
Com p lex Systems 1 (1987) 453--474

NP-Complete Problems in Cellular A u t om at a

Frederic Green
Department of Mathematics and Compu ter Science, Clark University,

Worcester, MA 01610, USA

Abstract. An example of a cellular automat on (CA) is given in
which the following problems are NP -complete: (i) determining if a
given subconfigurati cn s can be gener ated af ter [s] t ime steps, (ii) de­
termining if a given eubccnfigurat ion 8 will rec ur afte r lsi t ime steps,
(iii) determining if a given te mporal sequence of state s 8 can be gen­
erated in lsi time steps. It is also found that the CA constructed bas
an NP -hard limit language.

1. Introduction

Cellular automata (CAs) are examples of homogeneous systems of compo­
nents betwee n which on ly local communication exists. T here has recently
been a renewal of int erest in CAs as paradi gms for discrete dynamical sys­
tems as well as parallel computat ion (see [lj ; for an extensive collection of
repr ints and an annotate d bib liography, see [2]). In reference [3), a num­
ber of ope n problems having to do with cellu lar automat a were posed.
One of t hem is the question of how common NP-complet e prob lems are
in cellular automat a. T he answer may have a significant bearing on our
practica l ability to pr edict the outcome of various chaot ic phenomena based
on comput at ion. In addit ion, some of the practical difficu lt ies of efficiently
programming parallel computers might be revealed [I J. To date, however,
there are no proven results in the literat ur e on any NP-complete problems
in this area, let alone on how common they are. In this paper, we present
an example of a particular CA which has NP-complete problems associated
with it.

Most NP-complete problems [41 apparently deal with constructs con­
sisting of a large set of components having long-ran ge connect ions between
them. For example, an inst ance of Hamilton path cons ists of a graph, the
nodes of which can be arbit rarily connected. Equally important is t he lack
of regul arity in the structure; in the graphical case, any constraints on a
probl em which make the gr aph symmetric or homogeneous in some way
oft en tend t o make the asso cia ted prob lem eas ier. Therefore, because of
their uniform construction, there is some int rinsic interest in examining the
nature of NP-comp let e problems associated with CAs.

@ 1987 Complex Sys tems Publications, Inc .

454 Frederic Green

Informally, a CA (for our purposes) is a one-dimensional, two-way in­
finite array of cells. Each cell can be in one of a number of states. The
array is evolved in time by synchronously updating the state of each cell
according to a rule which depends on the value of a cell and its two nearest
neighbors. An infinite array of states at a given time is called a configu­
ration , and a finit e array of contiguous states is called a sub-configuration.
We will see that there is a CA for which each of the following problems are
NP-complete:

1. CA P reimage: Given a subconfigura t ion of length K, is there a con­
figuration that could have led to it in K time ste ps?

2. CA Subconfiguration Recurrence: Given a subconfigurat ion of length
K, will it be the same K time st eps lat er?

3. Temporal Sequence Preimage: Given a temporal sequence of K states
in a given cell, is there a subconfiguration that could have led to it in
K time steps?

Generalizations of problems 1 and 3 have previously been conjectured as
being NP-complet e [3,5,6]. The generalizations simply ask the same ques­
tions, but with the number of time steps being independent of the size
of the input subconfiguration. As we shall see, it is not clear that these
generalizations are in NP. However, the results of this paper do prove that
these generalized versi ons are NP-hard. Both 1 and 3 have a direct bearing
on the problem of computing entropies [3]. Problem 2 has not been previ­
ously mentioned, and its NP-completeness is established as an interesting
by-product of the proof technique used for L The difficulty of problem 2
places limits on our ability to predict the outcome of a CA computation
on the basis of incomplete information, even when the active part of the
configuration is finite .

Another question raised in [3] is: what limit sets can CAs produce?
The limit set is essentially the set of configurations generable in infinite
time. Hurd [71has const ructed examples of CAs with strictly non-regular,
non-context-free, and non-recursively enumerable limit sets. The question
as to what classes of languages can be generated when they are classified
according to their computational complexity naturally arises. It is quite
possibl e that any set can be generated in the limit. Finding examples is,
however, nontriv ial. It is found that the CA constructed in this paper has
an NP-hard limit set. In this case, this appears to be a dir ect consequence
of the NP-hardness of the preimage problem.

Previous work on comput at ional complexity of CAs for the most part
dea ls with language recognition. There are many ways to define a language
recognized by a CA. On e way is to specify a state, or set of states, to which
an input string must evolve in order to be included in the language. Such
characterizations are given in, for example, 18,9,10]. It is not ed in [8] that
the set of languages recognized by bounded (Le., finite) nondeterministic
CAs is the set of context-sensitive languages. This is true because it is

NP-Complete Prob lems in Cellular Automata 45 5

possible to simulate any linear bounded automaton with a bounded CA. In
fact, there are fixed determinis tic linear bounded automata for which the
language acceptance problem is PSPACE-complele [41. It follows immedi­
ately that there exists a particular determ inistic bounded CA for which the
language recoguition problem is PSPACE-complete.

In contrast, it is not at all clear how to prove results such as the
NP-completeness of the preimage problem for a particular CA. An NP­
completeness proof for a problem must provide either a generic reduction
of any language in NP to the problem of interest, or a polynomial time
reduction from a previously known NP-complete problem. To implement
the former strategy, it seems we must simulate any polynomial time com­
putation of any nondeterministic Turing machine with (for example) an
instance of CA preimage. This would require encoding the computation
of a nondeterminist ic Turing machine in the substring (as in the standard
proof of Cook's theorem), t he CA rules being such that the substring has
a preimage if and only if the Turing machine accepts in polynomial time.
This turns out to be prohibitively complicated, and leads to an enormous
number of states in the CA.

We are therefore faced with the simpler alternative of reducing from
a known NP-complete problem. However, here we also have a problem.
When an instance of an NP-complete problem is encoded in the substr ing,
once again the CA ru les must be such that (for example) the substring has a
preimage if and only if the problem is a "yes" -instance of the problem (using
the terminology of [4]). The difficulty is that widely separated parts of the
substring must communicate with each other , and this has to be effected
in the inherently local CA rules. This communication problem is solved
conceptually by breaking the CA up into two coupled CAs, where sta tes in
one of the CAs can move, while states in the other one are "stat ionary."
This is similar to separating any computing device into its control part [e.g.,
a Turing machine's finite control) and its output part [e.g., the tape of a
Turing machine). The difference with Turing machines is that we will take
advantage of the parallelism of CAs. Actually, a similar difficulty would
exist if one were trying to prove NP-completeness of a preimage problem
for Turing machines. Unfortunately, the NP-completeness of any preimage
problem for Turing machines is apparently not known, so it is necessary to
reduce from some other NP-complete problem. The known NP-complete
problem we use is 3SAT. The fact that there are three literals per clause
actually does not impose any restrictions on any of the problems, but it
makes the encoding process simpler.

