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Abstract . Parity filter automata are a class of two-st a te cellular
aut omata on the intege r grid po ints of t he real line in which cells are
updated serially from left to right in each time period ra.ther than 5YO­

chronously in parallel. Parity filter auto mata support large numbers of
"par ticles," or persistent repeating configurations, and the collision of
these particles is frequently a. "soliton" collision in which the particles
in teract , bu t from which both emerge with t heir identit ies preser ved .
This paper presen ts a theory of such par ity filter automata . Period
and velocity theo rems for particles, existence and uniqueness theo­
rems, conser vation and monotone nonconservation laws, durat ion and
phase shifts in soliton collisions, and other results are proved.

1. Introduction

It is rare th at a class of objects can be understood almost completely. Thi s
paper describes just such a happy circumstance.

Parity filter automat a are a class of two-state cellular automata on the
integer grid points of the real line in which cells are updated serially from
left to right in each time period rather than synchronously in par allel as is
the case for most cellular automata studied. Each par ity filter automaton is
characterized by the radius r of the neighborhood of cells whose state values
influence the updating of the current cell. In a parity filter automaton , the
neighborhood consists of t he r cells to the left of the central cell in the current
t ime period and of the central cell and the r cells to the right of it in the
previous time period. Except if all of these state values are zero, the updated
state value at a cell is t he mod ulo 2 inverse of t he sum of the state values in
the neighhorhood.

"I'he author wishes to thank Professor Ken Ste iglitz of P rinceton University for intro­
ducing him to this class of cellular automata , for showing him many examples, and for
sharing his conjectures, many of which are proved in this paper . The author also wishes to
thank the Prin ceton University Department of Computer Science for use of their computer
systems in preparing this manuscript , and for the many courtes ies extended to him while
a Visiting Faculty Fellow at Princeton .

(c) 1988 Complex Systems Publications, Inc.
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Pari ty filte r automata are of interest because they support large numbers
of "part icles," or persistent repeati ng configurat ions, and the collisions of
these par ticles is frequently a "soliton" collision in which two par ticles inter­
act, but both emerge from the collision with their ident it ies preserved. This
paper presents a theory of such parity filter aut omata.

Parity filter au tomata were first defined by Steiglitz and studied by Park ,
Steiglitz , and T hurston in [I J. Steiglit z, Kam al, an d Watson [2J use the
phase conj ugations in certain soliton collisions in a pari ty filter automato n
to construct a ca rry-ripple adder.

This paper puts the empirical findings in [IJ and [2J on a solid foundation.
Stabili ty of finite configu rations is proved as are existence and uniqueness of
classes of particles. Formulae are derived for velocity and period of particles.
Sufficient condi tions for soliton collisions are derived and formulae proved for
phase and spati al displacements in solito n collisions.

Infinite families of complex par ticles described in [31 are reinte rp reted
as systems of orbiting part icles, per mit t ing finite bounds on the number of
part icles.

Conse rvat.ion pr inciples are defined and used to analyze tim e reversable
phe nomena. A monotone nonconservat ion principle analogo us to the Second
Law of Thermodyn amics , is proved and used to analyze t ime irreversab le
phenomena including the ulti mate resolution of any init ial configuration into
a collection of par ticles.

Prior to the work in this paper , near ly everything that was known about
par ity filte r automata was derived from empirica l studies. In cont rast , all
results in th is pap er are proved.

2. Overview

Th e paper is organized as follows. Sect ion 3 starts wit h very genera l defini­
tions of two major classes of cellular automata, parallel synchronous cellular
au tomata in which all sta tes are updated simultaneously, and serial cellular
au tomata in which states are updated in a predetermined order and newly
updated state values affect th e calculat ions of new state values at neighbor­
ing nodes in the same t ime period. At tenti on is then specialized to serial
automata on th e integer points of the real line and to a family of updating
rules, Parity Filter Automata, th at are based on the par ity of the sum of
nearby sta te values except for one case necessary to preserve regions of zero
values.

