Complex Systems 2 (1988) 91-141

Parity Filter Automata*

Charles H. Goldberg
Department of Computer Science, Trenton State College,
Trenton, NJ 08625, USA

Abstract. Parity filter automata are a class of two-state cellular
automata on the integer grid points of the real line in which cells are
updated serially from left to right in each time period rather than syn-
chronously in parallel. Parity filter automata support large numbers of
“particles,” or persistent repeating configurations, and the collision of
these particles is frequently a “soliton” collision in which the particles
interact, but from which both emerge with their identities preserved.
This paper presents a theory of such parity filter automata. Period
and velocity theorems for particles, existence and uniqueness theo-
rems, conservation and monotone nonconservation laws, duration and
phase shifts in soliton collisions, and other results are proved.

1. Introduction

It is rare that a class of objects can be understood almost completely. This
paper describes just such a happy circumstance.

Parity filter automata are a class of two-state cellular automata on the
integer grid points of the real line in which cells are updated serially from
left to right in each time period rather than synchronously in parallel as is
the case for most cellular automata studied. Each parity filter automaton is
characterized by the radius r of the neighborhood of cells whose state values
influence the updating of the current cell. In a parity filter automaton, the
neighborhood consists of the r cells to the left of the central cell in the current
time period and of the central cell and the r cells to the right of it in the
previous time period. Except if all of these state values are zero, the updated
state value at a cell is the modulo 2 inverse of the sum of the state values in

the neighborhood.

*The author wishes to thank Professor Ken Steiglitz of Princeton University for intro-
ducing him to this class of cellular automata, for showing him many examples, and for
sharing his conjectures, many of which are proved in this paper. The author also wishes to
thank the Princeton University Department of Computer Science for use of their computer
systems in preparing this manuscript, and for the many courtesies extended to him while
a Visiting Faculty Fellow at Princeton.
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Parity filter automata are of interest because they support large numbers
of “particles,” or persistent repeating configurations, and the collisions of
these particles is frequently a “soliton” collision in which two particles inter-
act, but both emerge from the collision with their identities preserved. This
paper presents a theory of such parity filter automata.

Parity filter automata were first defined by Steiglitz and studied by Park,
Steiglitz, and Thurston in [1]. Steiglitz, Kamal, and Watson [2] use the
phase conjugations in certain soliton collisions in a parity filter automaton
to construct a carry-ripple adder.

This paper puts the empirical findings in [1] and [2] on a solid foundation.
Stability of finite configurations is proved as are existence and uniqueness of
classes of particles. Formulae are derived for velocity and period of particles.
Sufficient conditions for soliton collisions are derived and formulae proved for
phase and spatial displacements in soliton collisions.

Infinite families of complex particles described in [3] are reinterpreted
as systems of orbiting particles, permitting finite bounds on the number of
particles.

Conservation principles are defined and used to analyze time reversable
phenomena. A monotone nonconservation principle analogous to the Second
Law of Thermodynamics, is proved and used to analyze time irreversable
phenomena including the ultimate resolution of any initial configuration into
a collection of particles.

Prior to the work in this paper, nearly everything that was known about
parity filter automata was derived from empirical studies. In contrast, all
results in this paper are proved.

2. Overview

The paper is organized as follows. Section 3 starts with very general defini-
tions of two major classes of cellular automata, parallel synchronous cellular
automata in which all states are updated simultaneously, and serial cellular
automata in which states are updated in a predetermined order and newly
updated state values affect the calculations of new state values at neighbor-
ing nodes in the same time period. Attention is then specialized to serial
automata on the integer points of the real line and to a family of updating
rules, Parity Filter Automata, that are based on the parity of the sum of
nearby state values except for one case necessary to preserve regions of zero
values.

The Stability Theorem, stated in section 4 and proved in section 7, shows
that for such cellular automata, finite initial configurations remain finite at
all subsequent times. Pencil and paper studies, including the original proof of
the Stability Theorem suggest a strong relationship between the state values
st and sit] where r is the radius of the updating neighborhood N;. Time-
shifted state transition diagrams are defined in section 5 to take advantage
of this fact by placing related states under one another.

We then show in section 7 that only one out of every r 4 1 consecutive
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vertices undergoes a state change in each time period, leading to a Rapid
Updating Rule, and we define the byte size for a parity filter automaton to
be r + 1 adjacent state values. Small configurations (i.e., less than one byte
in width) are then analyzed completely. They are all, with the exception of
the zero and single nonzero bit configurations, particles for which the average
velocity and period can be calculated from the initial configuration. Their
periods and velocities turn out to depend only on the radius r of the updating
window and the number of nonzero states in the initial configuration.

In order to derive similar descriptions for large particles, the concept of
energy of a configuration is defined in section 9. The evolution of a large
configuration has a simple description in terms of the evolution of its en-
ergy states, from which formulae for the average velocity and period of large
particles are derived in section 10. These formulae explain the empirically
determined frequencies of particle periods and velocities in [1].

The energy of a configuration provides a unifying principle that pervades
the theory and simplifies the recognition, statement, and proof of results. The
fundamental properties of energy are given in the suggestive, but probably
misnamed, “Second Law Of Thermodynamics” that says that energy evolves
monotonically, but not strictly monotonically, downhill, and in the Critical
Transition Lemma that give the details of when energy is conserved and when
it is lost.

Impossible configurations and energy distributions are discussed in section
14, leading to upper bounds on the size, period, and number of particles for
a parity filter automaton. Existence and uniqueness theorems for particles
of period 1 are proved in section 15, and uniqueness is extended to other
particles in section 16.

Collisions of particles are analyzed in section 18, In the absence of null
transition windows, they are soliton collisions in which the identities of the
two particles are preserved. A precise description of the velocity of each
particle during collision, and the spatial and phase displacement of each
particle after the collision is given. Sufficient conditions for soliton collisions
are given which explain some of the soliton frequencies in [1].

Based on an understanding of soliton particle collisions, some of the “com-
plex particles” in [3], e.g., those in figures 2, 10, and 15, may be reinterpreted
as collections of particles with the same average velocity, but different fine ve-
locity structure or phase. If two such particles are sufficiently close together,
at certain phases of their periods they will touch, collide, and cross one an-
other. However, since their average velocities are the same, the particles
will not move apart after the collision, and so they will recollide and recross
each other. The result is an orbiting system of simpler particles defined and
analyzed in section 19.

Section 20 studies tangent or osculating particles. In section 21, collisions
of small particles are shown to be soliton collisions, and in section 22, the
“soliton collisions” used in [2] to construct a carry-ripple adder are shown to
be in reality the product of three successive soliton collisions of a system of
almost orbiting particles. The paper closes with questions for further study.
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3. Definitions

Although all the results of this paper are specific to the class of cellular au-
tomata called parity filter automata, the definitions in this section are given
initially in far greater generality for two purposes. First, the more general
definitions point the way toward possible generalizations of the results of
this paper. If they have abstracted the right features of the more specialized
examples, they may shed some insight into which properties are special to
these examples and which properties flow from deeper properties of cellular
automata in general. At the very least, they will stimulate discussion about
what the proper generalizations should be.

The second reason is simpler. The more general definitions provide a
framework for relating the parity filter automata studied in this paper to
the more familiar parallel synchronous cellular automata. They are all in-
stances of the more general cellular automata defined here, and their points
of divergence are better seen in this context.

Definition 1. A simply transitive regular graph is a regular graph G =
(V,E) and a group ® of automorphisms (i.e., self-maps) of G such that for
every v,w € V there is exactly one automorphism ¢,,, € ® that maps v to
w.

Looking ahead to the next definition, that of a cellular automaton, we
see that the notion of each node having the “same” updating rule would
not make sense unless every vertex had the same degree (i.e., the graph is
regular), and further unless there is a unique way of defining corresponding
isomorphic neighborhoods. A group of automorphisms of the graph, i.e.,
maps of the graph to itself, provide a canonical or standard way to equiva-
lence neighborhoods. The transitive property of the group of automorphism
means that there is at least one self-map in the group that takes any given
vertex v to any other given vertex w. Strengthening this property to simply
transitive means that there also aren’t too many automorphisms, i.e., that
there is one and only one automorphism of the graph carrying v to w. The
group property of the set of self-maps of the graph also provides a “com-
patibility” condition on the canonical equivalences of neighborhoods: if the
equivalence of a neighborhood of u with a neighborhood of v is composed
with the equivalence of the neighborhood of v with a neighborhood of w, the
resulting equivalence is the same as if the neighborhoods of « and w were
compared directly.

Fortunately, the examples all satisfy these conditions in a straightforward
way; otherwise, the definitions of their updating rules and behavior would
not make much sense.

Definition 2. A cellular automaton is a family of identical microprocessors,
one for each node of a simply transitive regular graph G. There is a set S of
possible states of an individual microprocessor, independent of vertexv € V,
so that at any timet, each microprocessor P, is in a state s, € S. Surrounding
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each vertex v is a neighborhood N, of vertices. These neighborhoods are
compatible with the automorphism group in the sense that N, is mapped
to N,, by the automorphism @,,,. The state s'*! of the microprocessor P,
at time t + 1 is determined from the states of neighboring microprocessors
by a rule st' = F,([s{"*“)],en,). The function F, is independent of time
and the functions F, and F, are identical when the wth argument of F,, is
identified with the ¢,,(w)th argument of F,. The time dependence function
t(v,w) always has value t or t + 1, but the value can depend on v and w.
The rule F,, or more precisely the collection of rules { F, | v € V' }, is called

the updating rule of the cellular automaton.

Definition 3. An additional condition usually placed on the updating rule,
the null stability condition, is that the distinguished state value 0 is self-
perpetuating in the sense that st¥' = 0 whenever s!{, = 0 for all w € N,,.

All cellular automata in this paper satisfy the null stability condition. The
function #(v,w) in the update rule is the subject of the next two definitions.

Definition 4. An updating rule for a cellular automaton is called parallel
synchronous if (v, w) =t for all vertices v,w € V.

In a parallel synchronous cellular automaton, the state si¥! of the mi-
croprocessor P, at time ¢ + 1 is entirely determined by the states s, of the
microprocessors at the neighboring vertices w € N, at time ¢. In effect, the
states of all the microprocessors are simultaneously updated in parallel from
time ¢ to time ¢t + 1. Conway’s “Game of Life” and the automata studied by
Wolfram [5,6] are parallel synchronous cellular automata.

Definition 5. An updating rule for a cellular automaton is called serial if
there is a total order relation ‘<’ on V preserved by the automorphisms of
® and if

_Jt+1 ifw <
t(v,w)_{ i ifw>v.

In a serial updating rule, microprocessors are updated from time ¢ to
time ¢ + 1 in sequence, starting at the smaller elements of V' and proceeding
toward the larger elements of V. As soon as a state value is updated, the new
value is immediately available to neighboring nodes for use in their updating
in the same time period. Steiglitz [1,2] calls serial updated cellular automata
filter automata because their behavior resembles Infinite Impulse Response
(IIR) digital filters. Serial updating arises naturally when one simulates a
cellular automaton on a single processor von Neumann computer.

Example 1 (The Game of Life) The graph G consists of the integer grid
points in the plane and edges connecting horizontally and vertically adjacent
grid points. Automorphisms ® are integer translations in two dimensions.
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The state set S is the set {0,1}, with 1 meaning that the processor at a
vertex is “alive” and 0 meaning that it is “dead.” The neighborhood Ny,
of a grid point (x,y) consists of the nine points {(z',y) | |z — 2| < 1
and |y — y'| £ 1}. Updating is parallel synchronous. Using the traditional
anthropomorphic terminology of this example, a new cell s} =1 is “born”

at a previously unoccupied node s(z =0 if and only if the sum of the state
values at the nine points of its neighborhood is 3; a “living cell” s, ,, =1

“dies of loneliness” at time t+1, i.e, s(f,) = 0, if the sum of the state values
in its nine point nexghborbood is J‘ess than 3, it “dies of overcrowdmg, ie;
H'l) = 0, if the sum is greater than 4, and it “lives,” i.e., s(r W = = 8, 9 = 1

s
}tbe sum is 3 or 4.

Example 2 (Parity Filter Automata) The graph G consists of the inte-
ger grid points on the real line with edges connecting adjacent integer points.
Automorphisms are integer translations. The state set S is the set {0,1},
and the neighborhood N, of a point = is the symmetric interval of 2r + 1
points centered at z, i.e., N, = {a' | |zt — 2’| < r}. The radius r of the
neighborhoods is a parameter defining a family of parity filter automata.
The updating rule is

A = Pliva 35—11 S 3.1:+1a 3::-}-:')
0 ifstt 4. st 45t .sjc_H + -+ s, s odd;
1 ifsf oo sBti st 468, +-- -+t is even
and nonzero;
0 if st - st st + st 4+ + sty s zero.

Updating is serial from left to right.

Example 3 (Pascal Triangle modulo p) The graph G consists of the in-
teger grid points on the real line with edges connecting adjacent integer
points. The state set S = Z, = {0,1,...,p—11}, the integers modulo p. The
updating rule, stt' = (st_, + si,,) mod p, is parallel synchronous, but the
neighborhood N, = { —1,z+1} is a deleted neighborhood in the sense that
it contains points near x, but not z itself. If the starting states of the vertices
of the automaton are all zero except for a single state of 1 at the origin, the
automaton evolves into a state where the nonzero vertex states are binomial
coeflicients modulo p separated by single zero states. The two-dimensional
plot of the time evolution from this initial state is a Pascal Triangle modulo
p with fractal-like appearance (see figure 1).

Definition 6. Following Wolfram [5], we call an updating rule totalistic if
the new state s'*' depends only on the sum of the state values at vertices

w € N,.
s = F( X sifom)

wEN,
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Figure 1: Pascal Triangle modulo 2.

Parity Filter Automata and Pascal Triangle automata are totalistic, al-
though the neighborhoods in the Pascal Triangle examples must exclude the
center point to satisfy the definition. (s. does not appear in the sum.) Any
totalistic rule can be made nontotalistic by enlarging the neighborhoods, but
the converse is not true. The Game of Life fails to be totalistic because the
updated state values depend on both the current state and the neighborhood
state sum at a point.