In section 2, the basic definitions and notational conventions used through­
out the paper are set down. Section 3 contains the proof of three of the
main results: NP-completeness of the preimage and substring recurrence
problems and NP-hardness of the limit language. In section 4, the NP­
completeness of the temporal sequence preimage problem is proved. Section
5 discusses the implications of these results.

456 Frederic Green

2. Preliminaries

A cellular automaton (CA) is a pair (Q ,6), where Q is a finite set of states,
and 8 : Q X Q x Q ~ Q is a transition function. (T he definition of a CA
often includes a distinguished qo E Q called the quiescent state. Her e, there
is no special reason to separate qo from the ot her states, so it is not included
in the definition.) A con figurat ion of a CA at time t E Z, c(t) : Z ---+ 0, is
an ass ignment of a unique state to each "cell" I where a cell is represented by
an integer. C{t)(i), i E Z, is the "state of ce ll i at time t ." A configurat ion
at t ime t unique ly determines a configuration at time t + 1 as follows:

c(t+l) = { (i,q)fq = 8(C I')(i -I),C{') (i),C(t)(i + I)) ,i E Z}

The definition of fJ can be extended so that we may write the above more
compactly as C l.+l) = 8(C(t)). We will generally refer to Clo) as an in itial
or starting configuration. A computation of a CA of lengt h n is a sequence
of configurations C(O), C(I), ..• c(n-l). If C(1) and CU), i ~ i, are two config­
urat ions in a computation, then we say that C(1) computes C (;), and write
C(i) l-" CU). To sp ecify that a configuration Co computes a configuration
C, in t time steps (i.e., C, = 8'(C.)), we write C. f-' C,.

A string associated with a CA (Q,8) is an element of Q'. We write
5= 8 ,5,8, . . . ', where 151'" k is the length of 8, s E Q for all i E {I ... k},
and s, is referred to as the s"th element of s , A con figuration substring or
subconfiguration is a string 8 = 8182 •.. 81 where s, = C(t) (i - j) for some
J',t and each i E {I . .. k}. Such a string 8 is said to be a substring of
C(t) occ upying ce lls 1 - J' through k - j . All strings we will encounter are
config uration substrings, so unless there is danger of confusion, "string" or
"substring" will henceforth mean "configuration substring."

Let 51') be a substring of Cl') occupying cells I through k and s(l+p) be a
subs tring of C(Hp) occupying the same cells. As with configurations, we say
that s{t) computes s(t+p) in p steps and write s(t) f-P s(t+p), if C(t) f-P C(Hp).

If X f-K Y , where X and Y are both substrings or both configurations,
then X is said to be a Kth-preimage of Y. If X and Yare strings, and X is a
substring of configuration C, then we will also refer to C as a Kth-p reimage
of Y, and write C f-K Y.

A finite CA is the same as a CA, but with a configuration C : [l..N] ~ Q
defined on a finite array [l..N] of cells . Finite CAs will be taken to have per­
iodic boundary conditions, i.e., CI'+1) (N) = 8(CI')(N - 1), CI'j (N), C I')(I))
and CI'+1)(I) = 8(CI')(N), C(')(l), C l') (2)).

For conceptual reasons, it is advantageous to introduce the not ion of a
coupled pair of CAs (CPCA) . A CPCA is a quadruple (Q,Q" 8., 8,) where
Ql and Q 2 are finite sets of states, and

8, : (Q, x Q,) x (Q, x Q,) x (Q, x Q,) ~ Q,

8, : (Q, x Q,) x (Q, x Q,) x (Q, x Q,) ~ Q,

NP-Complete Problems in Cellular Automata 457

are transition functions . A CPCA (Qh Q2,Oh 02) is nothing more than a
CA (Q,6) with Q = Ql X Q, and 6 = 61 X 6,. However , we will find it helpful
to think of a CPCA intuitively as two CAs , CA, (Ql , 61) and CA, (Q, ,6,)
which interact via the transition functions 61 and 62 . Configurations can
be defined in like manner for CAl and CA, in a CP CA. We will denote
configurat ions in CAl by ci') : Z --+ Ql and in CA, by Cj'l : Z --+ Q,.
Computations, strings , and configuration substrings of either cIt) or cit)
are also defined in analogy to the CA case. In particul ar , we will find it
necessary to refer to computations of strings in CAlor CA2 0 Thus , if s~t)

is a substring of eft) and S~f+P) is a substring of Cp+p
) , (i = 1 or 2), then

we write s(t) I-P s~t+p) if c~t) I-P C~t+p) We also need some notation for
1 I I I'

adjacent str ings in CAl and CA2 l that is, strings occupying corresponding
sets of cells. Substrings in CAl will be written above substrings in CA2 .

For example,

S lS 2S S· ·· S j;

s~ s~s; ... s~
t
i

means that el'l (i) = sr , elf)(i + 1) = " ''' ' cif)(i + k - 1) = St, and
e (f)(") - ' e (fl(') - , e{tl (" k) - , If2 a - 8 1 1 2 S + 1 - S2"" 2 S + - 1 - S.t:. two states are
vertically aligned as above [e.g., S 2 and s~, S3 and s~, etc.) they will always
be understood to be in corresponding cells of the CP CA. Hence, the posit ion
of the first cell of a string (i in the above example) will be omitted if it is
irrelevant. Similar notation is introduced for overlapping strings, e -g-,

S I 8 2 . .. S ,I:

S~ S~ .. S~'_ l S~,

indicates that s i and S~'_ ll and S2 and s~" respect ively occupy correspond­
ing cells. Cells not given values are irrelevant to the discussion. Neighboring
strings in CAl and CA, are denoted by

the former indicating that the rightmost element of s' is in the cell imme­
diately to the left of th e cell containing the leftmost element of s and the
latter vice versa. There is one final notation introduced for CP CAs. In
the encodings that follow. there will be a "quiescent state" which we will
denote by an underscore, _. Strings of quiescent states, when there is no
ambiguity, will be denoted by a continuous line. Thus, for examp le,

458 Frederic Green

means that s. (in el'») is in the cell immediately to the left of t he cell
containing s~ (in ell)).and all the cells (in elll) corresponding to the s: (in
e(')) · 1 k . the cui " "2 ,' = , . .. J contain e quiescent state _.

