 8 € {#,-}. Its domain is similarly
extended to @3. Note that there are now 114 states.

Again, it is helpful to think in terms of a CPCA. The additional rules
allow states in CA, to propagate. States in A propagate to the left, and the
one state that propagates to the right in CA; is $. The proof strategy is
basically to use the proof of theorem 3.1 to produce a substring S which has
an |S|*-preimage if and only if the formula from which it is constructed is
satisfiable. Each state in the part of S representing literals (e,(L)) passes
through a particular cell that is used to contain the temporal sequence
W. The purpose of the § is to dig into the part of S representing the
satisfied formula Z(es(v)) and move all of the states in it to the left, thus
“projecting” it along the time axis, in the same cell that the sequence e, (L)
passed through (see figure 2).

Once again, we reduce 3SAT to CATS. Literals are encoded exactly
as before (although now, they must be understood to be sequences). We
define a new formula encoding as follows: e}(7) is the same as A(e/(7)),
except that there is one extra “” preceding each non-quiescent symbol
in A(es(v)). For example, if es(7) starts out as #_110[11100_111...,e%(~)
starts out as # _ _I¥_1%_0F_JF_1%_1%_1*_o%_o%__[*_1%*_1%.... From any
instance of 3SAT, we write the sequence W as

W= ___ _e(L)
$ef(7)

where, defining N = |ey(L)| and M = |e,(L)| (so [W| = 3N + M), there
are N quiescent states before the e.(L) and 2N quiescent states after it.
As in the case of CAP, this is trivially a polynomial time transformation.
Without loss of generality, assume the sequence W occurs in cell 0. Thus,
the last symbol in e,(L) and the $ both appear in cell 0 at time N + M.
Also, note that any states that appear in cell 0 in CA; before time N + M
are irrelevant to the argument.

The main result which allows us to use the proof of theorem 3.1 is as
follows.

Lemma 4.2. W in cell 0 has a [W|™-preimage if and only if

NP-Complete Problems in Cellular Automata

471

\
aE. T

\

1
I
o =i :
> s -]
'p' _f’ 1 :
T e, ! I .
$\I T 1 =
TN] I
e ' : Z(er (7))
Y i 1
N | I
Y 1 I
N 1 1
A | I
N 1
~ I
P4 I
V4 1
/ 1
7/ I
Fd 1
7’ 1
/ N
J
7’
s
/s
s
s
”
e
4
”
| 1s

Figure 2: Illustration for theorem 4.1.

472 Frederic Green

S= ___e(L)
$ef(v)
is a substring at time N + M, where as in W, there are N quiescent states

before the e (L) and 2N quiescent states after it, and the $ in S is in cell
0.

Proof: Suppose S is a substring at time N + M with the $ in cell 0. Since
the e,(L) is to the left of the endmarker in L(es()), we can use rule 1 in
reverse to conclude that the first N + M states in W are correctly given.
Now by rules 12 and 13 the $ in CA; moves to the right, changing each
state in L(ey()) into a left-moving state. Because of the 2N ’s trailing
e;(L), no states to the right of e,(L) can affect any state in CA;, until the
$ has passed the N cells containing L(ey(7)) at time N + M. Therefore,
by rule 13, every state in X(e;(L)) becomes a left mover, which, by rules
15 and 16, passes through cell 0 every other time step after time N + M.
The resulting sequence in cell 0 is W.

Conversely, suppose W has a |W|*-preimage and is the temporal se-
quence in cell 0. We can now work forward with rule 1 to deduce that
the first N + M states of S must be as they are given. Then suppose the
remaining 2N states are not as given. This obviously cannot be the case for
the states in CA;, since by rule 1 any other state than “_” would propagate
to cell O before time 3N + M, but in fact no such states appear in cell 0.
Now suppose in CA; we have something other than £(es(v)). If any of the
states are not s-states, then by rules 12, 14, and 15 these states never make
it to cell 0. Therefore, S must be a substring of CV+M), with its $ in cell
0.1

Theorem 4.1. CATS is NP-complete.