T he Stability T heorem, st ated in sect ion 4 and proved in sect ion 7, shows
that for such cellular automata, finite init ial configurations rema in finite at
all subsequent t imes. Pencil and paper studies, includ ing the original proof of
the Stability T heorem suggest a st rong relationship between the state values
sj and si!~ where r is the radius of the updating neighbo rhood N j . Time­
shifted state transit ion diagrams are defined in sect ion 5 to take advantage
of t his fact by placing related states under one another.

We then show in sect ion 7 that only one out of every r + 1 consecutive



Parity Filter A ut omata 93

vert ices undergoes a state change in each time period, leading to a Rapid
Updating Rule, and we define the by te size for a parity filte r au tomaton to
be r + 1 adjacent state values. Small configurations (i.e., less than one byte
in widt h) are then analyzed complete ly. T hey are all, with the excep tion of
t he zero and single nonzero bit configurations, par t icles for which the average
velocity and period can be calculated from t he initial configurat ion. T heir
periods and velocit ies tu rn out to depend only on the radius r of t he updating
window and the number of nonzero states in the initi al configur ation.

In order to derive similar descript ions for large part icles , the concept of
energy of a configuration is defined in sect ion 9. The evoluti on of a large
confi gurat ion has a simple descript ion in terms of the evolut ion of its en­
ergy stat es, from which formulae for the average velocity and period of large
particles are derived in sect ion 10. These formulae explain the empi rically
determined frequencies of parti cle periods and velocities in [1].

T he energy of a configurat ion provides a unifying pr inciple that pervades
the theory and simplifies the recognit ion, statement, and proof of results. The
fundamental propert ies of energy are given in the suggestive, but probably
misnamed, "Second Law Of Thermodynamics" that says that energy evolves
monoto nically, but not st rict ly monotonically, downhill, and in the Critical
Tra nsition Lemma that give the det ails of when energy is conserved and when
it is lost .

Impossible configurat ions and energy dist ribut ions are discussed in sect ion
14, lead ing to upper bounds on the size, period, and number of par t icles for
a parity fi lter automat on. Exist ence and uniqueness theorems for parti cles
of period 1 are proved in sect ion 15, and uniqueness is extended to other
part icles in sect ion 16.

Collisions of particles are analyzed in sect ion 18. In the absence of null
t ransition windows, they are soliton collisions in which the identiti es of the
two part icles are preserved. A precise descript ion of the velocity of each
par t icle during collision, and the spa tial and phase displacement of each
part icle after t he collision is given. Sufficient conditions for soliton collisions
are given which explain some of the solito n frequencies in [1).

Based on an understanding of soliton par ticle collisions, some of the "corn­
plex par t icles" in (3), e.g., those in figures 2, 10, and 15, may be reinterpreted
as collections of particles with the same average velocity, but different fine ve­
locity st ruct ure or phase. If two such part icles are sufficient ly close together,
at certain phases of their periods they will touc h, collide , and cross one an­
other. However, since their average velocities are the same, the particles
will not move apart after t he collision, and so they will recoilide and recross
each other. The result is an orbit ing system of simpler par t icles defi ned and
analyzed in sect ion 19.

Sect ion 20 studies tangent or osculating particles. In sect ion 21, collisions
of small part icles are shown to be soliton collisions, and in sect ion 22, t he
"soliton collisions" used in [2] to constru ct a carry-ripple adder are shown to
be in reality the prod uct of th ree successive soliton collisions of a sys tem of
almost orbiting particles. T he paper closes with question s for further study.



3. Definitions

Although a ll t he results of this paper are specific to the class of cellular au­
tomata ca lled parity iilter au tomata, tile defini t ions in this sect ion are given
initially in far greater generality for two purposes. F irst, the more general
definitio ns po int the way toward po ssible generalizations of the res ults of
th is paper . If they have ab st racted the right features of the more specialized
examples, they may shed some insight into which properties are special to
these examples an d which properties flow from deeper proper t ies of cellular
automata in general. At the very least , they will stimulate discussion abo ut
what the proper generalizat ions should he.