Polynomial-time reductions will be denoted by oc . Thus. if A and B
are languages over some alphabet E, A ex: B means that there is a function
f : E' ~ E' such that for any a E E' .I(a) is comp utable in a t ime
po lynomial in lal. and a E A if and only if f (a) E B . Regarding A and
B as decis ion problems, the definition of A ex: B is the same, except to
replace "a E A" by "a is a yes-inst ance of A" and "f (a) E B" by " f (a) is
a yes-instance of B."

The reduct ion will he from 3SAT, for which we introduce our conven­
tions now. A literal is a symbol in one of two finite sets , L = {h ,12 , .. . 1m.}
or L = {II,[21 ' " 1m } . The overbar denotes negation. A truth assignment
T is an m-tup le (Al . A, Am) where A. E {I ••I.} for each i E {I .. . m}. A
clause c is a finite set of literals. In the case of 3SAT, [e] = 3 for any clause
c. A conj unctive normal form (CNF) formu la"Y is a finite set of n clauses .
A CNF formula "Y is said to be satisfiable if there is a truth assignment T

such that for every clause c E 'Y there is at least one literal Ai E c such that
we also have Ai E T.

Henceforth, m will denote the number of literals and n will denote the
number of clauses in a CNF formula.

3. The preimage prob lems and limit languages

The CA P reimage (CAP) problem is stated form ally as follows:

CAP:
Given: A fixed CA (Q.6) and a configuration substring s .
Question: Is there a configuration substring 8(0) such that 8 (0) I-K 8 where
K= lsi?

A more general version of this problem has been mentioned in (3,5,6J and
will be referred to as "Generalized CA Preimage" (GCAP) . As input to
GCAP, we are also given a number T, and the question is altered in that
we ask if there is an 8(0) such that 8(0) I-T 8. The only difference is that the
number of t ime steps T is independent of the size of the string K = lsi.
It is argued in [31 that GCAP E NP. using the following line of reasoning:
Only the T cells to the right of s(O) and T cells to the left of s(O) can affect
s, because of the finite rate of propagat ion. Therefore, if we are given a
subconfiguration (of length K + 2T) including those extra 2T cells in the
"environment" of 8(0), we can verify that it leads to S(T) == 8 by running our
CA for T t ime steps (see figure 1 and t he proof below). Unfortunately. this
is not a polynomial t ime algorithm . Any reasonable encoding [4J for the
inp ut T is O(log(T)). so the run t ime for the verification algorithm (O(T')
on a sequential machine) is exponential in this input. Of course, if T had a
unary encoding, the algorithm would be polynomial, and is therefore pseu-

NP-Complete Problems in Cellular Automata 459

It,

s

, f
! T

~l. -------- -- -~-

I'll

I_K_
Figure 1: illustration of the fact that only the string 8(0), of length
K + 2T. can affect • .

dopolynomial. Hence, it is not at aU clear that GCAP is in NP. HoweverJ

if we restrict T to be K, there is then no numerical input to the problem,
and the verification turns out to be polynomial (O(K')) in the length of
the input. Therefore, we have

Lemma 3.1. CAP E NP.

P roof: We must show that if we are given an s (O) such that s(O) I-K s,
where K = [s], we could verify that s(O) I-K s in a time polynomial in
K , which is the size of the input s. Let us write, as usua l, C(O) for the
configuration containing s(O), and C(K) for the configuration containing s,
Then e lO) I-K elK). Suppose. without loss of generality. that elO)(i) = slO)
and eIK)(i) = s, for i = 1. 2. .. .K. Clearly. any state ell)(i) for 1 ~ i ~ K
is independent of any state e lO) (j) for i < 0 or j > K + 1. By induction.
we can conclude that any state elK) (i) for 1 ~ i ~ K is independent of any
state eIO)(j) for j < - K +1 or j > 2K. Therefore. in verifying .(0) I-K .s, we
need only compute with a finite CA using the rule 0 and starting with the
initial configuration e(O)(j) for - K + 1 ~ i ~ 2K. Since the problem takes
a fixed CA as input, each computation of a new cell state, e.g. O(Ql' Q2, Q3),
takes 0(1) t ime. This has to be done for 3K cells and K time steps. and
hence the time expended is O(K') .•

We now describe a CA for which we will find t hat CAP is NP-complete.
It should be re-emphasized that this is not part of the reduct ion 3SAT IX

CAP. and once chosen. the CA will remain fixed. The CA (Q.6) has states
Q = QI X Q, where

QI = L#.I,l.O.l}

460 Frederic Green

and 0 is given in table 1. (Note only rul es I through 11 apply for the
states we cons ider here, and rules 12 through 16 should be ignore d for the
remainder of this sect ion.) The functions II , E , and U are defined below. We
will refer to the underscore "_" as the "quiescent state." The significance
of the s- and u-superscrlpts as well as the rules will become clear when
we describe how 3SAT oc CAP. Note that this CA has 84 states. It is
quite likely that CAs with many fewer states also have NP-complete CAP
problems, and it may be possible to find some of them by simulating the
one discus sed here.

It will be helpful to regard this CA as a CPCA defined by (Q., Q" 0., 0,)
where 0; is the Qj-component of {; =: 01 X 02. With this interpretat ion, the
proof strategy is as follows . The rules are designed so that all states in
CAl glide to the left at the rate of one cell per time step . States in CA2

will remain "station ary" although they may change by gaining or losing
a superscript (e.g. , 1u may become 1, or 1 may become 1" , etc). Truth
assignments will be encoded as substrings of CAb and CNF formulas will
be encoded as substrings of CA2 . As a truth assignment of CAl passes over
a corresponding literal in CA2 , if their truth values match, the encod ing of
the literal in CA2 will change so as to record the fact that that literal is
satisfied. The delicate part is designing the rules and encodings so that the
final string can be reached if and only if the CNF formula we started with
is satisfiable.