4. Stability

In general, serial updating rules on a line automaton are unstable in the
sense that finite configurations at time ¢ can (and usually do) evolve to
configurations at time ¢ + 1 that extend infinitely far to the right. The
Stability Theorem proves that this does not happen in parity filter automata.

Starting with the Stability Theorem below, attention will be specialized
to the class of Parity Filter Automata.

The set of states si: that can be influenced by the state value s at vertex v
and time t expands in a cone of influence from v. For parallel synchronous
updating rules, if r is the radius of N,, that is, the maximum distance (i.e.,
number of edges) from v to any w € N,, then s, cannot be influenced by s
if dist(v,w) > r(t' — ). The window radius r is a natural upper bound on
the speed of propogation of state information in the automaton, which we
call the speed of light in the automaton.

For general serial updating rules, the cone of influence satisfies the same
relationship if w < v, but it is possible for s, to affect s5* for all w > v.

Definition 7. A cellular automaton is called stable if whenever only finitely
many vertices are in nonzero states at time t, there will be only finitely many
vertices in nonzero states at time t + 1.

All parallel synchronous cellular automata with neighborhoods of finite
radius are stable by this definition. The principal theorem of this section
asserts that parity filter automata are stable in this sense.

Theorem 1 (Stability Theorem) If the state of a parity filter automaton
at time t contains only finitely many nonzero values, then the state of the
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automaton at time t + 1 will also contain only finitely many nonzero values.
Moreover, if s} is the leftmost nonzero value and s! the rightmost nonzero
value at time t, then s?f:_'_l_k =0 and .sf:_:k =0 for all k > 0.

The Stability Theorem was the first major result I proved about Parity
Filter Automata. Its original proof was of necessity long because there was
then no machinery with which to work. In this paper, we first develop the
fundamental machinery of Parity Filter Automata implicit in the original
proof, most particularly the concept of time-shifted state diagrams. The
Stability Theorem is now proved in section 7 as an easy consequence of the

Rapid Updating Rule.

5. Time-shifted state diagrams

+

The state value S;- ! is of necessity influenced by s;~ +r» the state value that
t+1

enters the computational window for the first time in the calculation of s3™".
While it is always possible for a state value in a serially updated automaton
to propogate to the left at the speed of light r, in a parity filter automaton,
nearly all state value propogation is of this kind. For this reason, many
properties of parity filter automata are easier to describe when the state
values at time ¢ + 1 are shifted r places to the right relative to those at
time ¢.

Definition 8. The time-shifted state diagram of an initial configuration and
cellular automaton defined on the integer points of the real line is the array
of state values

{a} = {sj_u}-

6. Ewvolution of configurations

For clarity of exposition, all subsequent space-time diagrams of the states
of a parity filter automaton will be time-shifted diagrams, with state values

at time t + 1 shifted right r places relative to those at time . Thus the

computational window for state si*! previously drawn as

t t ¢
S" Si+1 .- 5’+1.
t41 t+1 41

imr cer Sio1 5

S

will now be drawn as the (r + 1) x 2 rectangle

t t t
S Sit1 S Sitr
i+1 i+1 41

e i 8,1 8

or using the shifted notation a% = st_,,,

at s, A a

jor i-1 3
i+1 t+41 i+1
(IJ—_,. sail a,-_l aj
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Four special sets of transition values in the computational window are
singled out for special names because they play special roles in the evolution
of configurations.

Definition 9. The computational window

00 ... 0
0 a4

is called the null transition window and the associated state transition a null
transition.

It is the only exception to the usual case of calculating the new state

value s{*! by reversing the parity of the sum of the neighboring state values

st =14+ st +si+sly,, +--+sl, (mod 2).
which is equivalent to the more symmetric relationship
St s st st sl s, =1 (mod 2).

All other transitions are called parity reversing because they satisfy this
equation for the calculation of s{*'. The null transition is the only parity
preserving transition that satisfies similar equations with the term 1 changed
to 0.

A large part of the work in the proofs of theorems in this paper is de-
voted to proving that null transitions do not occur, so that all computational

windows considered reverse parity.

Definition 10. The computational window

10 ... 0
0 @ e 0

is called the time irreversable transition window and its associated transition
a time irreversable transition.

Although the time irreversable transition satisfies the parity reversing
rule, it is the only valid computational window that would not represent a
valid transition if the roles of times ¢ and ¢ + 1 were reversed, that is, if time
were “run backward” and updating done from right to left.

Definition 11. The computational window

0 ... 01
G wie 00

is called the left particle boundary window and its transition a left particle
boundary transition because it occurs at the leftmost nonzero state value in
a configuration. The computational window

00 ... 0
10 ... 0

is called the right particle boundary window and its associated transition a
right particle boundary transition.
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Left particle boundary transitions occur at the leftmost nonzero state
value in a configuration, as well as at the leftmost nonzero state value of any
subconfiguration whose evolution at time ¢ is not influenced by the nonzero
states to the left of it. In particular, left particle boundary transitions occur
at the leftmost nonzero states of subconfigurations called particles, to be
studied next.

Similarly, right particle boundary transitions often occur at the rightmost
nonzero state values in a configuration, as well as at the rightmost nonzero
state value of any subconfiguration whose evolution at time ¢ will not influ-
ence the evolution of nonzero states to the right of it. In particular, right
particle boundary transitions will occur at the right end of particles.

7. Dynamics of small particles

Definition 12. A small configuration is a configuration of the automaton
in which all nonzero states are contained within a span of r + 1 consecutive
vertices.

Definition 13. The number v+ 1 is called the byte size for the parity filter
automaton.

We describe the evolution of a small particle with k£ nonzero states. If
k = 1, then the configuration “dies,” i.e., decays to the zero configuration
in one time period because no computational window has more than one
nonzero value. We assume henceforth that 2 < k < r+1. Using time-shifted
diagrams, the situation is as follows.

0 by by ... b, 0 0 ... 0 0

0 g @ ... ¢ @ a ... G G

where by is the leftmost nonzero state value at time {. All computational
windows to the left of the one for ¢ are null windows, and the window for ¢q is
a left particle boundary window. Thus ¢; = 0. Thereafter, the computational
window becomes “primed” in the sense of the following definition.

Definition 14. A computational window with time-shifted diagram

t t t

a a a

T -1 ¢]
t+1 1 t41
a;n, ... a;; @

is called paired if a;_,- = a;-'f_} for all ¢ in the range 1 < i < r. It is called
primed if there is exactly one in therange 1 < < r for which a;-_,--l-a;-ﬂ =
and a}_; = a;t} for the remaining i in this range. The etymology of the term
derives from “priming a pump” and not from prime numbers.

Since a primed window cannot be a null window, af*! = aj- for primed
windows. If a paired window is not null, then a{*' = 1 — a! because parity

]
must be reversed.
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Lemma 1 (Primed Window Lemma) Once a computational window be-
comes primed, it remains primed for v consecutive vertices and then it be-
comes paired.

Proof. First we show that if the window for af{H is primed but the window
for a{t] is not primed, then the unmatched pair of states is ait} # a} ,
Consider the time-shifted diagram

t 1 t t
G’j-—'r 1 aj—r TR | ; =1 G.j

t+1 t+1 t4+1 41
G',J i | aj—r vae ag—l aj

i+1
=1

If ¢ were greater

Because af_ ;+aiti =1 for somei in the range 1 € ¢ < r, the window for a;

t+1
—r—1"

is not null Thus parity is reversed and a*
than 1, the window for aH'
J_l + at+1 1

As a result, the next » — 1 computational windows are not null windows
and therefore reverse parity. We easily show that a%t} = a’,;for 0 <7 < r—1.
Thus each of these computational windows is primed and the window for a;ﬂ
is paired.

The Primed Window Lemma provides an extremely rapid way of updating
state values from time ¢ to time £+ 1, which is expressed in the next theorem
in the form of a three-state automaton. The updating mechanism is either
in its initial state SLPB (“seeking a left particle boundary”) where it copies
strings of zero state values, or in the state PW (“primed window”) where it
copies possibly nonzero state values unchanged from time ¢ to time ¢+ 1, or in
the state CTBB (“critical transition on the byte boundary”) where it inverts
a state value and continues in the PW (“primed window”) state. Updating
is extremely rapid because at most one of each r 41 consecutive state values
changes from time t to time t + 1, and the sum of the state values in the
computational window never needs to be calculated.

j—r—1 — a

1 would be pr]med We conclude that ¢ = 1 and

Theorem 2 (Rapid Updating Rule) A parity filter automaton may be
updated from time t to time t + 1 by the following automaton with three
states SLPB, PW, and CTBB. State SLPB is the initial state.

+1

State SLPB If a zero state aJ = 0 is encountered, then at is set to zero

and the automaton remains in state SLPB to read a},,. If a} =1 then
a_‘,-“ is set to zero, and the automaton enters state PW.

State PW r consecutive states a’ are copied to the corresponding a§+1.

If all copied states were zero, the automaton returns to state SLPB;
otherwise it enters state CTBB to process the next node.

State CTBB The current state value a} is inverted, i.e., aj-"'] = 1 —a} and

the automaton enters state PW regardless of the state value at.
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Proof. All cases follow immediately from the Primed Window Lemma and
the definition of the state transition rule for parity filter automata.

The Rapid Updating Rule provides a simple proof of the Stability The-
orem, restated here in terms of time-shifted state diagrams. The original
form of the Stability Theorem is immediately seen to be equivalent to the
time-shifted version of the theorem, and therefore follows as soon as theorem
3 is proved.

Theorem 3 (Stability Theorem, Time-shifted Version) If the state of
a parity filter automaton at timet contains only finitely many nonzero values,
then the state of the automaton at time t + 1 will also contain only finitely
many nonzero values. Moreover, if a} is the leftmost nonzero value and a},
the rightmost nonzero value at time t, then ajf{_, = 0 and aj¥} ., = 0 for

all k > 0.

Proof. The Rapid Updating Automaton is in state SLPB copying zero states
until a} where it switches to state PW after setting aj*! = 0. This proves the
assertion of the Stabiltiy Theorem at the left side of the configuration. At
the right side, if a!, = 1 is encountered in the state CTBB, then al}! = 0, the
next r zero states a',,,, a5, -- ., al,,, are copied to ajtl,, aitl,, ..., attl,
and the Rapid Updating Automaton enters the state SLPB forever, since
there are no remaining nonzero states to the right. If on the other hand af,
is encountered as one of a group @, ,; ., @yiri1s ooo Gpyjo 0 <J STy
of r state values copied by the Rapid Updating Automaton in the state PW,
then a},,; = 0 is encountered in the state CTBB. In this case, att}; is set
to 1, which turns out to be the rightmost nonzero state value at time ¢ + 1,
the Rapid Updating Automaton switches to state PW to copy r consecutive
zero states before returning to the state SLPB forever. In either case, the
rightmost nonzero state at time ¢t + 1 is af,;"_,l_j for some 7,0 < j < r, and the
conclusion follows. If a!, is encountered in the state SLPB, then o' = 0,
the next r zero states are copied with the Rapid Updating Automaton is in
state PW, and the Rapid Updating Automaton enters state SLPB forever.
In this case, the rightmost nonzero state value at time ¢ + 1, if any, is to the

left of %', and the conclusion also follows. B

Evolution of small configurations

Returning to the analysis of small configurations and the singly subscripted
notation introduced for small configurations, the Rapid Updating Theorem
implies that all states at time £+1 to the left of ¢y are zero, that ¢ = 0 as the
automaton enters the primed window state PW at a left particle boundary,
and that ¢; = by, ¢ = ba, ..., ¢, = b,. If by is the only nonzero state, the
automaton returns to state SLPB and stays there copying all the remaining
zero states. If at least one additional b; is nonzero, the automaton enters
state CTBB, sets ag = 1, and returns to state PW to copy r zero states and
then to state SLPB to copy the remaining zero states so that a; = 0 for all
7 > 1. Thus the window for ¢ is a left particle boundary window terminating
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a sequence of null windows extending to minus infinity, and the window for
a, is a right particle boundary window followed by nothing but null windows
extending to plus infinity.

The dynamics of small configurations can now be described precisely. If
the number of nonzero state values k = 1, then the configuration dies in
the next time period. If k& > 2, the configuration transforms in each time
period to another configuration that also has k nonzero state values contained
within the span of a single byte of size r + 1. Each individual state value
of the configuration remains fixed in the time-shifted diagram, except for
the leftmost nonzero state which makes a quantum leap of exactly one byte
width to the right. Thus the configuration transforms like a caterpillar tread
of circumference 7 + 1 or a perfect undamped accoustical delay line.

In the second time period, the second nonzero state value (from the left)
of the configuration is the leading edge of the configuration, and it jumps
r + 1 positions to the right in the time-shifted diagram. Thus, after k time
periods, each of the k nonzero state values in the initial configuration has
jumped r + 1 positions to the right on exactly one occasion and remained
fixed in the other k — 1 transitions. The result is that after k time periods,
the original configuration reappears, displaced by r + 1 positions to the right
in the time shifted diagram.

In the unshifted diagram, the displacement d = kr — (r - 1) to the left.
Although a small configuration appears to move with average velocity v =
dik=r— 2}"—1, which is less than r, the speed of light, in fact this motion is
composed of two parts:

1. Motion of the individual bits of the configuration to the left at the

speed of light, and

2. Rotation of the nonzero states of the configuration by quantum leaps
of 7 + 1 vertices to the right.

If n is a divisor of the byte size r + 1, and the initial configuration con-
sists of n repetitions of a subpattern of width (r + 1)/n vertices, then each
subpattern will have k/n nonzero states, and the configuration will repeat
after k/n time periods, a divisor of the full period k predicted for general
small configurations with k nonzero states within one byte.

Definition 15. A small configuration is called a particle if it repeats after
p time periods at a displacement d, to the right in the time-shifted diagram
and d = pr — d, to the left in the unshifted diagram.