T he second reason is simpler. The mor e general definit ions prov ide a
framework for relating the parity filter automata studied in th is paper to
the more familiar parallel synchronous cellular automata. T hey are all in­
stances of the more genera l cellular automata defined here, and their points
of divergence are bet ter seen in this context.

Definition 1. A simply transit ive regular graph is a regular graph G =
(V, E) and a group <II of au tomorphisms (i.e. , self-maps) of G such that for
every v, w E V there is exactly one automorphism ¢vw E 4> tha t maps v to
w .

Looking ahead to the next definition, that of a cellular automaton, we
see that the not ion of each node having the "same" updating rule would
not make sense unless every vertex had the same degree (i.e., the graph is
regular), and furth er unless there is a unique way of defining corresponding
isomorphic neighborhoods. A group of automorphisms of the grap h, i.e.,
maps of the graph to itself, provide a canonical or standard way to equiva­
lence neighbo rhood s. Th e transitive property of the group of automorphism
means that there is at least one self-map in the group that takes any given
vertex v to any other given vertex w . Strengthen ing t his property to simply
transitive means that there also aren't too many automorphisms, i.e. , that
there is one and only one automorphism of the graph carrying v to w. Th e
group property of the set of self-maps of the gra ph also provides a "com­
patibility" condition on the canonical equivalences of neighborhoods: if the
equivalence of a neighbo rhood of u with a neighborhood of v is composed
wit h the equivalence of the neighbor hood of v with a neighborhood of w , the
resulting equivalence is the same as if the neighbor hoods of u and w were
compared directly.

Fort unat ely, the examples all sat isfy these condit ions in a straightforward
way; otherwise, the definitio ns of their updating rules and behavior would
not make much sense.

Definition 2. A cellular automaton is a family of identical microprocessors,
one for each node of a simply transitive regular graph G. Th ere is a set S of
possible states of an individual microprocessor, independent of vertex v E V ,
so tha t at any tim e t , each microprocessor P; is in a state s~ E S. Surrounding
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each vertex v is a neighborhood N; of vertices. These neighborhoods are
com patible with the automorphism group in the sense tha t Nv is mapped
to Nw by the automorphism ¢Jvw ' The sta te s~+l of the micropro cessor P;
at time t + 1 is determined [rom the states of neighboring microprocessors
by a rule s~+I = Fv( [s~v.w) JWEN. ) ' Th e funct ion F.., is independent of time
and the functi ons F« and F; are identical when the wth argum ent of Fu is
identified wit h the tPuv(w)th argument of Fv. T he time dependence funct ion
t (v , w) always has value t or t + 1, but the value can depend on v and w.
Th e rule Fv , or more precisely the collection of rules { Fv Iv E V }, is called
the updating rule of the cellular automaton.

D efinition 3. An additional condition usually placed on the updating rule,
the null stability cond it ion, is that the distinguished state value 0 is seli­
perpetuating in the sense that s~+I = 0 whenever s~ = 0 for all w E Nv .

All cellular automata in this paper satisfy t he null stability condition . The
function t(v ,w) in th e update ru le is the subject of the next two definitions.

D efinition 4. An updating rule {or a ceJIular automaton is called par allel
synchronous ift(v,w) = t for all vertices v ,w E V.

In a parallel synchronous cellular automaton , the st a te S~+ l of the mi­
croprocesso r Pv at ti me t + 1 is ent irely determined by th e sta tes s~ of the
microp rocessors at the neighbo ring vert ices W E N; at t ime t. In effect ) t he
states of all th e microprocessors are simultaneously updated in parallel from
time t to t ime t +1. Conway's "Game of Life" and the automata st ud ied by
Wolfram [5,6] are parallel synchronous cellular automata.

D efinit io n 5. An updating rule for a cellular automaton is caJIed seria l if
there is a total order relation '< "on V preserved by the automorphisms of
oj) and if

I( l- { 1+1 if w < v;
v , w - t i f w ~ v .