The reduction 3SAT ex: CAP proceeds in stages. We st art by specifying
the encod ing scheme for lit erals. Recall that the alphabet for CA, (in which
the literal encodings reside) is Q, = {_,#,I ,I, 1,0}. The encoding for literal
Ii is writt en as

where bJi) E {O,I} is the phbit in the binary representation of i , and
k = [log, mJ (not to be confused with th e uppercase K which is the size of
the input to CAP). Similar ly, e,(I;) = I ..h\')..hI') ..hI')_.....hl') .e,(I,) (or e, (I))
will be referred to as a literal encoding. The encoding of a truth assignment
T is writt en fT (L,L):

where T = (AI,A2, .. . Am) and there are k quiescent states after the right­
most #. The special case of T = (1"1,, . . . Im) is denote d by e,(L):

and plays an important role in our reduct ion. fT(L, L) is a truth assignment
encoding, and fT(L) is referred to as the all-t rue assignment. Note that in
both of th em the left endmarker # has a "_" preceding it , while the righ t

NP-Complete Problems In Cellular Automata 461

Rule Condit ion III Il., Interpretation
1 ql E Ql and q:' CAl states move to

(qf' # 1or qi' # #) the left
2 ql - # and qt - - IT(q,) _# in CAl makes s- and

and q, E qU I' u-states in CA2 pure.
3 ql - # an d qt E {1,0} E(q,) 1# or 0# in CAl propagates

and qi' E o a-states in CA, to left.
4 qf' = I and qi' = # I # in CAl makes I in CA,

into an I
5 ql E {l ,l} and ql - q, E (q,) Matching l's "sat isfies"

the I in CA, .
6 q~ E a and q, E { I, l} E(q,) s-superscript propagates

to the right if I is met .
7 q~ E o and q, E {1,0} and E(q,) s propagates to the right

(ql E { _, I,I} or q, = q,) as long as state in CAl is
not a mismatch.

8 q, E o and q:' # '1f U(q,) Bits do not match,
and qf',qi' E {1,0} causing CA 2 bit to be

unsatisfied.
9 q, El'andq~ Eq IT(q,) e-states propagate left

leaving p-states behind.
10 q: E {PI,OU} and q2 E (J U(q,) u-states propagate left

until I (l) is met.
11 q, E {IU,IU} IT(q,) Make an IU(IU) into a

pure state .

12 q~ - $ $ $ in CA 2 moves right
13 q, - $ and q:' E { # , .} U a .1.(q:') $ makes satisfied states

and q; # $ in CA2 into left movers
14 q, - $ and q:, rt {#,_} U o - $ "annihilates" other

states
15 qt # $ and qf E A q, A-states move left

(except past $)
16 q, EAandq:' rtA - A-states move left

Table 1: CA rules.

o«qr ,q;) , (q" q,j,qf', qi'll " (Ol«qr, q;). (q" q,) , (qf'.q;'ll,
0,«qr, q;), (ql,q,) , (qf'.qi')))

is given above for all possible values of qf. qi , and qf . All rules
must be tried in the order given whenever 5 is computed. If two
different rules apply and yield different 5's, choose the rule with the
smaller number. A blank entry means that 5, is unaffected by the
given condit ion. (Note that only rules 1 through 11 are relevant in
the CAP and CASR problems.)

462 Frederic Green

endmarker does not have a «_71 preceding it . Th is is because the left and
right endmarkers in CA. play different roles.

Th e encodings for CNF formulas reside in CAt , but they still use the al­
phabe t Ql o Th e encoding is expressed in terms of the formula's constituent
literals . We encode the occurrence of lit eral Ii as

(') (') (i)e.(I ,) = lb. b, .. . b.

(a literal occurrence encoding) where, again, b}i) is the ph bit in the binary
representation of i, (The only difference with e,(li) is that there are no
intervening _'8). Suppose clause "1i contains the literals AI, A21 and As_ Then
we encode the clause as t he strin g <kl;) = <. (>..)<.(>.,)<. (>••). Finally, if
the CNF formula 'Y = b .,'Y', . " , 'Yn}, we encode it as the string, </("1) =
<, ("1.)<, ("1')-",("1.)_. . . -", ("In).

It is convenien t to define '1l" =- {1,I,O,l } ,o == {I' ,l- ,O' ,!'} , and J.L ;:;:
{lu,1u,OU,lU}, so that Q, = {#, _} U", UU UIt. The states in ". are called
pure states (or p-stat es) , a state in (J is called a satisfied state (s-state),
and a state in JJ. is called an unsatisfied state (u-state). It is also convenient
to define funct ions which take a state from one of these sets to one of the
others by adding, eliminating, or changing a superscript. In particular,
define the three functions TI , E, and U as follows:

II : Q, -+ ". is defined so t hat II(P') =P for any P' E ". U It U 17,

E : Q, -+ 17 is defined so that E(P') = P' for any P' E .. U It U 17,

U·: Q, -+ It is defined so that U(P') = pu for any P' '" ". U It U 17,

where x represents an s, u, or no superscript. TI, E, and U have no ef­
fect on either # or _. We extend them to morphisms over Q;: For
any string s = s.,s, .. . s. in Q;, let lI(s) = lI (s.)II(s,) . .. lI (s.), E(s) =
E(s.)E(s,) . .. E(s.), and U(s) = U(s.)U(s,) . ..U(s.) .

We are finally in a posi tion to describe the instan ce of CAP to which
an instance of 3SAT gets transformed. Let 3SAT be sp ecified by th e CNF
formula 'Y, and the sets of literals L and L. The instance of CAP, described
with the CA that has been specified, is then given by the configurat ion
substring,

s <,(L) I
"'ET

(<'I('-'YlIT)
(3.1)

Note:

1. All the cells of S in CA. are quiescent if they correspond to cells in

E«/h)) ·

2. The cells in CA, corresponding to the cells in <,(L) are left unspeci­
fied , and their values are irrelevant to the argument.

NP·Complete Problems in Cellular Automata 463

3. The left most state of E (e,h)) is in the cell immediate ly to the right
of the cell containing the rightmost st at e of e.(L).

The main result of th is section, which establishes the NP-completeness
of CAP, is that S has a K'h.preimage (where K = le. (L) 1 + IEhhlll
= lSI) if and only if 'Y is satisfiable. We must, of course, first establish
that t he reduction 3SAT ex CAP can be done in polynomial t ime. But
this is obvious. The instance of CAP, represented by S, is simply a rea­
sonable encod ing scheme for 3SAT. S consis ts of a concise listing of the
literals, e. (L), and of the formula , E (e,h)) (from which e, h) can eas ily
be recovered in O(n ' log (m)) time by applying IT to each element of the
st ring, although th is is not really necessary). To the extent that reasonable
encoding schemes are related by polynomial t ime transformat ions, we have

Lemma 3.2. The reduction 3SAT ex CAP as described above can be exe­
cuted in a time polynomial in m and n.

The following three lemmas comprise the rest of the proof that CAP is
NP·complete .