Theorem 4 (Small Particle Period and Velocity Theorem) All small
configurations with k > 2 nonzero states within a span of one byte of size
r + 1 consecutive vertices are particles. Their period is k, shifted displace-
ment d, = r + 1 to the right, unshifted displacement d = kr — (r + 1)
to the left, average shifted velocity v, = (r + 1)/k and unshifted velocity
v = (kr—(r+1))/k. Ifn divides r + 1 and the initial configuration consists
of n repetitions of a subpattern of width (r + 1)/n, then there is a divisor
period of k/n with displacements d,/n and d/n.
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]
Unshifted Diagram Time-shifted Diagram

Figure 2: Electrons for r = 4.

Figure 3: Unshifted configuration diagram for five small particles,
=5,

8. Examples of small particles

The simplest examples of small particles consist of r +1 consecutive nonzero
state values. In addition to its full period & = r 4+ 1, with displacements
dy =r+1and d = (r+ 1)(r — 1), it has a divisor subperiod of k/n = 1
based on the divisor n = r + 1. The displacements for this subperiod are
d; =1 and d = r — 1. The average velocity, v = r — 1, for this particle is the
fastest possible by the Stability Theorem, which is why this particle is called
a “photon” in earlier literature [1,4].

The slowest possible small particle consists of exactly two nonzero states.
(There are slower, even motionless, larger particles.) If the two nonzero states
are adjacent, we have an “electron” or “inchworm” that moves with period
2 in cycles of one short step and one long step (see figure 2).

Figure 3 shows a collection of small particles of differing velocities for
r = 5. The influence of density (i.e., number of nonzero states) on velocity
is clearly illustrated.

Figure 4 shows their time-shifted diagrams in which the “rotation” of
nonzero states is more evident because the component of the particle evolu-
tion consisting of uniform motion of states to the left at the speed of light
has been factored out.

Figure 5 shows something called the energy diagram of the same five
particles in the sense defined in section 9.

Wy, My,

Figure 4: Time-shifted configuration diagram for five small particles,
T =a.
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I M

Figure 5: Energy diagram for five small particles with » = 5.

Spaced particles

Given a small particle in the parity filter automaton with window radius r,
there are associated “spaced” particles in the automaton with window radius
v’ = n(r+1)—1 formed by inserting n — 1 zero states after each state, zero or
nonzero, of the original particle. Thus the “photon” 111 for r = 2 becomes
the more tenuous particles 101010 for » = 5 and 100100100 for r = 8. The
full period of a “spaced” small particle remains k, the same as the original
particle, but the shifted displacement d; and velocity v, are multiplied by n.
Any divisor periods present in the original particle are also present in the
spaced particles.

9. Dynamics of large particles

We start by considering arbitrary, large configurations, i.e., those for which
the nonzero states cannot be contained in a single byte of width r +1 consec-
utive vertices. Only configurations with a finite number of nonzero states at
some time { are considered in this paper. The Stability Theorem then guar-
antees that such configurations will remain of finite extent for all subsequent
time periods. We reserve the word particle for the following special class of
configurations.

Definition 16. A configuration or state of a cellular automaton is called a
particle if

1. It reappears after p time periods at a right displacement d, from its
original position in the shifted diagram, and

2. In each time period, there is exactly one left particle boundary transi-
tion and one right boundary transitition.

We remark that small particles, as defined in section 7, satisfy this def-
inition. For such small particles, the period p is the number k of nonzero
states, a quantity preserved in all phases of the particle’s evolution. This
result does not generalize in the most obvious way to large particles. The
period of a large particle is not equal to the number of nonzero states in the
particle, nor is the number of nonzero states even constant over time during
the evolution of a large particle. The following quantity, called the energy
of a configuration, takes over the role of the number of nonzero states of
a small configuration in a way that permits generalizing the results about
period and velocity to large configurations. It is then shown in retrospect
that the calculations of period and velocity based on energy that apply to
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all particles, large or small, give the same results for small particles as those
based on the number of nonzero state values.

Definition 17. The energy of a configuration is the sum

oo
E= 3 loi—a .,

i=—o00

For small particles, each nonzero state makes exactly two contributions
to the sum, so the energy £f = 2k at all times ¢.

The energy of a configuration may be decomposed into a double summa-
tion to show the independence of each relative position within a byte.

r o0
&= Z E |a;+n(r+1) it “j‘+(n—1)(r+1)!

j=0n=-—oco0

There is a contribution to the energy whenever a relative position in a byte
is turned either on or off relative to the state of the same bit in the previous
byte. Consequently, the energy of a (finite) configuration is always even.
The most important fact about energy is contained in the following theorem,
whose proof occupies the remainder of this section.

Theorem 5 (Second Law of Thermodynamics) The energy of a con-
figuration is never increased, i.e., £ < &*.

Corollary 1. Every configuration evolves to a configuration of constant en-
ergy.

To prove the Second Law, we must study the transitions of a configuration
with particular regard to where the energy associated with a position at
time t appears at time ¢ + 1. The first nonnull window encountered is the
left particle boundary window associated with the leftmost nonzero bit by of
the configuration. (All diagrams are time-shifted.)

0 bo b]_ e b‘r b.,-+1 e b2r+2 bZr+3
0 c e ... € Cg1 .v. Corgz Corys

Since ¢y = 0, the energy associated with by = 1 at time ¢ is not carried over
in the same position as energy associated with ¢, at time ¢ + 1. Instead,
we may consider this energy as being transformed into energy associated
with the priming of the computational window that occurs at a left particle
boundary. The conservation or reduction of total configuration energy will
depend on whether the energy associated with the primed window can be
retransformed into positional energy associated with another vertex of the
graph.

By the Primed Window Lemma, the windows for ¢, ¢q, ..., ¢, are primed
windows, so ¢, = by, ¢3 = by, ..., ¢, = b,. Since the previous byte was all
zero at both times ¢ and ¢ + 1, whatever energy was carried by by, by,...,b,
is still carried by ¢;,¢3,...,¢p.
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Definition 18. In the updating of a parity filter automaton, the calculation
of ¢; is called a critical transition if the following three conditions are satisfied.

1. The calculational window for ¢; is paired, i.e., ¢y = bi_1, ¢i—a = bi_a,
ey Cioyp = b,'_-,-.

2. ¢i_y_1 = 1—b;_._y, i.e., there was a state change on the byte boundary
in the previous byte.

3. Since the most recent left particle boundary, there is exactly one bit
of positional energy at time t that has not yet been transformed into
positional energy at timet + 1.

A transition satisfying these conditions is called a critical transition be-
cause what happens at ¢; determines whether a particle ends there or whether
it continues into the next byte. Critical transitions can only take place on
a byte boundary, i.e., a multiple of r + 1 positions to the right of the most
recent left particle boundary transition.

Lemma 2 (Critical Transition Lemma) If there is a critical transition
at ¢; then the following five cases, 1, 2al, 2a2, 2bl, and 2b2, describe what
can happen to the energy pending from the last left particle boundary.

Case 1 If b;_;, # 0 for some k with 1 < k < r, then there will be no
particle boundary at ¢;, the window will be primed from ¢;;1 to ¢y, so
the pending energy is still pending, and there will be another critical
transition at cipr41.

Case 2a If b;_), = 0 for all k with1 < k < r and b;—,—; = 0, then there
is a right particle boundary window at ¢;_, energy is conserved in the
sense that all positional energy encountered at time t starting at the
most recently encountered energy-bearing left particle boundary up to
the current right particle boundary reappears at time t + 1, and the
computational window has r consecutive paired zeros seeking the next
nonzero state at time t. Case 2a has two subcases.

Case 2al Ifb; = 0, then there is a null transition at ¢;.

Case 2a2 Ifb; = 1, then there is another left particle boundary tran-
sition at ¢;.
Case 2b If b, =0 forall k with1 <k <r and b;_,_, = 1, then there is a
time irreversable transition at ¢;_, and there are two subcases.

Case 2bl If b; = 0 then two bits of energy present at time t between
the most recent left particle boundary and ¢; are lost at timet+1.

Case 2b2 If b; = 1 then there is an unusual left particle boundary
window at ¢; which did not contribute additional energy at timet,
the windows are primed from ¢;4; to ¢;4, so energy from a previous
left particle boundary is still pending, and there will be another
critical transition at ¢;yr41.
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Proof. In Case 1, b;_; # 0 for some k with 1 < k < r. Thus parity is
reversed in the calculaton of ¢; and ¢; = 1 — b;. Calculating the energy at
position 2,

[Cz' - Ci—r—]l = [1 —b; — (1 — bpr-l)l
| = b + bi_ry|
= |bi— b,

I

Thus there is energy at ¢; at time ¢ + 1 if and only if there was energy at
b; at time ¢. Since the calculational window is paired when ¢; is calculated
from b;, the Primed Window Lemma implies that the next r windows will
be primed, the next r states will be copied unchanged, and that there will
therefore be a critical transition at ¢;4,41.

In Case 2, b;_; = 0 for all £ with 1 < k& < r. We break Case 2 into two
subcases depending on the value of b;_,_;. In Case 2a, the state b;_,_, = 0.

0 0 ... 0 b;
1 g ... B 0

Thus at the previous critical transition ¢;_,_; = 1 as shown and the win-
dow for ¢;_y is a right particle boundary window. There are two subcases
depending on the value of b;, and in both of them energy is conserved.

In Case 2al, the state b; = 0. Then ¢; = 0 as the result of a null transition,
and there is energy at ¢;, but not at b;. The part of the configuration between
the most recent left particle boundary and the right particle boundary has
transformed without loss of energy since the energy lost at the left particle
boundary is regained at ¢;.

In Case 2a2, the state b; = 1. Again ¢; = 0, but now there is positional
energy at both b; and ¢;. However there is a way of interpreting the energy
distribution that is consistent with Case 2al. We consider the energy at ¢;
as completing the energy transformation of the particle whose right particle
boundary window is at ¢;_;. We regard b; as the leftmost nonzero state of
a new particle. With this interpretation, the energy at b; is not expected
to appear at ¢;, but to go instead into energy associated with priming the
computational window at the start of a new particle. This happens in Case
2a2, as it did for the initial left particle boundary transition.

To summarize what happens in Case 2a, a right particle boundary window
is encountered. The energy of the primed calculational window is deposited
at ¢;, and energy is conserved. The difference between Cases 2al and 2a2
is that in Case 2al, there are one or more null windows before the leftmost
nonzero state of a new particle is encountered (if there is another one), while
in Case 2a2, the left particle boundary of the next particle is encountered
immediately at b;.

Definition 19. We call the situation of Case 2a2 osculating particles or
tangent particles. The defining characteristic is that the last bit of energy of
one particle transforms to the positon that the first bit of energy of the next
particle is leaving.
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In Case 2b, the state b;_,_; = 1.

1 0 ... 0 b;
0 0 .o O 0

Thus ¢;_y~1 = 0 to have a primed window for ¢;_;, and ¢; = 0 as in Case 2a.
The calculational window for ¢;_; is a time irreversable window. There are
two subcases, depending on the value of b;.

In Case 2bl, the state b; = 0. In this case, ¢; = 0 and its window is
the null window. There is energy at b; but not at ¢, so a bit of energy of
position is lost. Since the computational window also becomes unprimed
at this time, the updating automaton reenters the (energy free) initial state
SLPB to seeck another energy-bearing left particle boundary, and a total of
two bits of positional energy have been lost since the most recent left particle
boundary window. The updating of the automaton then proceeds through
null transitions seeking the next left particle boundary transition, if any.

In Case 2b2, the state b; = 1. Again in this case, ¢; = 0, but the
calculational window for ¢; is a left particle boundary window. However,
unlike the initial left particle boundary window, there is no energy associated
with b;. Neither is energy gained at ¢; because ¢; = ¢;_,_; = 0. Thus the
computational window again becomes primed and there is still exactly one
bit of positional energy from time ¢ that is not yet transformed to positional
energy at time ¢ + 1. The Primed Window Lemma completes the proof that
there will be a critical transition at ¢jy,qq. l

Case 2b2 is strange, unexpected, and poorly understood. It is why the
definition of a particle specifies both exactly one left particle boundary tran-
sition and one right particle boundary transition. If Case 2b2 could occur
in a particle, the number of left and right particle boundaries would not
necessarily be equal. There is a reasonable chance that | may someday be
able to prove that Case 2b2 cannot occur in a reasonable “particle,” but in
its current form, the proof is inelegant and probably also incomplete. The
difficulty is avoided in this paper by defining particles in such a way that
Case 2b2 cannot occur.

Completion of the proof of the Second Law: At every position except a
byte boundary, state values and consequently energy contributions are not
changed. On the byte boundaries, there are left particle boundary transitions
and critical transitions of the five kinds. The Critical Transition Lemma says
that combining the energy contributions of the most recent energy bearing
left particle boundary transition with one of these five cases, energy is con-
served in four of the cases and lost in Case 2b1l. Applying this fact as many
times as there are energy bearing left particle boundary transitions in the
configuration, we prove that the energy of a configuration is never increased
in the next time period. B

10. Dynamics of particles

We can now provide descriptions of the evolution of large particles similar
to those given earlier for small particles. For simplicity, the particles are de-
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scribed in terms of their energy distribution pattern. Recall that the leftmost
nonzero energy bit coincides with the leftmost nonzero configuration state,
and that the rightmost nonzero energy bit lies exactly one byte (i.e., r +1
vertices) to the right of the rightmost nonzero configuration state.

Lemma 3 (Conservation of Energy in Particles) The energy of a par-
ticle is the same in all phases of the particle’s evolution, i.e., £ = £ for all
>0t

Proof. The Second Law says that energy can never increase with time.
Since the configuration of a particle reappears every p time periods with a
displacement that does not affect the energy calculation, £77 = £*. If for
some t' > ¢ the energy of the particle decreased to £ < &', then for a
suitable multiple of p such that ¢t +np > t/, we have £7"? = £! > £, which
contradicts the Second Law. Thus the energy of a particle does not decrease
with time, so it remains constant. B

Theorem 6 (Period and Velocity Theorem) If the positional energy of
a particle is contained in precisely w contiguous bytes of size r +1 starting at
the leftmost node which has nonzero state value or energy, then the particle
has period p = £' and shifted displacement d, = w(r + 1). The unshifted
displacement d = pr — d, = r€' — w(r + 1). The energy of a particle is the
same in all phases of the particle’s evolution, i.e., ' = E* for all t' > t.
Moreover, the nonzero positions in the energy diagram of each phase of the
particle’s evolution are always contained in w contiguous bytes, but not in
w — 1 contiguous bytes.