In a serial updating ru le, microprocessors are updated from time t to
t ime t + 1 in sequ ence, start ing at t he smaller elements of V and proceed ing
toward the larger elements of V . As soon as a state value is updated, th e new
value is immediately available to neighboring nodes for use in th eir updating
in the same t ime period. Steiglitz (1 ,2] calls seria l upd ated cellular automata
filter automata becau se t heir behavior resembles Infinite Impulse Response
(IIR) digital filters. Serial updat ing arises natu rally when one simulates a
cellular automaton on a single processor von Neuma nn computer .

Example 1 (The Game of Li fe1 Th e graph G consists of the integer grid
points in the plane and edges connecting horizontally and vertically adja cent
grid points. Automorphisms W are integer translat ions in "rwo dimen sions.
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Tb e state set S is the set {O,l} , with 1 meaning that the processor at a
vertex is "alive" and 0 meaning that i t is "dead." The neighborhood N (x ,y)

of a grid point (x, y) consists of the nine points { (x', y' ) I Ix - x'i '0: 1
and Iy - y'l '0: I}. Updating is parallel synchronous. Using the traditional
anthropomorphic terminology of this example, a new cell SI(+I) = 1 is "born"r ,Y

at a previou sly unoccupied node s(,~:;,") = 0 jf and only if the sum of the state
values at the Dine points of it s neighborhood is 3j a "living cell" 5(%" ,1/) = 1

"dies of loneliness" at time t +1, i.e., s(~,~} = 0, jf the sum of the st ate values
in its nine point neighborhood is less than 3, it "dies of overcrowding," i.e.,

1+ 1 O'f h . h 4 d't "1' " . t+ 1 I 1SjX,y) = , J t e sum 15 greater t an , an J rves, r.e., s(r ,y) = s(:z:,y) = I

i the sum is 3 or 4.

Example 2 (Par ity F ilter Automata) The graph G consists of the inte­
ger grid points on the real line wit h edges connecting adjacent int eger points.
Automorphisms are integer translations. The state set S is the set {O, 1 },
and the neighborhood Nx of a point x is the symme tric interval of 2r + 1
points centered at z , i.e., Nr = {x'I Ix - x'I :5 r }. The radius T of the
neighborhoods is a parameter defining a family of parity filter automata..
The updating rule is

=

Updat ing is serial from left to right.

Example 3 (P ascal Tria ng le m odulo p) The graph G consists of the in­
teger grid points on the real Jine with edges connecting adjacent integer
point s. The state set S = z. = {O, 1, . .. , p-l }, the integers modulo p. The
upda ting rule, S~+ l = (S~_ l + s~+I) mod p, is para11el synchronous, but the
neighborhood Nr = { x - 1, x +1 } is a deleted neighborhood in the sense that
it contains points near X, bu t not x itself. If the starting states of the vertices
of the autom aton are all zero excep t for a single state of 1 at the origin, the
automaton evolves into a state where the nonzero vertex states are binomial
coefficients modulo p separated by single zero states. The two-dimensional
plot of the time evolution from this initial state is a Pascal Triangle mo dulo
p with fractal-like appearance (see figure 1).

D efinition 6. Fol1owing WoHram [5J, we cal1 an updating rule totalistic if
the new s tate S~+ l depends only on the sum of the s tate values at vert ices
wE n;

s~tI = F( L s~v,w»)

wEN.
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Figure 1: Pascal Triangle modulo 2.

Parity Filter Automata and Pascal Triangle auto mata are totalist ic, al­
though the neighbo rhoods in the Pascal Triangle examples must exclude t he
center point to sat isfy the definition. (s~ does not appear in the sum.) Any
totalistic rule can be made nontotalist ic by enlarging the neighborhoods, but
the converse is not t rue. Th e Game of Life fails to be totalist ic because the
updated st ate values depend on both the current state and the neighborhood
state sum at a point.

4. Stability

In general, serial updating rules on a line auto maton are unstable in the
sense that finite configurat ions at time t can (and usually do) evolve to
configurat ions at t ime t + 1 that extend infinitely far to the right . T he
Stab ility Theorem proves that this does not happen in parity filter automata.