Lemma 3.8. H 5, given by eq uation (3.1) , has a Kth _preirnage speci fied
by some configuration C (O), then there must be at least one such C(O) which
cont ains th e string,

S (O) == __ Ie._ (L,L)
e,b)

(3.2)

where r' is some t rut h assignment, eIb) occupies the same cells as the
E (e, h)) of S , and K = le,b)1 + le. (L ,L)I.

Proof: Rule 1 in table 1 says that all states in CAl propagate to the left
at the rate of one cell per t ime step. The only other way in which states in
CAl are altered is via the left endmarker, #, in CA, (rul e 4) . The sole effect
of the # in CA 2 on states in CAl is to change I'e to l's. Therefore, the e., (L)
of S must have originated as a similar string in C(O), shifted over K cells to
the right . The only possible difference is that it may have started as some
other truth assignment e., /(L, L). This is true provided the endmarker in
CA2 remains unchanged. But according to rules 1 through 11 in tab le 1, the
only way a state in CA 2 can change is for some state in 71' , U, or u: to change
(or gain or lose) a superscript . Therefore, the only possible preimage of any
state € E Ehh)) is €,IT(€), or U(€). Since # cannot have a superscr ipt,
its only poss ible preimage in CA2 is itself . Furthermore, we see that the
only difference between E (e,b)) and its K'h·preimage is that some of its
elements may have originally been p-states or u-states inst ead of e-states .
Note, however, that rule 2 dictates that the leftmost # of e.,.(L,L) causes
all s-states or e-states in CA2 to become p-states as it passes them by. This
occurs for any state e in the K'h. pre image of E(e,b)) before any state in

464 Frederic Green

CA l to the right of the # in e, ' (L , L) has had a chance to affect E'. Hence ,
we may assume without loss of generality that all of the Kth_pre images of
states in E(e,(,)) can start out as pure states, i.e., that the K !h_preimage
of E(e/b))' if it exists, is ekl)' •

Lemma 3.4. Let S be given by equation (3.1), and suppose the "f from
which we const ructed S is sat isfiable. Then S has a K th-preim age, where
K = ISI·

Proof : Su ppose I is satisfiable but that S does not have a K th_preimage.
We will contradict this by constructing a Kth-preimage from the fact that
"t is satis fiable. In fact , let C(O) be a configurat ion which contains the string
S{O) given in equat ion (3.2), where r' is a sat isfying truth ass ignment of "'/.
It will now be demonstrated that C(O) I-K S, thus proving the lemma.

The rules are such that the string e,(li), as it passes by the string eo (li),
causes all states in eo(Ii) to become sat isfied states . More precisely, if e,(li)
is a substring of e,.(L, L), then e, (I;) f-K E(e,(I;)). To see this, first observe
that

e, (1.)- f-;
0, (1;)

where J. = leo (li)l. Init ially, in the above computation, the leftmost states
of el(ld and eo (li) are in the same cell, and after J. steps the quiescent state
_ (which trails e,(I,)) and the rightmost state of E(e, (I;)) are in the same
cell. This can be proven by induct ion on the number of t ime steps, using
rules 1, 5, and 7. Intuitively, the rules work in this case by propagat ing
s-states to the right as long as the characters in el(li) and eo (li) match. It
is best to give an illustration at this point, for el(l2) and eo(l2), in the case
of m = 2:

110

LLO_

1'10 r-r-o

In order to establish that e, (I;) f-K E(e,(I,)), we mus t still show that no
states to the right of e,(I;) subsequent ly change the s-states in E(e, (I;)). The
only rules in which an s-st-ate can be altered are 2, 8, and 10. However, rule
2 only applies for the left endmarker of e, .(L,L), which has already bypassed
0, (1;). The right endmarker (also #) of e,. (L, L) has a non-quiescent st ate
immediately to its left , so that ru le 2 does not apply for it . Rule 10 is
invoked only if the state immediately to the right of a CA2 cell is 1u or OU.
However, once E(eo(ld) is generated, this cannot be true for any element
of E(e, (I;)) . This is because the state immediately to th e r ight of E(e, (I;))
cannot be in {1",0"}, so that by induction rule 10 leaves E(e, (I,)) intact.
Ru le 8 is invoked for a given cell only if the cell immediately to its righ t
contains a 1 or 0 in CA2 • However, we can argue as we did for rule 10

NP-Com plete Probiems in Cellular Au tomata 465

that rule 8 will not apply to any state in E(eo (li)) once it is generated.
Hence. we have that e,(I;) f-K E(e, (I;)) if e.(I;) is a substring of e, ,(L . L).
The same is true of negated literals, i.e., if cl(li) is a substr ing of cr,(L,L),
then e, (l;) f-K E(e,(I;)). In other words . if a literal is "t ru e" accordi ng to
the truth assignment, its encoding in the formula is made "true" by an
application of E.

Now that we have shown that true literals get "satisfied", we must
show that a clause gets satisfied if it contains a true literal. That is, it
is necessary to show that if e, (I;) is a substri ng of e,b;) and if e,(I;) is
a substring of e,,(L.L). then e,b;) f-K E(e,b;)). This follows from the
preceding argument and rules 3, 6, and 7. By the preceding argument,
e,(I;) f-K E(e, (I;)). We consider the fate of the clause string containing
E(e,(I;)) after the right endmarker of e,' (L .L) has reached the leftmost
state of E(e, (I;)). Since t he right # of e,, (L.L) always has a 1 or 0 to its
left, rule 3 applies and any state in CA2 in the same cell as the # becomes
an s-state if there is an s-state to its right. Hence, the s-states propagat e
to the left (along with the # in CAl) unt il a quiescent or # state is reached
in CA2. E(eo(li)) simi larly infects any pure states to its right in the same
clause st ring. by rules 6 and 7 (recall that there are at least [e/ b)[+ k
quiescent states to the right of the rightmost endmarker in fr,(L,L), so
that s-st ates will be allowed to propagate to the r ight).

The same argument holds for negated literals: if fe b ;) contains Co(li)
and e, (L.L) contains e,(I;). then e,b;) f-K E(e,b;)). But since T' is a
satisfying truth ass ignment . each e,b;) contains a e, (I;) (resp. e, (l;)) such
that e,(I;) (resp. e,(l;)) is in e, ,(L .L). Thus. ekf;) f-K E(e,b;)) for all
j E {1.2. .. . n}. so that e/b) f-K E(e,{--f)),

Finally. note t hat as the string e,,(L.L) passes the left endmarker # of
CA,. each I becomes an I by rule 4. Thus. by time K. e,' (L.L) has cha nged
into the all-true assignment cr(L). But , this establishes lemma 3.4 since we
have shown that e (O) f-K S .•

Lemma 3 .5. Suppose 8, given by eq uation (3.1) , has a Kth _preimage,
where K = [Sr. Tbe-i from which we constructed S is then satisfiable.