Corollary 2 (Divisor Period and Velocity Corollary) Ifn is a divisor
of w(r + 1) and if the energy diagram at time ¢ consists of n repetitions of a
subpattern, then the particle has this property at all subsequent times t' > t,
and it has a divisor period £'/n and a shifted displacement w(r + 1)/n for
this divisor period.

Proof. Since we are dealing with a particle and not an arbitrary config-
uration, critical transition Cases 2a2 and 2b2 cannot happen because they
involve second left particle boundary transitions. Case 2bl is impossible in
a particle because it results in the loss of energy, which the Second Law says
can never be regained, contradicting the Conservation of Energy Lemma.
Thus only Cases 1 and 2al can happen. The following theorem completes
the proof of the Period and Velocity Theorem and Corollary.

Theorem 7 (Particle Evolution Theorem) At each time period, a par-
ticle’s energy diagram transforms as follows. The leftmost energy bit (corre-
sponding to the leftmost nonzero state value) disappears, i.e., is not present
in this position at timet+1. All other positions containing positional energy
at timet continue to contain positional energy at timet+1, and a new energy
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bit is created at time t + 1 at a position w(r + 1) vertices to the right of the
leftmost energy bit at time t.

In terms of state values, the leftmost nonzero state disappears, all states
not on subsequent byte boundaries remain unchanged, and all states on byte
boundaries are changed, including creating one new nonzero state to the right
of all previous nonzero state values in the time-shifted diagram.

Proof. At the leftmost nonzero state, energy is lost as the state flips from 1
to 0. The next r vertices have primed calculational windows and transform
unchanged. Since the previous byte consists of r + 1 zeros, all positional
energy at these positions is preserved. At the second byte boundary, which
is the next position, there is a critical transition. Only Cases 1 and 2al
can happen, and Case 2al, which carries forward a window with r paired
zero states, can happen only once per time period because if there are any
nonzero states to the right of a Case 2al eritical transition, the first of these
will cause another left particle boundary transition.

If the width of the energy diagram is w bytes, Case 1 critical transitions
occur at the second through w™ byte boundaries, and a Case 2al critical
transition occurs at the (w+1)st byte boundary. At positions not on the byte
boundaries, all states remain unchanged, and therefore so does their energy.
The Case 1 critical transitions flip state value, but leave positional energy
unchanged on these byte boundaries because state values were also flipped at
the previous byte boundary. Finally, at the Case 2al critical transition, the
state value does not change, but energy is created (or redistributed) because
the state value was 1 in the previous byte; it was the rightmost nonzero state
value at time ¢+ 1. B

The following time-shifted diagram summarizes the state transitions of a
particle.

0 1 b ... b bur  bus
0 0 b]_ Va5 b, 1-— b,-+1 b,-+2
byr i1 bar41y  bargs <o bu—nypran-1 00D
by i1 1—boprgr) borga oov Dlw—1)(r41)-1 10

The energy state transitions of a particle are even simpler: the leftmost
energy bit at time ¢ disappears from that position at time ¢+ 1 and reappears
w(r + 1) positions to the right.

The proof of the Period and Velocity Theorem can now be completed.
When the leftmost energy bit of time ¢ moves w(r + 1) positions to the right,
it exposes the second to leftmost nonzero energy bit as the new leftmost
nonzero energy bit at time ¢+ 1. In the next transition, this nonzero energy
bit moves w(r + 1) positions to the right, exposing the third to leftmost
nonzero energy bit as the byte boundary for the following transition. After &'
time periods, each nonzero energy bit will have been the leftmost nonzero bit
of a transition exactly once, and will have consequently moved right exactly
w(r + 1) positions. The period of the particle is thus £' and its shifted
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displacement d; = w(r + 1). Since the unshifted displacement d = pr — d,,
its value is 7€" — w(r + 1) and the theorem is proved. The Divisor Period
and Velocity Corollary follows similarly. B

Theorem 8 (Consistency of Energy and Small Particle Descriptions)
The period and velocity theorems for small particles that calculate these
quantities based on the number of nonzero states give the same answers as
the energy based period and velocity theorems that apply to all particles.

Proof. For small particles, &' = 2k for all ¢, and the second energy byte of
a small particle is always identical with the first energy byte. The energy
diagram of a small particle therefore always has a divisor period of £'/2 = k,
so that the energy based predictions based on this divisor period agree with
the “full period” predictions based on the number of nonzero states. Divisor
periods of the form k/n in the small particle model correspond exactly to
divisor periods of the form £'/2n in the energy model. It is easily checked
that the calculated displacements and velocities agree. i

11. Examples of particles and their evolution

The Particle Evolution Theorem or the more general Rapid Updating Rule
provide a very powerful and eflicient way to calculate state transitions. For
example, consider the following configuration with » = 2. It is a particle of
energy width 4 bytes.

e o o ° e o o e

A N | 1 01 010 0 0 0
The states with dots over them carry positional energy. Thus £ = 8. The
Period and Velocity Theorem predicts a fundamental period of 8 and dis-
placement d, = w(r + 1) = 12. However, the energy diagram (but not the
pattern of state values) consists of n = 2 repetitions of the energy subpat-
tern 111 010, and so there is a divisor period of 8/2 = 4 with displacement
12/2 = 6. The transitions are calculated as follows, with @ indicating a state
that changed to zero at a left particle boundary transition and underscored
state values indicating that their states flipped due to critical transitions of
type 1 on the byte boundaries.

e o o L] e o o L] e @ o L)
1 1 1 101 010 000
Pl 11 o001 110 100 0
 + o1 1 100 110 00
Bl o 10 101 111 000
fl o 111 101 010 00

The transition diagram for energy is even simpler. In each time period, the
leftmost nonzero energy bit jumps four bytes to the right and all other energy
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bits remain the same. It is obvious from the energy diagram that the period
p = 4 shown is a divisor period and not the full predicted period because
only half the nonzero energy bits of the configuration have rotated in four
time periods.

111 010 111 010
11 o010 111 010 1
1 60610 111 010 11
6010 111 010 111
0 111 010 111 0 1

12. Byte descriptions of particle evolution

In the examples of section 11, it was visually convenient to group together
bytes of r41 consecutive state or energy values and to put an extra separation
between bytes for readability of the diagrams. In this section, we describe
the evolution of energy and configuration in terms of operations on entire
bytes.

Definition 20. We say that A;, Ay,..., A, is a byte decomposition of a
particle if each A; is a byte of v + 1 adjacent state values, if the position in
the configuration of the rightmost bit of each A; is adjacent to and to the
left of the position of the leltmost bit of Ay, and if all the nonzero state
values of the particle are contained in the bytes Ay, As, ..., A,.

Definition 21. A byte decomposition is called a canonical byte decomposi-
tion if the leftmost bit of A, is nonzero and at least one bit of A, is nonzero.
These conditions are not in general required of a byte decomposition of a
particle. The number of bytes n in a canonical byte decomposition is called
the configuration byte width.

Definition 22. Similarly, we say that E;, E,,..., E, is a byte decomposi-
tion of the energy of a particle if each E; is a byte of r + 1 adjacent energy
values, if the position in the energy diagram of the rightmost bit of each [F;
is adjacent to and to the left of the position of the leftmost bit of E;yy, and
if all the nonzero energy values of the particle are contained in the bytes
By Boy v o By

Definition 23. A byte decomposition of the energy of particle is canonical
if the leftmost bit of E, is nonzero and at least one bit of E,, is nonzero.
The number of bytes w in a canonical byte decomposition of the energy of a
particle is called the energy byte width.

Definition 24. We define the bitwise sum modulo 2 of two bytes A& B
to be the byte that results from adding the corresponding bits of A and B
modulo 2. If A7 denotes the j*" bit of A, then (A& B)’ = (A7 + B’) mod 2.

Definition 25. We denote the number of nonzero bits in a byte A by N(A).
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Theorem 9 (Byte Description of Energy Evolution of a Particle I)
If w is the energy byte width of a particle and E;, Es,. .., E, is a byte de-
composition of the particle, then the following diagram gives a byte decom-
position description of the evolution of the particle.

E] E‘z E3 . Ew
E,2 B ... E, E
s ... By Ey E;
Ew Ei Ey ... Eun

El E2 Ew—l Ew

The transition from the i'" to the i + 1st lines in this diagram takes N(E;)
time periods.

Proof. This theorem is really a restatement of the Particle Evolution The-
orem in the new terminology. If one looks at the bitwise evolution of the
energy of a particle after N(E;) time periods, after N(E;) + N(E;) time
periods, after N(E,;)+ N(E,) + N(E;) time periods, etc., one finds precisely
the lines of the bytewise energy evolution diagram. B

Note that this theorem does not prove that the leftmost bits of E, Ej,
..., I, are nonzero, nor could such a statement be proved because it is not
necessarily true, even if the initial energy byte decomposition is canonical.

Theorem 10 (Byte Description of Energy Evolution of a Particle II)
Ifw is the energy byte width of a particle and E;, E,...,E,, E,+ is a byte
decomposition of the particle, then the following diagram gives a byte de-
composition description of the evolution of the particle.

E, By Ey ... E, Eun
By, Ey ... E, E,.®FE
Es ... By, E,.q.8E E;
Ew Ew+I$El E2 e Ewul
Ew+ 1@15‘1 Eg FERN Eu,_.1 Ew
El E2 e Ew—l Ew Ew+l

The transition from the i to the i + 1st lines in this diagram takes N(E;)
time periods.

Proof. This is also a restatement of the Energy Evolution Theorem, but
with byte boundaries falling so that the energy byte width appears to be one
byte larger than it actually is. Note that in this case, F,,; and E; have their
nonzero bits in disjoint parts of the byte. N

Theorem 11 (Byte Description of Particle Evolution Theorem I) If
n is the configuration byte width of a particle and Ay, Ay, ..., A, is a byte
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decomposition of the particle, then the following diagram gives a byte de-
composition description of the evolution of the particle configuration.

Ay A As Fer A,
A@dA; AdAy ... A@A, Ay
APAs ... ABA. Ay AdA,
An—l@An An-l AléBAn-l waa An-—K’EAﬂ-l
A, AiPAn .. Ana@An An84,
Ay . An_2 Apq A,

Proof. Referring to the byte description of energy evolution in theorem 9,
we see that w =n 41 and E; = A; ® A;_; for 2 <17 < n. We can extend this
equation to £ and E, by defining Ay = A, 4, = 0, the zero byte. We now
reconstruct the sequence of configurations of the particle from the sequence
of energy diagrams given by theorem 9. In general, the 7' configuration byte
B; of a byte decomposition is given in terms of the corresponding energy byte
decomposition { E;(8) } by the formula

All lines of configuration byte description in the current theorem are proved
by applying this formula to the energy byte deseription and cancelling terms
modulo 2. For example, the j* byte on the first line is calculated as E; &
Ed - @FE=A8&(A416A)8  -®(A;_1 ®A;) = A;. The configuration
byte under this on the second line is calculated as E; @ Es @ -+ @ E; =
(A1 A) D (AP A3) - B (A;m1 B Aj) = A & A;. All others are
calculated similarly. B

Theorem 12 (Byte Description of Particle Evolution Theorem II)
If n is the configuration byte width of a particle and Ay, A,, ..., A, Apyy i
a byte decomposition of the particle, then the following diagram gives a byte
decomposition description of the evolution of the particle configuration.

A Al Ay b A .
A@d; ABA; ... A, AdALn
Agiﬁf{a P Ag\':BA., A‘ﬁfln.f.l A‘[@A2

An-l@An -‘ln—l@/‘lnH Al@-“ln—l e An-z@An-l
ABAns A@A. ... ABA, A._@A,
A1BAasr - Anoo®Angg Api@An AnBAn s
Ay s By Apy Ax  Anp

Proof. This byte description of configuration evolution follows from the-
orem 10 which applies to a byte decomposition with byte boundaries that
increase the apparent byte width of the particle. The only extra observations
necessary for the proof are that A; = E; and that A,y = By = Epq. B
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13. Comparisons with empirical frequencies

In [1], Park, Steiglitz, and Thurston report on computer simulations to find
all particles with bit width < 16 for window radii r = 2,3,4,5, and 6. Their
tables of frequencies of periods and displacements show very large peaks at
certain periods and displacements. Since the Period and Velocity Theorem
shows that these quantities depend only on the byte width and energy of
a particle, but not on other details of the particle’s configuration, all these
peaks may now be explained in terms of the large number of particles that
share a common byte width and energy that produces these periods and
displacements.

For example, all of the most frequently observed period-displacement
pairs in [1] for » = 4, r = 5, and r = 6 are characteristic of particles of
configuration byte width 3 and “average” energy for their size. Since the
size of a byte is 5, 6, or 7 in these cases and the search was conducted using
configurations of bit width at most 16, we find very few particles of configu-
ration byte width 4 in their tables for r = 4, and none whatsoever for r = 5
and r = 6.

However, there is ample room within 16 bits to have sampled all of the
particles of byte width 3 for r = 4 and r = 5, and nearly all of them for r = 6.
Their periods are given by their energy and are thus are even integers, as
predicted. For all three radii, the maximum observed frequency occurs for
period p = £ = 2(r+ 1), an energy most readily obtained from particles with
two energy bits in each relative position in the byte. Since for such particles,
the leftmost energy bit of the particle can be paired with a corresponding
energy bit in any of the three remaining energy bytes, and the remaining r
relative positions in a byte can have their nonzero energy bits chosen in (g)
ways, and each such energy configuration will appear in £ different phases
during a period, a rough estimate of the number of such particles is 3 (;) r/E =
3-67/2(r + 1), which approximates the observed frequencies. (For r =6, a
substantial fraction of these three-byte particles have bit width more than
16 and would not be included in the tables of [1].)