Proof: From lemma 4.2, W has a K*'-preimage (K = |W| = 3N + M) if
and only if S is a substring at time N + M. But S is a substring at time
N + M if and only if it has an N 4+ M*-preimage, which in turn is true (by
the proof of theorem 3.1) if and only if v is satisfiable. Therefore, W has
a K'M-preimage if and only if is satisfiable. This plus lemma 4.1 proves
the theorem. B

5. Discussion

We have seen that it is possible in principle to construct a CA for which the
preimage, recurrence, and temporal sequence problems are NP-complete,
and for which the limit language is NP-hard, but the CA that is constructed
is quite complicated. It is, however, quite likely that much simpler CAs can
be constructed with similar properties. What has been accomplished here
is a starting point for further investigations of the questions raised in the
introduction. Now that at least one CA is known with these properties, it
should be easier to find others.

NP-Complete Problems in Cellular Automata 473

An interesting new question arises regarding the increase in complexity
as a function of time that was observed in many CAs in [5]. In particular,
consider the sequence of languages I'* whose limit forms the limit language
I'®. Because I'® is NP-hard, the computational complexity of I'* increases
as a superpolynomial function of ¢ provided (as is universally believed) P
NP. But it was noted in [5] that I'! is a regular language for any fixed t.
Furthermore, it was conjectured in [5] that the regular language complexity
of I, as measured by the minimum number of states required to recognize
it in a deterministic finite automaton, increases as a function of ¢ for a wide
class of CAs. In particular, for CAs whose behavior is sufficiently complex
(what are referred to in reference [5] as class 3 and 4 CAs), the regular
language complexity seems to grow rapidly, perhaps at a superpolynomial
rate. Now much more is understood about the computational complexity of
languages (assuming the truth of the P # NP conjecture) than about regu-
lar language complexity in cellular automata. Therefore, if computational
complexity could tell us something about regular language complexity, it
would be easier to answer another question raised in [3], namely: is regu-
lar language complexity generically increasing in cellular automata? One
might be able to conclude, for example, that in any CA with an NP-hard
limit language, regular language complexity increases superpolynomially.
However, it is not at all clear that there is any such relation. The problem
is reminiscent of the subtle and deep relationship between computational
complexity and circuit complexity (e.g., [11]). This prompts the following
new question: is there any relation between the computational complexity
of languages generated by CAs in finite time and their regular language
complexity?

Acknowledgements

The work in this paper was largely inspired by the CA ’86 conference, and
I would like to thank the organizers for a stimulating conference. I also
wish to thank D. Joyce and S. M. Selkow for helpful discussions.

References

[1] S. Wolfram, “Approaches to complexity engineering”, Physica D, 22 (1986)
385-399.

[2] S. Wolfram, ed., Theory and Applications of Cellular Automata, (World
Scientific, Singapore, 1986).

[3] S. Wolfram, “Twenty problems in the theory of cellular automata”, Physica
Scripta, T9 (1985) 170.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability, (W.H. Free-
man, New York, 1979).

474 Frederic Green

[5] S. Wolfram, “Computation theory of cellular automata”, Comm. Math.
Phys., 96 (1984) 189.

[6] S. Wolfram, “Random sequence generation by cellular automata”, Adv.
Appl. Math., T (1986) 123.

[7] L. Hurd, “Formal language characterizations of cellular automaton limit
sets”, Complex Systems, 1 (1987) 69.

[8] A.R.Smith III, “Real-time language recognition by one-dimensional cellular
automata”, J. Comput. System Sci., 6 (1972) 233.

[9] R. Sommerhalder and S. C. van Westrhenen, “Parallel language recognition
in constant time by cellular automata”, Acta Informatica, 19 (1983) 397.

[10] O. H. Ibarra, M. A. Palis, and S. M. Kim, “Fast parallel language recognition
by cellular automata”, Theor. Comp. Sci., 41 (1985) 231.

[11] U. Schoning, Complexity and Structure, (Springer-Verlag, Berlin, 1986).