Proof: By the proof of lemma 3.3, the only possib le Kth-preimages C(O)

of 8 must contain an 8 (0) of the form given in equation (3.2) , or can be
obtained from (3.2) by changing any number of the pure states in e/b) to
s-states or u-states. However, the left endmarker of fr,(L,L) makes these
states pure, so any init ial s- or e -states in 8(0) are irrelevant in determining
S . Hence, we can exhaust all candidate Kth_preimages of 8 by consider ing
only those e (O) 's containing S(O) as given in equation (3.2) .

Now suppose I is not satisfiable. Then there is no r' which sat isfies I.
Consider all poss ible strings S (O) given by equat ion (3.2) . which differ only
in the choice of r' , We will demonstrate that for no such 8(0) contained in
C (O) do we have C (O) f-K S , contradicting the assumption of lemma 3.5.

Since no r' satisfies I, for any r ' there is at least one clause Ii such that
no literal in I; is also in r', For a given r' consider such a Ii. It is now

466 Frederic Green

argued that <J"!i1f-K e, l'Yi). For this, it is essential to show first that for
any ii-i',

<,(I,.l l<,(I,.1 (3.3)

where k = 1<,(1,)[. This mak es use of rules 1, 5, 7, 8, 9, 10, and 11. Before
demonstrating this , it helps to give an example:

I-LO_ U.D_ I-LO_ I-LO_
f- l- f-

111 I'll 1'1'1 1'1"1

U.D_ U.D_
l- f-

1"11 111

In the above computation , the second substring results from rule 5, the
third from rule 7, the fourth from rule 8, the fifth from rules 9 and 10, and
the sixth from rule 11. (The states to t he right of I-l .D_ cannot affect the
resulting 111 in CA 2 unt il the next time step.)

The only way of producing an s-s tate if there are no neighboring a-states
is through rule 5. (We will find, by induction, that after any computation
of the form (3.3), there will be no neighboring s-states.) Once an a-s t ate is
created in <,(I,.), it propagates to the right (by rule 7) as long as the binary
expansions of i' and i are the same (i.e., they "match"). That is, starting
with

Ib (i')b(i') b(i ')
1 2 ... k

we find

Ib (i')b(i') b(i') f-p +1 I ' bi ')' b(i')' b(i')'b(i ') . b(i ')
1 2 "'k 12"'pp+1"'!c

if and only if b!i) = b!i') for all r from 1 through p. However, s ince i =f i',
there is an r such that bri) =f bf) , T hen , by rule 8, b~~; becomes U (b~i2~) =

b[')" Thr-l' us,

Ib(i')b(i') b(i') f-'+'I 'b(i')'b(i') .1 b(i ')ub(i') b(i ')
1 2 " ' .1; 1 2 • •• r-l r , •• k

and the e-states cease propagating to the right . Furthermore, by rules 9
and 10, u-st etes propagate to the left up to the 1, which th en becomes a
p-st ate by ru le 11:

Ib(i')b(i') b(i ') f-2r+l Ib(i')b (i') b(i')
12'''.1; 12 ' ''.1; '

NP-Com plete Problems in Cellular Automata 467

Since le,(I;)1 = 2k + 1 ~ 2r + 1, this occurs before the rightmost element
of e,(I;) has passed the cell to the left of e.(I,.). Hence, in the time during
wh ich e,(I;) scans past e.(I,.), no states to the right of e,(I;) have a chance
to create any new e-states, and eo(li') returns to its original form . Since
no new s-states are created, we conclude that the next literal assignment
string, e,(li+l), or endmarker # , that bypasses eo(li') cannot create new
s-states except via rule 5. Thus, when (or if) the matching process starts
again, there will be no s-states in the neighborhood of the leftmost 1 of
e.(I,.). By induct ion, this continues to be the case until time K.

Since none of the literal strings in e.:(-"Y;) are ever completely satisfied,
all s-states in it are erased and we find e,b;) f-K e,b;) as claimed.

We have shown that for any r' , there is at least one T E "t such that
e,b;) f-K ',b;) . But this means that the substring in cckl corresponding
to e,b) cannot be E(e,bll for any r', i.e., that S cannot be reached in
K time steps for any r' , This contradicts OUT assumption that S has a
K lh_preimage, so ..., must be satisfi able.•

From lemmas 3.4 and 3.5, we conclude that S has a Kth-preimage if
and only if "I is satisfiable. From this and lemmas 3.1 and 3.2, we conclude

Theor em 3.1. CAP, for the CA described in this section, is NP-complete.

In addition, since CAP is a special case of GCAP described at the beg inning
of this sect ion, we immediately have

Corollary 3.1. GCAP, for the CA described in this section, is NP- hard.

Further note that the proof of th eorem 3.1 can be appli ed to a finite CA
whose size is equal to the size K of the input string S . Because of the
period ic boundary conditions of a finite CA, the fl'.(L, L) which is in the
initial configuration that computes S occupies the same cells as the final
fl'(L), K time steps later. Hence, we have

Corollary 3 .2 . CAP, defined for a finite CA in which the inp ut S com­
prises an entire configurat ion , is NP -complete for the CA de fined in this
section.

We next turn our attention to the CA Subconfiguration Recurrence
(CASR) prob lem, stated formally as follows:

C ASR:
Given : A fixed CA (Q,c5) and a configuration substring .s.
Question: Is it possible to have s f-K s , where K = ls i?

The proof of theorem 3.1 can be used almost without change to prove
the following.

T heorem 3.2 . CASR is NP -complete.

468 Frederic Green

Proof: If we are given some init ial configuration C(O) conta ining s, we can
eas ily check if C (O) I-K s using only the K cells to the left and the K cells
to the right of s, As in lemma 3.1, this requires O(K') t ime, so CASR E
NP.

We now show that 3SAT cc CASR using the CA introduced in this sec­
t ion. Simply set s = 5, where S is given by equation (3.1). The reduction
is clearly polynomial time in m and n .