Accompanying each collection of particles of configuration byte width 3
are particles of divisor period 2 having half the period and displacement.
These are necessarily far fewer in number because their energy pattern must
consist of two identical halves.

For r = 3, the maximum observed frequencies correspond to particles
of byte width 4 which fall within the 16 bit configurations sampled. Most
frequent periods and therefore energies are 10 and 12, approximately half
the positions in the energy width of 20 possible positions carrying nonzero
energy. Secondary peaks in frequency correspond to particles of byte width
3. Particles of byte width 5 are not represented, as expected.
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14. Impossible particles

Not all state configurations can evolve as particles. The purpose of this
section is to show that there are a sufficient number of classes of forbidden
configurations for particles to prove that the total number of distinct particles
supported by the parity filter automaton with window radius r is finite.

It is shown in [2] that the number of particles with fixed period p is
bounded, but this is a much stronger result, that there are upper bounds
(although necessarily large ones) on the total number of particles and on the
maximum period of a particle.

Lemma 4. The energy of a particle cannot have r + 1 consecutive positions
of energy zero between its leftmost and rightmost nonzero energy positions.

Proof. Consider that stage of the energy rotation of the particle when the
nonzero energy bit to the left of the r + 1 zeros is the leftmost energy bit of
the particle. When this bit rotates to the right, the energy byte width of the
particle decreases by one because the new leftmost nonzero energy position
is more than r + 1 positions to the right of the previous one. This reduction
in width cannot be recovered during later evolution of the configuration, so
the starting energy pattern of the particle never reappears, a contradiction.
Thus there cannot be r+1 consecutive zero states in the middle of the energy
pattern of a particle. B

Lemma 5. Two consecutive nonzero bytes A; and A;y, of the byte decom-
position of a particle cannot be equal.

Proof. If A; = A;;; then E;; = 0, which is forbidden by lemma 4. R

Lemma 6. No two bytes A; and A; of a byte decomposition of a particle
can be equal, nor can any interior byte be zero.

Proof. Assume for purposes of contradiction that the configuration is a
particle and A; = A;. If j =i4 1 or¢=j+1, lemma 5 gives the conclusion.
Assume j # 141 and ¢ # 741. Define Ay = 0, the zero byte, so that a typical
byte A; in the top row in the byte description of the particle’s evolution can
be written as Ao@® A;, and a typical byte of the middle column can be written
as A; @ Ap. Now every possible bitsum of bytes, 0 < 7,7 < n, appears twice
in the diagram, once as A; @ A; and once as A; @ A;.

If the leading byte A; @ A;;1 of the row with A; @ A; has its leftmost bit
nonzero, this row represents a canonical byte decomposition of the particle
at this time, and there will be a right particle boundary when A; @ A; is
reached by the rapid updating automaton. Since j # i+1 and ¢ # j+ 1, this
particle boundary is in the middle of the particle, a contradiction. Similarly,
A; @ Aj 41 cannot have its leftmost bit nonzero. Thus the leftmost bits of A;,
Aig1, Aj, and Ajyq are equal.

We now do an induction proof, assuming that for all bits to the left of
relative position k, the corresponding bits of A;, A;yy, A;, and A4, are equal.
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If relative bit k of A; @ A;4, is nonzero, the rapid updating automaton
will encounter 7 + 1 consecutive zero states after bit k of A; @& A;, some of
them at the end of the byte A; @ A; and the rest of them at the start of
the byte A; & A;41. (Recall that the leftmost bits of Aj;, are equal to the
corresponding bits of A; by the induction hypothesis.) These consecutive zero
states starting at relative position k which is being used as the byte boundary
by the rapid updating automaton would again cause a right particle boundary
in the middle of the particle, a contradiction, so relative bit & of A; @ A;4;
is zero. Similarly, the k™ bit of A; @ A;4, is zero. Thus the k' bits of A;,
Ai1, Aj, and Ay, are equal, and the induction is complete.

As a result, the complete bytes A; = Ajyy = A; = Ajyq, and lemma 5
shows that the configuration cannot be a particle. B

Theorem 13 (Finite Number of Particles Theorem) For fixed parity
filter automaton with window radius r, the number of distinct particles is
finite.

Proof. Since no interior byte of a particle can be zero and no two nonzero
bytes can be equal, the byte width n of a particle is at most 2™+! — 1 bytes.
Since all bytes must be distinct, there are at most n! particles. B

15. Particles of period 1

Particles with period 1 are a special class of particles that can be described
completely. Since the period is 1, the velocity v and shifted velocity v,
are equal respectively to the displacement d and shifted displacement d;.
These particles range in speed from the fastest possible particle, the so-called
“photon,” with velocity » — 1 to the slowest possible particle, the stationary
particle, with velocity zero. The most important result about particles of
period 1 is that for each velocity in this range, there exists one and only
particle with that velocity. In other words, particles of period 1 are uniquely
determined by their velocity.

Theorem 14 (Existence and Uniqueness of Particles of Period 1.) For
any velocity v with 0 < v < r —1 there exists one and only one particle with
period 1 and velocity v.

Proof. The proof proceeds by constructing the energy pattern of a particle
of period 1 and velocity v. At each step, the choice is forced, so there is at
most one particle with velocity v. Then it is shown that the energy pattern
so constructed corresponds to a particle, which establishes the existence part
of the result.

If there is a particle with period 1 and velocity v, its shifted displacement
dy, = r—d =r —wv. Thus d, lies in the range 1 < d;, < r. Since the
energy configuration of a particles evolves by moving the leftmost nonzero
bit w bytes to the right while all other energy bits remain fixed, the second
nonzero energy bit (from the left) must be d, nodes to the right of the first
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10010 01001 00100 10010 01001 00100
00010 01001 00100 10010 01001 00100 10000

Figure 6: Energy pattern for a particle of period 1 with r =4, v = 2,
and d; = 3.

one. Since the period is 1, the energy pattern at time ¢+ 1 must be the same
as that at time { displaced to the right by d; nodes. Thus the third nonzero
energy bit, if any, must be d; nodes to the right of the second nonzero energy
bit, and so forth. Figure 6 shows such an energy pattern for r = 4, v = 2,

and d, = 3.

Since each nonzero energy bit represents a difference of configuration state
value between one node and the node r + 1 positions to the left of it, and
since all nodes sufficiently far to the left and to the right are in state zero, the
energy patlern of a configuration must have an even number of ones in each
relative position within a byte. The repetitive energy pattern of a particle of
period 1 starts with a 1 in the leftmost position of a byte and does not again
have a 1 in the same relative position in a byte until lem(d,, 7+1) nodes to the
right. Thereafter, the pattern repeats in the same relative positions within
bytes, so that after 2lcm(d,;,r 4 1) nodes, the contributions to the energy
are even in each relative position within a byte for the first time. In fact,
each relative position has either 0 or 2 nonzero energy bits. All that remains
to be shown is that this stopping place in the energy pattern corresponds to
a particle and that continuing the pattern further results in a configuration
that has at least two left particle boundaries and thus cannot be a single
particle.

The configuration corresponding to this energy pattern adds new nonzero
states each byte throughout the first half of the energy pattern because each
new nonzero energy bit is in a different relative position within the byte.
In byte lem(d;,r + 1)/(r + 1), every possible relative position of the form
kd, mod (r+1) is nonzero. Thereafter, configuration bits become zero in the
same order they became 1, so that byte 2lem(d,,7+1)/(r+1) is all zero, and
the previous byte has at least one nonzero state not in the leftmost position
of the byte (See figure 7). This means that the PW (primed window) state
in the Rapid Updating Automaton does not copy r consecutive zeros until
the rightmost energy byte we have considered, which corresponds to the
all zero configuration byte. Thereafter, the automaton enters state SLPB
(seeking left particle boundary). If there were another nonzero energy bit to
the right of the 2lem(d,,r + 1) bits we considered, there would be another
nonzero configuration state and consequently another left particle boundary
transition. Thus stopping the energy pattern at 2lem(d,, r+1) positions gives
a particle and continuing further cannot produce a single particle because of
the extra left particle boundary. The repetition of the energy pattern every
d, positions guarantees that this is the particle desired. B
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10010 11011 11111 01101 00100 00000

10010 11011 11111 01101 00100 00000
00010 01011 01111 11101 10100 10000 00000

Figure 7: Configuration pattern corresponding to the energy pattern
in figure 6 and its evolution.

As figure 7 shows, the configuration pattern of a particle of period 1
displays almost none of the regularity of its energy pattern. To calculate
the exact width w of the configuration from its leftmost nonzero state to
its rightmost nonzero state, we start with the 2lem(d,,» + 1) nodes it takes
before the energy pattern lands on the byte boundary for the third time,
subtract the last full byte of zero configuration states and the d, — 1 final
zero states in the previous byte. The resulting formula is

2lem(dy,r +1) = (r+1) = (d, — 1)
2lem(ds,r +1) —r — d,

w

The constant displacement between successive nonzero bits in the energy
pattern means that if the pattern is reversed, i.e., written with left and right
interchanged and leftmost nonzero bits aligned, it remains the same. We say
that such a pattern is symmetric.

The next theorem says that symmetric energy patterns correspond to
symmetric particle configurations.

Theorem 15 (Symmetric Configuration Theorem) A configuration is
symmetric if and only if its energy pattern is symmetric.

Proof. Start by pairing the leftmost nonzero energy bit (which coincides
with the leftmost nonzero configuration bit) with the energy bit r41 positions
to the right of the rightmost nonzero configuration bit. These energy bits are
both nonzero. Move the pairing one position at a time toward the center of
the configuration. At each stage, the two configuration bits involved in the
calculation of the energy bit are symmetrically placed with respect to the
center of the configuration. Thus the paired energy bits are all equal if and
only if all the symmetrically placed configuration bits are equal.

Formally, if # = a'; is the reverse of configuration a, and el(a) =
1 T g 1

t
i=r—1

al — | is its energy pattern, then the energy pattern of b is

‘ a

et-«‘+r+1(b) = [bt—i+r+1 g bt—i| = |a3—r—l _ a:| = ef(a}

Thus, except for a shift, the energy pattern of b is the reverse of the energy
pattern for a. B

Corollary 3 (Symmetry of Particles of Period 1) Any particle of pe-
riod 1 has a symmetric configuration.
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r=1
r=2 H Il H
r=3 H I I N B
r=4 H 1 Il DN N E

Figure 8: Stationary particles for r = 1,2,3, and 4.

Stationary particles

At one extreme of the particles of period 1 are the “photons,” the particles
of highest velocity, and at the other extreme are the stationary particles,
those of velocity zero. Steiglitz discovered these particles and derived their
configuration pattern for any window radius r. He also observed that they are
symmetric configurations, a property now known to be true for all particles
of period 1.

Figure 8 shows the configurations of stationary particles for window radii
1 to 4. For such particles, d = 0, d; = r, and the configuration width

w = 2lem(dy,r+1)—r—d,
= 2r(r+1)—r—r
22

16. Uniqueness of particles

The method used in the previous section to find the energy pattern of a
particle of period 1 can be used to find the energy pattern of any particle
for which the sequence of (shifted) displacements d,y,dsy, ..., d,, are given.
Starting at the leftmost nonzero energy bit, the second nonzero energy bit
must be d;; positions to the right, the third nonzero energy bit d,, positions
to the right, and so forth until the p 4 1st nonzero energy bit is placed d;,
positions to the right of the previous one. Since a particle of period p recurs
in its original configuration after p time periods, subsequent displacements
repeat the sequence dyy, dso, ... ,dsp. If there is a particle with this sequence
of shifted displacements, its energy pattern must be some initial subsequence
of the pattern we generated, terminating when the associated configuration
pattern has its first full byte of zeros to produce a right particle bound-
ary transition. Thus for each sequence of displacements, there is one and
only one candidate configuration for a particle with the specified period and
displacements, which proves the following theorem.

Theorem 16 (Uniqueness of Particles) For any period p and sequence
of shifted displacements dg;,d,s, . .. ,d,,, there is at most one particle of this
period with these displacements.

Although there is only one candidate for a particle, there is no guaran-
tee that the candidate energy pattern will indeed correspond to a particle.
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The questions of which configurations cannot be particles, which energy se-
quences cannot represent particles, and which sequences of displacements
cannot form the fine structure of the velocity pattern of a particle are thus
seen to be equivalent. Some partial results are given below, but a complete
characterization of these impossible configurations remains an open question.

17. Mirror image particles and reversability of time

If you take any particle evolution diagram and turn it upside down by rotating
it 180°, the diagram still looks like a particle evolution diagram. In fact it is
the evolution diagram of a particle, and the particle is the mirror image of
the original particle.

Definition 26. If a; is a state configuration of the cellular automaton, then
its mirror image is the configuration b; = a_;.

Theorem 17 (Mirror Image Theorem) The mirror image of a particle is
a particle with the same period, energy, shifted and unshifted displacements,
and its particle evolution diagram is the 180° rotation of the evolution dia-
gram of the original particle.

Proof. Let a! be the shifted evolution diagram for the particle af, which
is defined for ¢ > 0. Let p = £(e?) and d; be its time-shifted displacement.
Then ¢! = eiiﬂ?ﬂ for all positive integers n. If ¢ < 0 then there is some n
big enough that ¢ + pn > 0. Define ¢! = e;{5", for negative £, With this
definition, the diagram represents the evolution of the particle a? from time
t = —co to t = oo.

Let b = a~!. We claim that b! is the evolution diagram for the particle
b = a%,, the mirror image particle. The conclusions on equality of period,
energy, and displacements follow easily from this stronger claim.