Now I if the 'Y from which S is constructed is sat isfiable, then S I-K S .
For suppose that.., is satisfiable but it is not t rue that S I-K S for any
choice of CCO) which contains S . We contradict this (as in lemma 3.4) by
constructing a C (O) such that C(O) I-K S. Choose C(O) to contain the string,

e,(L) I Ie,.(L, 1)
E(efb))

(3.4)

where r' is a sat isfying truth assignment. Then the t:r.(L) on the left moves
to the left and has no effect on the string E(efb)) . Furthermore, the s­
states in E(efbll are erase d by the left endmarker of e,.(L,1) and do not
survive until time K. However, because r' is a sa t isfying truth assignment,
we neverthe less have, by the proof of lemma 3.4, that E(efb)) I-K E(efbll ,
so that C(O) I-K S.

Now suppose S I-K S. Then er is satisfiable. For suppose it isn 't. Then
no r' is a sat isfying truth assignment. But by the proof of lemma 3.3, we
lose no generality by assuming that the only way we can end up with the
string S in K st eps is by starting out with a substring of the form given in
(3.4) for some r '. But since for any r" there is at least one clause which is
not satisfied, we do not have E(efb)) I-K E(efb)) for any such T', by the
proof of lemma 3.5. Therefore, we cannot have S I-K S , a contradict ion.
Thus, "I is satisfiable if and only if S I-K S . •

We conclud e th is sect ion with the observat ion that the limit language
generated by the CA defined here is NP-hard. Before doing this, we must
specify what is meant by the language generated by a CA. Let us denote
the set of all possible configurat ions by n. Then, the set of configurat ions
generated by CA (Q,6) in t time steps is defined by 61(n) '" {C(') IC(') =
61(C), C E n }. The language generated in t steps by CA (Q,6) is defined
as

and the limit language is nIX> ;:::; Iim,.... oo ot. We also find it convenient
to define the set of generable substrings in t time steps , which is the set
of substrings of configurations in Of : r t == {s]s is a substring of some
cE nt}. I" is thus the set of strings which have p\h-preimages for all
p ~ t. The limi t substring language generated by a CA is roo ;:::; lim,1X> I ".
It has been shown Is] that nl (and also [I), for any fixed t, is a regular
language. Empirical results indicat e that for many CAs the complexity
of the regular languages nf , as measured by the minimal finite automata

NP-Complete Problems in Cellular Automata 469

required to recognize them, increase with t . This suggests that the limit
languages, while they can be regular, ar e more often not regular languages .
In fact, CAs have been constructed in which the limit languages are st rict ly
non-regular, non-context-free, and non-r ecursively enumerab le !71. In this
paper , we have an example of a CA for which the limit language is NP-hard.

Theorem 3 .3 . n~ is NP-hard.

Proof: Cons ider any finit e substring s , We can make it into a configurat ion
by concatenating an infini te number of qu iescen t states to its left an d right.
Since any substring can be so extended, it follows that I" 0:: Of for any t .
Therefore, r oo ex: noo • We claim that roo is an NP-hard langua ge. Since
n~ therefore is also NP-hard, the theorem will be proved .

By lemmas 3.4 and 3.5, I" contains strings of the form S given in equa­
tion (3.1) , where lS I = t , if and only if the.., from which S is cons t ructed is
satisfiab le. But r t also contains S's of the form (3.1) where lS I < t if and
only if'Y is satisfiable. The latter is easy to see, since S has a tth-preimage
if and only if it also has a pth_preimage for any p > t , Such a preimage can
be constructed from the t th-preimage of S (which is of the form given in
equation (3.2)) by displacing the e,,(L, L) in its t 'h-preimage p - t cells to
the right . By induction we can then conclude that r oo contains any S if
and only if "t is satisfiable. That is , 3SAT ex r~ , so that r~ is NP-hard.•

4. The temporal sequence problem

A temporal sequence is a sequence of states in one given cell. We will use
the same notational conventions for temporal sequences as for substrings.
A temporal sequence W = W1W2 . •• W T is said to be computed by a con­
figuration C(O) in T time steps if and only if there is some cell i such that
C(l)(i) = wi , C (')(i) = W" ... C(T)(i) = WT, where C (O) I- C(l) I- C (') ... I­
C(T). If there is a C (O) which computes W in K time steps, C(O) is said
to be a K th_preimage of W. As with substrings, we need only consider a
substring 5 (0) of C(O) in order to determine if C(O) computes some te mpo­
ral sequence W . T he CA Temporal Sequence Preimage problem is st ated
formally as follows (resisting the temptati on to refer to it as "TSP" , it is
abbreviated as "CAT S").

CATS:
Given: A fixed CA (Q,6) and a temporal sequence w.
Question: Is there a configuration su bstring s(O) which computes w in K
time steps, where K = Iwl?

The proof of t he following sufficiently resembles the pro of of lemma 3.1 that
it is omitted.

Lemma 4.1. CATS E NP.

470 Frederic Green

The CA for which CATS is NP-<:omplete is an extension of the CA used in
section 3. The set of states Ql is the same as before, but now we take

where 'lr,p., and o are defined as in sect ion 3, and

The add itional rules needed are given by rules 12 through 16 of table 1.
Analogously to II, E and U we define a function A: Q, --> A so that A(P') =
pL for any P E ". and A(P) = P for P E {#,_}. Its domain is similarly
exten ded to Q;. Note that there are now 114 states.

Again, it is helpful to think in terms of a CPCA. The additional rules
allow states in CA, to propagate. States in A propagate to the left , and the
one state that propagates to the right in CA 2 is $. The proof st rategy is
basically to use the proof of theorem 3.1 to produce a substring S which has
an ISjth_preimage if and only if the formula from which it is constructed is
sat isfiable. Each st ate in the part of S representing literals (e,(L» passes
through a particular cell that is used to contain the temporal sequence
W. The purpose of the $ is to dig into the part of S representing the
satisfied formula E(e,b)) and move all of the states in it to the left , thus
"projecting" it along the time axis, in the same cell that the sequence eT(L)
passed through (see figure 2).

Once again, we reduce 3SAT to CATS. Literals are encoded exactly
as before (although now, they must be understoo d to be sequences). We
define a new formul a encoding as follows: e7b) is the same as A(e,b)),
except that there is one ext ra "_'1l preceding each non-quiescent symbo l
in A(e,b)). For example, if e,b l starts out as #_110111100_111 .. . , e7b l
starts out as # __ IL_1L_OL_IL_1L_1L_IL_OL_OL __ IL_1L_1L From any
instance of 3SAT, we write the sequence W as

w = _ e,(L)_
$e7bl

where, defining N = lef(Lli and M = h(L)1 (so IWI= 3N + M), there
are N quiescent states before t he e,(L) and 2N quiescent states after it.
As in the case of CAP, this is trivially a polynomial time transformation.
Without loss of generality, assume the sequence W occurs in cell O. Thus,
the last symbol in e,(L) and th e $ both appear in cell 0 at t ime N + M .
Also, note that any states that appear in cell 0 in CA2 before time N + M
are irrelevant to the argument.