We examine what the rapid updating automaton does in the transition
of b from time ¢ to time ¢ + 1. First, it copies zeros in the SLPB state until
it finds the leftmost nonzero b, from which it sets bi*' = 0. This is the
left particle boundary of b and the right particle boundary of @ where the
zero state a”!™! changes to a'; = 1. The updating automaton then copies r
consecutive states bit1 = b, at least one of which must be nonzero since at
least one of the corresponding a~! = aZ!™! was nonzero to sustain the chain
of critical transitions of Type 1 to the right particle boundary of a. The next
state of b is inverted, i.e., B! = 1 — b, which matches the critical transition
inaof aZt = 1—aZt"'. If n, is the configuration byte width, then this process
of copying r states and inverting one state continues for n, times in both b
and a until the left particle boundary ¢~} = 0 and a=¢"! = 1 is reached.
This corresponds to a critical transition 5t* = 1 and b! = 0. Thereafter, the
rapid updating automaton operating on b encounters nothing but zero states
because there were nothing but zero states to the right of the left particle
boundary a~¢""! of a. Thus the time-reversed mirror image of the updating of
a particle is the correct transition of the mirror image configuration, which

is therefore a particle. H
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18. Collisions of particles

Many large configurations split naturally into smaller subconfigurations that
evolve, at least for a time, independently of each other. If each of the subcon-
figurations is a particle, well separated from the other subconfigurations, we
may think of the large configuration as a collection of particles, each moving
with its own characteristic velocity and rotation until it comes sufficiently
close to another particle to interact with it.

One of the most interesting phenomena that Steiglitz [1] found in parity
filter automata is that a large fraction of such particle collisions are “soli-
ton” collisions from which both particles emerge with their original identities
intact. There is, however, for each particle a displacement from its original
path due to the collision, and a phase shift consisting of a modification of
the times that different configurations within the period of the particles ap-
pear after the collision as compared to when they would have appeared if
the two particles had never interacted. This phase shift in soliton collisions
is exploited in [2] to build a carry ripple adder.

This section makes precise definitions of what it means for a configuration
to split into subconfigurations called connected components, what it means
for these subconfigurations to be particles, and what it means for two parti-
cles to collide. The most important theorem, The Soliton Collision Theorem,
calculates the number of time periods duration of a collision of two particles,
and the phase shift and displacement of each particle after the collision.

Definition 27. A configuration is decomposed into its connected compo-
nents in the following way. Starting at the leftmost nonzero state, the con-
figuration is partitioned into bytes of r + 1 adjacent nodes. A byte is called
a zero byte if all its states are zero, and a splitting byte if its rightmost r
states are zero irrespective of the state of the leftmost node, which is called
the byte boundary. The leftmost connected component of a configuration
consists of all nodes from the leftmost nonzero node of the configuration to
the right node of the first (i.e., leftmost) splitting byte.

By this definition, a connected component always ends with at least r
zero states and is an integral number of bytes wide. In fact, a connected
component can have as much as 2r consecutive zero states at its right end.

The second connected component is obtained by realigning byte bound-
aries on the first nonzero state to the right of the splitting byte of the first
(leftmost) connected component. It continues from this nonzero node un-
til the rightmost node of the next splitting byte. The byte boundaries for
the second connected component need not agree with the division points one
would get by continuing the byte boundaries of the first connected component
beyond its splitting byte.

All subsequent connected components are obtained by the same method
as the second. Byte boundaries are realigned at the leftmost nonzero state to
the right of the complete splitting byte of the previous connected component,
and the connected component extends from there until the right end of the
next splitting byte using the new byte boundaries.
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Definition 28. The smallest possible connected component of a configu-
ration consists a single splitting byte (i.e., a single nonzero state followed
by v zero states). It is called a moribund component because it “dies” or
disappears completely in the next time period.

Definition 29. A configuration is called connected if it has exactly one con-
nected component.

Definition 30. A component of a configuration is called a constituent par-
ticle, or simply a particle if it would evolve as a particle when all states of
all other components are set to zero.

Comparing the definition of connected components of a configuration with
the Critical Transition Lemma, we see that critical transitions take place on
the byte boundaries used to determine connected components, and that there
is a Case 2 critical transition if and only if the previous byte is a splitting
byte.

Theorem 18. A particle is a connected configuration.

Proof. It was shown earlier that particles can have only Case 1 and Case
2al critical transitions, with the only Case 2al critical transition occurring
at the right particle boundary. Thus the only splitting byte of a particle is at
its right end, and a particle configuration has a single connected component
and is therefore connected. B

Connected components are sufficiently separated from each other that
they evolve for at least one time period independently of each other. A
splitting byte is precisely where the Rapid Updating Rule automaton leaves
the PW (primed window) state and reenters the SLPB state to seek a new
left particle boundary transition.

We can trace the evolution of a component of a configuration in two
different senses; first as a component of the evolving configuration, and sec-
ond as the component would evolve independently if all states of all other
components were set to zero.

Definition 31. We say that a connected component v of a configuration at
time t evolves into a connected component ¢ of the configuration at time {41
il o' has nonzero states at precisely those nodes where @ would have generated
nonzero states if allowed to evolve with all states of all other components at
time t set to zero. We may then use the same name to refer to the connected
component in both time periods, calling ¢ = a(t) and &' = a(t + 1).

Definition 32. We say that two nonmoribund connected components o and
A collide at time t if a(t—1) and B(t—1) are (necessarily adjacent) connected
components of the configuration at timet—1, but their independent evolution
configurations «(t) and fA(t) are not separate connected components of (and
in fact are not entirely present in) the configuration at time t.
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For the remainder of this section, @ and B will be particles colliding at
time t. Since a and 3 were not in collision at time ¢t — 1, there is a full null
splitting byte of 7 + 1 zero states at the right of a(f — 1) plus a possible gap
of g > 0 additional zero states before the leftmost nonzero state of A(t —1).
Using the Rapid Updating Rule to calculate states at time ¢, we see that
the leading 1 of a(f — 1) moves to the leftmost bit of the splitting byte for
ot — 1), but the remaining r states of this byte remain zero. Since the byte
boundary for 4 moves d,(3,1—1) > 0 positions to the right, there are exactly
r+g+d,(B,t—1) > r+ 1 zero states between a and § at time ¢.

Let Ay, Ay,...,A,, be the canonical byte decomposition of a(t) and
By, By, ..., B,, be the canonical byte decomposition of 3(t). Label the in-
dividual states of a(t) from ag at the left of A; to an,(r41)-1 at the right of
An,- Similarly label the states of () from bp to buy(rs1)-1-

The byte boundaries for «(t) are ds(a,t — 1) further to the right than
those of a(t — 1), leaving only r + g + d.(8,t — 1) — dy(a, f — 1) zero states
after the byte boundary in what would have been the splitting byte of a{t).
Since the particles are in collision at time ¢, this number is less than the
zero states required for a splitting byte, so that d,(a,t —1) > d,(8,t—1)+g.

Definition 33. The quantity k = d,(a,t —1)—d,(f,1—1)—g > 0, is called
the collision offset of two colliding particles.

The quantity k is called the collision offset for the following reason. At
time t—1, the leftmost nonzero bits of a(t—1) and (t—1) are (n,+1)(r+1)+g
positions apart. At time ¢, they are only (n,+1)(r+1) + g —d,(e,t —1) +
d,(B,t—1) = (ny+1)(r+1)—k positions apart so that when «(t) is updated,
there are critical transitions on the byte boundaries of A;, A3, ..., A,,, and
the next critical transition is at by, the position which is offset k to the right
of the byte boundary of B;. Thus byte boundaries of «(t) are offset by k
positions to the right with respect to those of 3(t).

We need one more technical condition on the intersection of two particles
e and B before we can state the Soliton Collision Theorem. The leftmost
nonzero state of «(t) is ag and the rightmost nonzero state is a,,,, where
my = (ng — 1)(r + 1) — dy(@,t — 1). Similarly, the leftmost and rightmost
nonzero states of 3(t) are by and b,,, where mg = (ng—1)(r+1)—d,(8,t—-1).
We define a; = 0if i < 0 or ¢ > m, and define b; =0if 7 <0 or 7 > mg.

Condition ICC (Intersection Compatibility Condition) Whenever a;
carries energy in «ft), that is, whenever @¢; # @;_,_1, and whenever
for that i the integer n makes the intersection of subscript intervals
[k+ti+n(r+1)—7,....,k+i+n(r+1)=1]N|[0,...,mg] nonempty,
there is at least one j with 1 < j <7 for which a;_; # biyignr41)-j- In
other words, the r configuration states of a(t) to the left of a; do not
exactly match the r configuration states of 3(t) to the left of brpiyn(rt1)-

We now have the terminology to state the main theorem of the section,
the Soliton Collision Theorem, describing precisely what happens when two
particles collide without loss of energy.
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Theorem 19 (Soliton Collision Theorem) If a configuration consists of
two constituent particles a(t — 1) and B(t — 1) at time t —1 with « to the left
of 3, and if these constituent particles collide at time t, and if the intersection
compatibility condition, Condition ICC, holds, then

1. o and B will remain in collision for exactly £(a) time periods.

2. During the collision, the nonzero energy bits of « will continue to rotate
normally, except that when they reappear at the right they appear
exactly (ng + 1)(r + 1) nodes to the right of where they would have
appeared if o had evolved independently. (Recall that ng is the number
of bytes in the canonical byte decomposition of 3, and ng + 1 is the
number of bytes in the canonical byte decomposition of the energy
diagram of 3.)

3. During the collision, the energy bits of B will remain fixed in the shifted
diagram and move left at the speed of light in the unshifted energy
diagram.

4. After the E(a) time periods of the collision, the particles & and 8 will
evolve as separate constitutent components of the configuration for at
least one time period. The particle 3 will be to the left of a.

Figures 9, 10, and 11 show respectively the unshifted and time-shifted
configuration evolutions, and the time-shifted energy evolution of a collision
of the same two constituent particles with r = 4. All three figures show
both particles emerging intact from the collision with their relative positions
reversed, i.e., it is a soliton collision. However both shifted and unshifted
configuration diagrams are confusing concerning the locations of the two
particles during the collision. On the other hand, the energy evolution dia-
gram clearly shows the right particle 8 stopping its rotation and remaining
fixed in one location throughout the 8 time periods of the collision, and it
clearly shows the left particle e leaping two extra byte widths over 3, while
rotating one energy bit at a time, consistent with the prediction of the Soli-
ton Collision Theorem that the collision will take £(«) = 8 time periods and
the particle & will jump to the right (ng+1)(r+1) = (1+1)(4+1) = 10
positions.

The individual identities of the two particles during the eight time pe-
riods of the collision, especially the identity of # are much less clear in the
configuration evolution figures. The unshifted configuration diagram even
shows some apparent diagonal patterns of slope 1 that turn out to be ar-
tifacts of this particular collision and have no general meaning. Knowing
that the energy configuration of # remains fixed in time-shifted diagrams for
the 8 time periods of the collision, one can locate the corresponding 8 x 5
rectangle where the configuration states of # might be expected to remain
fixed, and there find a sum modulo 2 of the fixed, unrotating configuration
states of # and offset copies of the rotating configuration states of o during
those 8 time periods as they more accurately “step on” § rather than nimbly
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Figure 9: Unshifted configuration diagram for collision of two parti-
cles.
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Figure 10: Time-shifted diagram for collision of two particles.
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Figure 11: Energy diagram for collision of two particles.
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“leap over” f# on their way to the right. Miraculously, § reappears intact
and ready to resume its rotation in the last time period of the collision. All
these observations will now be proved as consequences of the evenness of the
energy of a in every relative position of a byte, and of the fact that the energy
configuration of B does not change throughout the time periods of collison.

Proof of the Soliton Collision Theorem. We will show that during the
collision, the combined configuration has exactly one left particle boundary
and one right particle boundary, and that between these, the critical tran-
sitions that take place are of two kinds: those that would have taken place
in the same time period (although not necessarily in the same position) if
a were allowed to evolve independently with 3 set to zero, and those that
involve interactions of @ and 3. The former are “well-behaved” critical tran-
sitions of Type 1 because « is a particle and can have only Type 1 critical
transitions between its particle boundaries. That the latter are all Type 1
critical transitions turns out to be equivalent to Condition ICC, the Inter-
section Compatibility Condition.

The proof proceeds in three stages: (1) The evolution of the configuration
from time ¢ to time ¢ + 1 shows that ag, the leftmost nonzero state of a(t),
reappears with an extra spatial displacement of ng + 1 bytes to the right
in addition to its normal displacement of n, + 1 bytes in the independent
rotation of a. The transitions in this time period establish the width of the
combined configuration during the collision, begin to show that a will consist
of two pieces, one part to the left of 8, and the rest of a to the right of 3.
Stage 1 forms the basis for the induction. (2) In each of the next £(a) —1
time periods, one energy bit of a rotates to the right n,+nz+2 bytes without
any change of the energy of the combined configuration between these two
positions, and without a splitting byte opening up. (3) At time ¢ + (), the
combined configuration splits into constituent particles 8 and «, which once
more begin to evolve independently.

(1) The rotation of ag: In the transition from ¢ to ¢t + 1, the configuration
bit ag = 1 disappears at the left particle boundary of a(t). Then there are n,
subsequent critical transitions of Type 1, just as there would have been if «(t)
evolved as a separate particle. The last of these places the rightmost nonzero
state of a(t + 1) on the byte boundary to the right of A, . However, here
the evolution of the colliding particles configuration diverges from that of the
independent evolution of . This nonzero state does not form a right particle
boundary because the next byte boundary falls at b, which is k > 0 positions
into By, the first byte of 8(t). Since by, the leftmost bit of 3(t) is nonzero,
the updating automaton inverts the state by, and continues in the “primed
window” state PW. In the independent evolution of e, only zero states would
have been encountered in this byte, and the updating automaton would have
returned to the state SLPB.

We now show that Condition ICC implies that the updating automaton
will also invert the k' state of By, Bs,. .., B,,, copying all other states of /3.
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Applying Condition ICC to the case i = 0, and noticing that by definition
a;_; = 0 for all § > 1, Condition ICC says that for fixed n, not all of
the states bgpn(r41)=1, Brgn(r+1)=2s -+« Bign(r41)—r are zero if at least one of
their subscripts lies in the range 0,...,mg. For these n, this is precisely the
condition that the transition at biin(,41) is not preceded by a splitting byte,
and is thus a critical transition of Type 1.

To show that this argument based on Condition ICC extends to estab-
lishing a critical transition in the bytes B,, and By,+1, we need to know
that the k*" position of B, is to the left of b,,,, the rightmost nonzero state
of A(t). The number of trailing zero states in By, is d,(8,t — 1) — 1, so the
rightmost nonzero state is in position r —d,(3,£—1)+1 of the byte. However
k=d,(a,t—1)—d,(B8,t—1)—g <7 —d,(f,t — 1), proving the assertion.
Thus there is a critical transition of Type 1 guaranteed by Condition ICC in
bytes B,, and By 1.

In fact, the nonzero state b,,, guarantees that the next critical transition
to the right of B,, is of Type 1, without reference to Condition 1CC, and
this transition inverts a zero state to nonzero. Thereafter, all states to the
right are zero, so this is a right particle boundary, exactly ng + 1 bytes to
the right of where it would have been if «(t) had evolved independently.

Notice that ag, the leftmost nonzero configuration bit at time ¢ reappears
in the combined configuration at time +1 at two different places, respectively
n, and ng, + ng + 1 bytes to the right of where it started. Between these
two positions, the state of the k' position of each of the configuration bytes
By, B,,...,B,, of B(t) is inverted, so the configuration pattern of 4(t) begins
to disappear. However, the energy in these positions is unchanged, which is
ultimately the reason why A(t) will reappear at time ¢ + £(a), after all the
energy of a has rotated to the right of these positions.

(2) Rotation of the remaining energy of a(t): We use as induction’ hy-
pothesis that at time #’, all configuration states to the left of by are as they
would be in a(t'), the independent evolution of a to time ¢, that all con-
figuration states a;-' to the right of b, are related to states of a(t') by the
formula a;-' = a(t');~(ng+1)(r+1), and that for each ¢" with ¢t < 1" < ¢’ the chain
of critical transitions that starts at the leftmost nonzero state at time 1" has
n, + ng -+ 1 critical transitions of Type 1, the last of which places a right
particle boundary state, followed by a splitting byte and a critical transition
of Type 2.

We have shown that the induction hypothesis holds for ' = ¢ 4+ 1. Now
assume that the induction hypothesis holds for some ¢’ with ¢ < ' < t+E&(a).
We show that it holds for ¢ + 1. Since t' —t < £(a), there is at least one
energy bit of o(t) that as not yet moved in the independent evolution of
aft) to a(t"). The leftmost of these nonzero energy bits af corresponds to a
(possibly zero) configuration state a; that carries energy in a(t). Since all the
energy of a(t) was to the left of by, the induction hypothesis says that a! is
also the leftmost nonzero state of the combined configuration at time #'. The
Rapid Updating Automaton begins by setting a!*' = 0 and making critical
transitions on subsequent byte boundaries. As long as the positions of these
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critical transitions are at by or to the left of by, all states in the preceding
byte are as they would be in a(#'); thus the transitions are of Type L.
We pause now for a lemma.

Lemma 7 (Interior Updating Lemma) Let a! be the leftmost nonzero
state of a configuration at time t', and suppose that for all t" witht <" <1’
the chain of critical transitions starting at the leftmost nonzero state of the
configuration at time t" has only critical transitions of Type 1 or Type 2a2
to the left of or at position j, then if j' is the largest integer of the form
j—n(r+1) that is less than i, the configuration state in position j at time t'
is given by the formula o} = o' @ d,.

Proof. We rely on the expression of configuration states in terms of energy
states, a% = T30 €5 _n(r41) 20d @5 = T30 €j_p(,41)- Subtracting and noting
that under the conditions of the lemma, e = e}, if i < i’ < j and €} = 0
if i < i, we get a} — a}' = Ej_,(n+1)5ie;_n(r+l) = a}. The last equality
results from noticing that j' is the largest possible subscript in the sum,
which therefore represents the conﬁguratlon state a},. Transposing terms by
addition modulo 2, we obtain aji = aJ- ®al. N

We resume the proof of the Soliton Collision Theorem. When any of the
r positions preceding a critical transition fall within the range by to by, we
apply Condition ICC. If the critical transition is at bpyipn(r+1), Condition
ICC says that there is some j with 1 < j <r such that a;_j # byign(r+1)—i-
However, byyiyn(r+1)-; lies within the range of positions to which the Interior
Updating Lemma applies, so its value at time ¢’ is given by the formula
bi'+‘-+nl,+1)_3 = bpyisn(r+1)—j ® ai_j. Combining these two results, we get
szM(,H y-; 7 0, so the critical transition at bk+t+n(,+1) is of Type 1.

For the above argument to be completely correct, we should note that if
"= k+i+n(r+1)—j is outside the range [0,...,mg], Condition ICC
uses the defined value b; = 0, but the Interior Updating Lemmma uses the
actual state value in relative position b;. Fortunately, the actual state value
b is also zero because at time £ all states to the right of 5(¢) and at least
r + 1 states to the left of 3(t) are zero.

When all the = positions preceding a critical transition are to the right of
b, the induction hypothesis says that exactly the same critical transition
would have taken place in a(t") exactly ng + 1 bytes to the left of where it
oceurs in the combined configuration. ‘Again, this implies that the critical
transition is of Type 1, except if it corresponds to the rightmost critical
transition of a(t”). The resulting configuration state at this transition is
thus the same as the one in a(t” + 1), except shifted ng + 1 bytes to the
right, so it makes that part of the induction hypothesis true for ¢ + 1. Since
the chain of critical transitions begins at an unshifted left particle boundary
of a(t") and ends at a shifted copy of the right particle boundary of a(t"),
there are n, +ng+ 1 critical transitions of Type 1 before a Type 2 transition
occurs. Thus the complete induction hypothesis is true for " + 1.
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(3) Splitting of the combined configuration at time t + £(a): We wish to
apply the Interior Updating Lemma to the range of times t < " < t + £(a)
to show that the configuration 3(t) reappears in the same position at time
t+E(a). 10<j<(ng+1)(r+1), then all left particle boundaries for ¢”
in this range of times are to the left of b; because they are to the left of by.
The position of the first Case 2 critical transition at time ¢” moves right with
increasing t”, and for time " = {, the smallest in the range, it occurs at the
position of byy(ns41)(r+1)- Thus the Interior Updating Lemma applies to b;.

The leftmost nonzero configuration state at time ¢ + £(a) is by because a
has period £(a), and the independent evolution of a(t) for £(a) time periods
moves each configuration bit of a(t) exactly n, + 1 bytes to the right. Since
these new positions are all at or to the right of b, and thus not to the left
of by, the induction hypothesis at ¢” = ¢t + £(a) implies that the combined
configuration has no nonzero states to the left of by, and that the only nonzero
states to the right of b,,, derive from nonzero states of a(t + £(a)) shifted
right ng + 1 bytes, or, what is equivalent, states of a(t) shifted right by
ng + ng + 2 bytes. The leftmost of these is at the position of biy (nzi1)(r41)s
so that if () reappears in its original position at time ¢ + £(a), it will have
a full splitting byte of zero states By, 4.

Now that we have shown that the Interior Updating Lemma applies over
the time interval from ¢ to ¢ + £(a) to each b; with 0 < j < (ng+ 1)(r +1),
and that the r 41 states to the left of by at time ¢ are zero, the lemma proves
that 57 = b, @0 = b;.

Thus 3(t) reappears at time ¢ + £(a) in its original position in the time-
shifted diagram, complete with a full splitting byte of zero states, and «a(t)
reappears at time ¢ + £(a), shifted right n, 4 ng + 2 bytes, which places it
to the right of 8(t + £(«)). Because there is a splitting byte at the right of
B(t + E(a)), the two component partices evolve independently for at least
one time period. This completes the proof of the Soliton Collision Theorem.
|

Figure 1 is the time-shifted configuration of the same collision as figure 9,
this time with nonzero configuration states identified with respect to whether
they derive from a or from §. The modified rotation (and jump) of a is now
seen clearly, as well as the gradual disappearance and reappearance of the
nonzero states of 4 during the collision. If you look carefully, you can even see
the “footprints” of o as it steps across the fixed particle § in this time-shifted
diagram.

Theorem 20 (Converse of the Soliton Collision Theorem) If two par-
ticles o« and 8 collide with v initially to the left of 3, and they stay in collision

for at least £(a) time periods, then Condition ICC holds, they stay in colli-

sion for exactly £(a) time periods, and the collision is a soliton collision.

Proof. The term staying in collision, means that there is only one component
of the combined configuration in these time periods. As a result, there can
never be a splitting byte or a Type 2 critical transition to the left of a known
nonzero state, or even at the first byte boundary after a known nonzero state.
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Figure 12: Time-shifted diagram of the collision of two particles with
r = 4. Nonzero states of a are open boxes and nonzero states of 3
are filled boxes.

We use the same notation as in the proof of the Soliton Collision Theorem.
At time ¢, the leftmost nonzero state is ap and the rightmost nonzero state
is bm,. As before, the critical transitions of interest occur at byin(r41), that
is, at position k of every byte B;. As before, position k of B,, is to the
left of b,,,, so there will be a critical transition of Type 1 in position k of
B, +1 depositing the rightmost nonzero state for time ¢ + 1, and a critical
transition of Type 2 at position k of B, ,, depositing the energy carried by
ap at time t.

Since the r states of a(t) to the left of ag are zero states, Condition ICC
applied to the energy bearing state ag is equivalent to the condition that not
all of the r states to the left of byyn(r41) are zero states for 0 <n < ng + 1.
However, these byyn(r41) are precisely where we have shown there are Type
1 critical transitions, so Condition ICC holds for time t.

As in the proof of the Soliton Collision Theorem, the left particle bound-
ary for each of the £(a) time periods starting at ¢ corresponds to an energy
bearing state a; of a(t). Condition ICC applies only to these states. Since
there is only one component during these time periods, and since the po-
sition of the rightmost nonzero state of the single component moves right
with increasing time because energy bearing a; are never more than r po-
sitions apart, there cannot be a splitting byte until well to the right of b,,,
for any time # with ¢ < ' < t 4+ £(a). Let ' be the time when af is the
left particle boundary. The Interior Updating Lemma applies to the range
of times from ¢ to ¢’ and range of positions from b_, to b,y so for all ¢
and £+ ¢+ n(r+1) — 7 in these ranges, b}c'+='+n(7'+1)—j = bppiinfrir)—i + iy
The absence of splitting bytes in this range means that for each applicable
n, there is at least one j with 1 < j < r for which bxyipn(r1)-; # 0. For this
7, we have ai_;j # biyign(r+1)-; and Condition ICC holds for time ¢'.

Since every energy bearing state a; of a(1) appears as a left particle bound-
ary during the £(a) time periods the two particles are assumed to be in
collision, Condition ICC is fully verified. As a result, the Soliton Collision
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A

Figure 13: Unshifted configuration diagram of the soliton collision of
a stationary particle with a particle of average velocity 1. Note the
gradual jump of the stationary particle 12 positions to the right taking
place over 8 time periods, and the speeding up of the other particle
to the speed of light, » = 3, during the collision.

Theorem may be applied to show that this collision is a soliton collision and
lasts for precisely £(a) time periods. B

Constructing a clear unshifted collision diagram

The principal facts about the unshifted configuration state transition diagram
of a soliton collision are (1) that the left particle @ “jumps” to the right by
na+1 bytes; however this jump does not take place all at once, but gradually,
one energy bit at a time over the £(a) time periods of the collision, (2) the
right particle 2 speeds up to the speed of light during the collision, and (3)
the left particle & continues rotating, while the right particle # does not. The
next example we construct will illustrate properties (1) and (2).

To illustrate the “jump” of o, we use a stationary particle for & because
the persistence of the configuration states of a stationary particle in fixed
positions in the unshifted diagram makes it easy to see when any part of o
moves. To show the speed-up of 8 to the speed of light, we choose a particle
for # whose average velocity in the unshifted diagram is recognizably different
from the speed of light, and a value for r, the speed of light, that is not so high
that the trace of # during the collision does not appear nearly horizontal.
Choosing vg = 1 and r = 3 satisfies these objectives. The width of the
stationary particle with r = 3 is exactly 3r? = 18 positions which is wide
enough for a satisfactory diagram. We choose a width of 4 of 2 bytes to
provide a jump of (ng+ 1)(r + 1) = 12 positions, ?/s of the width of &. The
energy £(a) = 8, so there is a moderate time to observe the speed of # during
the collision. Figure 13 is the result.

After a soliton collision

The Soliton Collision Theorem guarantees only that the particles evolve in-
dependently for one time period after the collision. If the average unshifted
velocity of # exceeds that of «, or what is equivalent, the average shifted
velocity of o exceeds that of 3, (which in most instances is why they col-
lided in the first place), once they have participated in a soliton collision and
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Figure 14: Unshifted configuration diagram for two particles not or-
biting, r = 3.

switched places so that 3 is on the left, their differences in velocity will tend
to take them even further apart in each succeeding time period.

However, neither of these two conditions is guaranteed. As we shall see in
section 19, particles of equal average velocity can collide, identical particles
can collide if they are at different phases of their rotational cycle, and even
particles of slower average velocity can overtake and collide with particles
of faster average velocity if they start close enough together and if their
velocities during the early part of the cycle differ markedly from their average
velocities.

19. Systems of orbiting particles

When two particles have the same average velocity and sufficient initial sep-
aration, they do not collide. For example, the two particles in figure 14 both
have shifted velocity 2 and unshifted velocity 1. The window radius r = 3.
The right particle 3 has period 1 (really a divisor period) and thus always
has the same displacement d,(t, #) = 2 in all time periods. The particle J is
actually a spaced version of the “photon” for r = 1. The left particle o, how-
ever, has a more variable “instantaneous velocity” which sometimes exceeds
the average velocity and sometimes is less than it. Thus the independent
motion of « consists of motion at the average velocity and a pertubation
that is sometimes to the left of the average path and sometimes to the right.