The main result which allows us to use the proof of theorem 3.1 is as
follows.

Lemma 4.2. W in cell 0 has a IW! th-preimage if and only if

NP- Complet e Pro blem s in Cellular A ut om ata

$J, ,, ,, ,
, I

"'"/ ,
/ ,

/ ,
/ ,

/ ,
/ ,

/ , I

~
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

Figur e 2: Illust rat ion for theorem 4.1.

471

472

S= -<,(L) _
$e~(-,)

Frederic Green

is a substring at time N + M, where as in W, there are N quiescent states
before the e,{L) and 2N quiescent states afte r it, and the $ in S is in cell
O.

Proof: Suppose S is a substring at time N + M with the $ in cell O. Since
the e,(L) is to t he left of the endmarker in E(e/(-,)), we can use rule 1 in
reverse to conclude that the first N + M states in Ware correctly given.
No w by rules 12 and 13 the $ in CA2 moves to the right , changing each
state in E(e/(-,)) into a left-moving st ate . Because of the 2N _'s trailing
e,(L), no states to the right of e,(L) can affect any state in CA, until the
$ has passed the N cells containing E(e/(-,)) at time N + M . Th erefore,
by rule 13, every state in E(e, (L)) becomes a left mover, which, by rules
15 and 16 , passes through ce ll 0 eve ry other t ime step afte r time N + M .
The resulting sequence in cell 0 is W.

Conversely, suppose W has a !Wlth_preimage and is the temporal se­
quence in cell O. We can now work forward with rule 1 to deduce that
the first N + M states of S must be as they are given. Then suppose the
remaining 2N states are not as given. This obviously cannot be the case for
the states in CAl, since by rule 1 any other state than"_" would propagate
to cell 0 before time 3N + M 1 but in fact no such states appear in cell O.
Now suppose in CA, we have something other than E(e/(-'))' IT any of the
states are not s-states, then by rules 12, 14 , and 15 these states never make
it to cell O. Therefore, S must be a substring of C(N+M), with its $ in cell
O.•

T h eorem 4 .1. CATS is NP-com plete .

Proof: From lemma 4.2, W has a K 'h-p reimage (K = IWI = 3N + M) if
and only if S is a substring at time N + M . But S is a substring at time
N + M if and only if it has an N + M,h -preimage, which in turn is true (by
th e proof of th eorem 3.1) if and only if '7 is satisfiable . Therefore, W has
a Kth-preimage if and only if 'Y is satisfiable. This plus lemma 4.1 proves
the t heorem. •

5. Discuss ion

We have seen that it is possib le in principle to construct a CA for which the
preimage, recurrence, and temporal sequence problems are NP-complete,
and for wh ich the limit language is NP -hard, but the CA that is constructed
is quite complicated. It is, however1 quite likely that much simpler CAs can
be constructed with similar properties . What has been accomplished here
is a starting point for further investigations of the questions raised in the
introduction. Now that at least one CA is known with these properties, it
should be easier to find others.

NP -Complete Problems in Cellular Automata 473

An interest ing new quest ion arises regarding the increase in complex ity
as a function of time that was observed in many CAs in [5]. In particular,
consider the sequence of languages r~ whose limi t forms the limit languag e
I' ?". Because roo is NP-hard, the computational complexity of I" increases
as a superpolynomial function of t provided (as is universally be lieved) P
NP. But it was noted in [5J that r t is a regular lan guage for any fixed t .
Furthermore, it was conjectured in [5) that the regular lan guage complexity
of r-, as measured by the minimum number of states required to recogniz e
it in a de terministic finite automaton, increases as a fun ction of t for a wid e
class of CA s. In particular, for CAs whose behavior is sufficiently complex
(what are referred to in reference 151 as class 3 and 4 CAs) , the regular
language complexity seems to grow rapidly, perhaps at a superpolynomial
rate. Now mu ch more is understood about the computational complexity of
languages (assuming the truth of the P # NP conjecture) than about regu­
lar language complexity in cellular automata. Therefore, if computational
complexity cou ld te ll us something about regular language complexity, it
would be easier to answer another question raised in 13], namely: is regu­
lar language complexity gene rically increasing in cellu lar automata? One
might be able to conclude, for example, t hat in any CA with an NP-hard
limit lan guage, regu lar language complexity increases superpolynomially.
However , it is not a t all clear that there is any such relation. The problem
is reminiscent of the subt le an d deep relati onship between computat ional
complexity and circuit complexity [e.g., [11]). T his prompts the following
new question: is there any relation between the computational complexity
of languages generated by CAs in fin ite t ime and their regular langua ge
complex ity ?

A cknowled gem ent s

The work in this paper was lar gely inspired by the CA '86 conference, and
I wou ld like to thank the organizers for a stimulating conference. I also
wish to thank D. Joyce and S. M. Selkow for helpful discussions.

References

[11 S. Wolfram, "Approaches to com plexity engineering", PhysicaD. 22 (1986)
385--399 .

[2] S. Wolfram, ed., Th eory and Applications of Cellular Auto mata, (World
Scientifi c, Singapore, 1986).

{3] S. Wolfram , "Twenty pro blems in the th eory of ceUular au t omata" , Physica
Scripta, T9 (1985) 170.

[41 M . R. Garey and D. S. Johnson , Computers and Intract ability, (W .H. Free­
man, New York, 1979) .

474 Frederic Green

[5} S. Wolfram, "Computation theory of cellular automata" , Camm. Math.
Phys .,96 (1984) 189.

[6] S. Wolfram, "Random sequence generation by cellular automat a" , Adv.
Appl . Math. , 7 (1986) 123.

17} L. Hurd, "Formal language characterizat ions of cellular automaton limit
sets" , Complex Systems, 1 (1987) 69.

IBJ A. R. Smith TIl, "Real-t ime language recognition by one-dimensional cellular
automat a" , J . Comput. System sa.,6 (1972) 233.

[9] R. Sommerhalder and S. C. van Westrhenen, "Parallel language recognition
in constant time by cellular automata" I Acta Informatica, 19 (1983) 397.

[10] O. H. Ib arr a, M. A. Palis, and S. M. Kim, "Fast parallel lan guage recognition
by cellular automata", Theor. CompoSci., 41 (1985) 231.

[11] U. Schoning, Complexity and Structure, (Springer-Verlag, Berlin, 1986).