When these two particles start somewhat closer together, as shown in
figure 15, they evolve independently for a few time periods until ¢ moves
to the right of its average position. Then they collide. The collision is a
soliton collision, and after £(«) = 6 time periods, & is to the right of j.
Since § does not rotate during the collision, and « goes through a complete
revolution, they are in the same relative phase when independent evolution
resumes after the collision. However, since their average velocities are equal,
they do not tend to move apart, and when a reaches that part of its period,
say At time intervals later, when its pertubation is to the left of its average
path, the particles are again close enough to collide.
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Figure 15: Unshifted configuration diagram for two orbiting particles,
c T4

This time the collision takes £(F) = 4 time periods. The particle a does
not rotate during this interval, and the particle 3 goes through one complete
revolution. During the first collision, the energy bits of & jumped to the right
by n, + ng + 2 bytes, and during the second collision, the energy bits of g
jumped to the right by ng + n, + 2 bytes, the same amount. Thus when
the particles resume independent evolution after the second collison, they
are in precisely the same relative position as they would have been evolving
independently for At time periods from the time of the initial contact. As
a result, after £(a) — At additional time periods, a has completed two full
rotations. In general, we cannot expect § to be in its initial phase after £(«)
time periods, but the particular 8 of this example has the divisor period
1 which divides the period £(a) of a. Thus, when « completes its second
revolution, they are in exactly the same relative position they were in at the
initial contact, and the sequence of pairs of soliton collisions repeats for these
two particles every 2€(a) + £(8) = 16 time periods.

Differences between single particles and systems of orbiting parti-
cles

It is important to make a distinction between single particles in the sense
we have made precise earlier and such systems of orbiting particles. For one
thing, there are infinite families of such systems of orbiting particles, while
the number of single particles for each r is large, but finite. For a second
thing, the period and velocity of a single particle are completely determined
by the particle’s energy and size in bytes, while these formulae do not apply
to systems of orbiting particles.

If the period of # does not divide £(«) or if the pertubation of motion of
one or both particles is more complex, there may be additional collisions be-
fore the particles repeat their original relative position and rotational phase.
However, since their average relative position remains constant except for the
jumps of n, +ng+ 2 positions when the particles collide, as long as there are
times in their joint independent rotaton when a is relatively further to the
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right of its average position than 3 and other times when f is relatively far-
ther to the right of its average position than «, the particles will repeatedly
cross and recross as a system of orbiting particles.

20. Tangent or osculating particles

Tangent or osculating particles occur when the gap g between the splitting
byte of the first particle and the left particle boundary of the second particle
is zero. As a result, the byte boundaries of the second particle are aligned
with and continue the pattern of byte boundaries of the first particle. There
is a critical transition of Type 2a2 at the left particle boundary of the second
particle, the energy interpretation of which is ambiguous (see the Critical
Transition Lemma). It may be considered as a transition where the energy
lost at the left particle boundary of the first particle is restored to the config-
uration at the same position where energy is being lost to the primed window
at the left particle boundary of the second particle, or it may be considered
just another energy preserving critical transition that leaves the computa-
tional window primed for the next critical transition r + 1 positions to the
right.

Another way to express the ambiguity of tangent particles is to notice
that you get exactly the same configuration in the next time period if you
consider the configuration as two particles evolving independently, or as one
large particle that evolves by rotating its leftmost nonzero energy state fo
the first byte boundary to the right of the complete configuration.

Tangency and collisions

Suppose two particles @ and 3 are tangent, and remain tangent for several
time periods. Since tangent particles have aligned byte boundaries, their
displacements must be the same during these time periods, and therefore
the initial (i.e., leftmost) states of their energy diagrams and configurations
must be equal. It makes equal sense to say that the initial nonzero energy
states of @ are rotating to the right of the combined configuration while
all the energy of B remains fixed, i.e., that they are in collision, as it is
to say that the nonzero energy states that are appearing on the right of the
configuration are the initial nonzero energy states of # which are disappearing
from the left particle boundary of 8 somewhere in the middle of the combined
configuration, only to be replaced by the equal initial nonzero energy states
of a.

Suppose now « slows down relative to 3 in the next time period. A
positive gap g > 0 will open up between the particles, the byte boundaries
will no longer be aligned, and the particles will evolve independently. Since
the tangency of the two particles does not result in a full collision lasting
E(a) time periods, it was considered preferable to define tangent particles as
not in collision.

Suppose however that after At time periods of tangency, a speeds up
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relative to 3 in the time-shifted diagram. The gap is then negative and the
particles are in collision at time ¢. Assuming all goes well and the collision is
a soliton collision, at time t + £(e), their relative phases are as they were at
time ¢, and e has moved n, +ng+2 bytes to the right relative to 8. We now
back up to time t + £(a) — At and claim that at this time we can already
find the complete particle e at the right of the configuration. This is At time
periods earlier than predicted.

By backing up At time periods to time t + £(a) — At, we do not allow
the last At nonzero energy states of a to rotate to the right. These were
the energy states that got to the right end of a during the At periods of
tangency, and are thus matched by a set of equal energy states at the right
of 3 at the time t of the collision. These sets of states are an exact number of
bytes apart, namely ng+1 bytes apart. Thus we may interpret the combined
configuration at time ¢ + £(a) — At in two ways, first as a configuration in
the midst of a collision during which At nonzero energy states of @ have yet
to rotate, and second as two particles, the particle 3(t — At) to the left of
and tangent to a second particle which is the transposition of the particle
a(t — At) to the right by n, + ng + 2 bytes.

Strictly speaking, the conclusions of the Soliton Collision Theorem are
not true in this instance because the configuration splits into separate par-
ticles At time periods earlier than predicted by the Theorem. (This is not a
counterexample to the theorem because Condition I is violated by the equal
initial energy patterns of a and 3.) However, both in the time interval from
t tot + E£(a) and from t — At to t + £(a) — At, (as well as in all the time
intervals of length £(a) between these two), the other conclusions of the Soli-
ton Collision Theorem are fulfilled. It therefore makes sense to weaken the
hypotheses of the Soliton Collision Theorem and the definition of “particles
staying in collison” in its converse so that tangency is permitted within a
collision.

21. Collisions of small particles

Condition I, the intersection compatibility condition in the Soliton Collision
Theorem guarantees that as the left particle « “steps” over the right particle
B, it does not accidentally create a string of r consecutive zero states that
cause the colliding particles configuration to split prematurely. Some of the
transitions to which Condition I may be applied are also proved to be Type 1
critical transitions because of known nonzero states such as the leftmost and
rightmost nonzero states of # and the first nonzero state of a to reappear to
the right of 3. If both colliding particles are small particles, i.e., contained
in one byte, we now show that premature splitting can never take place.

Theorem 21 (Small Particle Collision Theorem) The collision of two
small particles is always a soliton collision.

Proof. Suppose the particles « and f collide at time ¢. For notational
convenience, we label nodes in the cellular automaton by an ordered pair,
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(byte number, relative position), with (0,0) at the leftmost nonzero state of
a(t —1). Then all of a is contained in byte 0, and all the states of byte 1 are
zero. If ¢ > 0 is the gap between particles at time ¢ — 1, the leftmost nonzero
state of A is at (2, g), and all states to the right of (3, g), inclusive, are zero.
Let (0,7) be the position of the second nonzero state of a(¢ — 1) from the
left, and (2, ¢ + k) be the position of the second nonzero state of 3(t — 1).

At time ¢, the nonzero states of a(t) extend from (0,z) to (1,0), and those
of A(t) extend from (2,9 + k) to (3, g). Since the particles are in collision at
time ¢, we have ¢ > g + k. Consider the evolution of the configuration for
those time periods when the leftmost nonzero state is in byte 0. The critical
transition in byte 1 is of Type 1 because of the nonzero state at (1,0), the
transition in byte 2 is of Type 1 because of the nonzero state at (2, g+k), and
the transition in byte 3 is of Type 1 because of the nonzero state at (3, g).
In the next time period, the leftmost nonzero state of the configuration is at
(1,0). The transition at (2,0) is Type 1 because of the nonzero state at (1,1),
the transition at (3,0) is Type 1 because of the nonzero state at (2,9 + &),
and the transition at (4,0) is Type 1 because of the nonzero state at (3,7).

Next we consider the remaining time periods when the leftmost nonzero
state is in byte 1. Since ¢ > g+k, the transition in byte 2 is of Type 1 because
of the nonzero state at (2,g + k), the transition in byte 3 is Type 1 because
of the nonzero state at (3,¢) if ¢ > 0, and the transition in byte 4 is Type
1 because of the nonzero state at (4,0). The remainder of the proof in the
case when g = 0 will be handled separately below after completing the proof
in case g > 0. For g > 0, the next (and it will turn out to be the last) time
period of the collision has the leftmost nonzero state of the configuration
at (2,0). The transition at (3,0) is Type 1 because of the nonzero state at
(2,9 + k), the transition at (4,0) is Type 1 because of the nonzero state at
(3,9), and the transition at (5,0) is Type 1 because of the nonzero state at
(4,7). In the next time period, every state from (3,g+1) to (4,7 — 1) is zero
because it started at zero at time ¢ and was inverted either two or no times.
The leftmost nonzero state of the configuration is at (2, g + k), it moves to
(3,9 + k), but there is a splitting byte before (4,9 + k) since i > g + k.
Particles now evolve independently with the left particle boundary of « at
(4,7).

In case g = 0, the two particles are tangent at time ¢ — 1. Assume the
they were first tangent at time ¢ — At for At > 1. When two particles are
tangent, their leftmost nonzero states have the same relative position within a
byte. During the At time periods of tangency, in each particle these nonzero
states moved exactly one byte to the right, so at time ¢, the rightmost At
nonzero states of o and f have the same relative position in a byte, and the
At 4 1st nonzero state is farther to the left in a. Thus the transition to byte
3 of all but the last At nonzero state of a is guarantee of Type 1 because
of the At + 1st nonzero state of 3(t) from the right. Since there were At
time periods of tangency before the two particles collided, the remaining At
time periods of a soliton collision (in the extended sense) consist of tangent
evolution of the two particles, as was shown in section 20. B
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Comparison with empirical results

The Small Particle Collision Theorem explains the large percentages of soli-
ton collisions reported in [1] when the window radius r approaches the sam-
pled particle size. In this case, nearly all the sampled collisions are collisions
of small particles, which by the theorem must be soliton collisions.

The empirical statistics in [1] for the case of window radius r = 9 and
particles of size at most 10 were initially of some concern. Whereas Table
II in [1] reports that 99.42% of a random sample of 2000 such collisions
were soliton collisions, the Small Particle Collision Theorem predicts that
all collisions of such particles should be solition collisions. Replication of
the original empirical study and examination of the 23 particle interactions
reported as non-soliton collisions show that in each case the interaction is
indeed a soliton collision of two particles of nearly equal velocity, but the
simulations on which Table II are based were run an insufficient number of
time periods after the soliton collision to allow these particles to separate
sufficiently so that the correct nature of these collisions could be detected
by the criteria used in [1]. (They use a gap of at least 2r consecutive zero
states to partition a configuration into components.) Thus even the most
problematic of the empirical statistics in [1], when examined closely, not only
do not provide counterexamples to the Small Particle Collision Theorem; in
fact they provide 2000 examples confirming the theorem.

Collisions of particles of configuration byte width 2 can also be analyzed
by the same techniques. They are not all soliton collisions because some of
the compatibility relations that are part of Condition I are not automati-
cally satisfied. The probability of randomly chosen particles violating any
one of the compatibility conditions is in most cases the same as the proba-
bility of two random sequences of r binary digits agreeing, which decreases
exponentially with 7. The number of such conditions in Condition I increases
quadratically with r (for fixed byte size of the two particles), so for large r,
almost all the requirements of Condition I are satisfied with high probability.
However, compatibility conditions near the end of the collision rely on agree-
ment of very small numbers of states and therefore bound the probability of
soliton collisions of such particles away from 1.

22. Almost orbiting particles

Soliton collisions in filter automata are used in (2] to embed computation in
the evolution of particles in the filter automaton by observing the phase shift
of selected particles during soliton collisions. For the particles and window
radius they choose, they observe phase shifts in both particles. The Soliton
Collision Theorem, however, says that only one of the colliding particles
should have a phase shift. The right particle # does not rotate during the
£(a) time periods of the collision, so its phase would be expected to be
delayed by E(«), but the left particle @ does rotate throughout the time
of the collision, and so should experience no phase shift. The resolution of
this seeming inconsistency is that the “soliton collision” they use in their
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Figure 16: Almost orbiting particles used in a carry-ripple adder. In
each collision, two particles of nearly equal velocity orbit three times
before finally separating.

carry adder is really the product of three successive soliton collisions of two
particles of nearly equal average velocities. As can be seen in figure 16,
the particles collide at a low relative velocity, nearly orbit each other for
several oscillations, but since their average velocities differ, the faster particle
eventually escapes before the slower particle can overtake it again for yet
another soliton collision and orbital period.

23. Open questions

Progressing from the general to the specific, there are a number of interesting
questions as yet unanswered. First, what is the proper context in which to
give a general definition of a cellular automaton? Should a group of symme-
tries of the underlying graph be taken into account and the updating function
required to be invariant under these symmetries? Most parallel synchronous
cellular automata studied have this property, but serial automata may have
a fundamental assymetry forced by the order relation. What happens when
the time dependence function in the updating rule also looks at time ¢t — 1
so that three (or more) time periods are involved in the relation?

Is there an interesting serial automaton on the integer grid points in the
plane that exhibits all or some of the interesting properties of parity filter
automata on the line? What is the evolution of infinite configurations in
a parity filter automaton? (The updating rule will have to be modified at
minus infinity, perhaps to start in state PW.) How many of the results carry
over to a finite circular integer graph? Are there interesting serial automata
on the line with & possible state values?

For parity filter automata, give a complete characterization of “impossi-
ble” configurations, that is, configurations that cannot appear after one or
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n time periods, or which cannot appear in a particle. Show that the re-
striction to exactly one left and one right particle boundary in a particle is
unnecessary.

Finally, is there any connection between the “solitons” found in parity
filter automata and the “solitons” found as solutions of differential equations?
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