Start ing with the Stability Theorem below, at tent ion will be specialized
to the class of Pari ty Filter Automat a.

The set of states s~ that can be influenced by the state value s~ at vertex v
and time t expands in a cone of influence from v. For parallel synchronous
upd ati ng rules, if r is the radius of Nv , that is, the maximum distance (i.e.,
number of edges) from v to any w E N v ) then s~ cannot be influenced by s~
if dist (v)w) > r(t' - t). T he window rad ius T is a natural upper bound on
the speed of propogation of state information in the automaton, which we
call the speed of light in the automaton.

For genera l serial updati ng rules, the cone of influence satisfies the same
relat ionship if w < v, but it is possible for s~ to affect S:"+1 for all w 2: v.

Defin it ion 7. A cellular automaton is called stable if whenever only finitely
many vertices are in nonzero sta tes at time t , there will be only finitely many
vertices in nonzero states at time t + 1.

All parallel synchronous cellular automata with neighb orhoods of finite
rad ius are stab le by t his definit ion. T he principal theo rem of this sect ion
asserts that par ity filter automata are stable in th is sense.

Theorem 1 (Stability Theorem) If th e s tate of a pari ty filter a utomaton
at time t contains only finitely many nonzero values, then the state of the
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autom aton at time t + 1 will also con tain only finitely many non zero values.
Moreo ver, if s] is th e leftmos t nonzero value and s~ the righ tmost nonzero
value a t time t, then S~::~+ l_k = 0 and S~~k = 0 for all k > O.

The Stability Theorem was the first major result I proved about Parity
Filte r Aut omata. Its original proof was of necessity long because there was
then no machinery with which to work. In thi s paper, we first develop the
fundamental machinery of Par ity Filter Automata implicit in t he origina l
proof, mos t part icula rly the con cept of time-shifted state diagrams. T he
St a bility T heorem is now proved in sect ion 7 as an easy consequence of the
Ra pid Updating Rule.

5. Tim e-shifted state diagrams

The state value sj+1 is of necessity influenced by sj+r' th e state value that
enters the computat ional window for the first t ime in th e calculat ion of sj+I_
Wh ile it is always possible for a state value in a seria lly updated automaton
to propogate to t he left at the speed of light r -, in a parity filter aut omaton,
nearly all state value propogation is of thi s kind. For t his reason, many
properties of parity filter automata are easier to describ e when the state
values at t ime t + 1 are shifted r places to the right relat ive to those at
t ime t .

D efi nit ion 8 . The t ime-shifted state diagram of an initial configuration and
cellular automaton defined on the int eger points of the real line is the array
of state values

{aj} = {si- t,} .

6. Evolu t ion of configuratio ns

For clar ity of exposition, all subsequent space -t ime diagrams of the states
of a pa rity filter automaton will be t ime-shifted diagrams, with state values
at t ime t + 1 shifted right r places relative to thos e at time t . Thus the
computational window for state s:+I previously drawn as

will now be drawn as the (r + 1) x 2 rectangle

or using the shifted notation aj = sj_ro
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Four special sets of t ransition values in the computational window are
singled out for special names because they play special roles in the evolut ion
of configura t ions .

Definition 9. The computational window

o 0 0
o 0 0

is called the null transition window and the associated state transit ion a null
t rans ition.

It is the only except ion to the usual case of calcu lating the new state
value s~+t by reversing the par ity of the sum of the neighboring state values

s!+1 = 1+ S '+ 1 +...+s'+1 + s~ +s' +...+ s' (mod 2).I - I-T .-1 I ,+ 1 I+r

which is eq uivalent to t he more symmet ric relationship

s~!: + .. .+ s~~~ + s ~+t + s: +S ~+ l + ... + s~+,. ;::; 1 (mod 2).

All other trans it ions ar e called parity reversing becau se th ey satisfy thi s
equation for the calcu lation of S ~+ I . T he null transition is the only parity
preser ving transi tion that sat isfies similar equa tions with the ter m 1 changed
to o.

A large part of the work in the proofs of theorems in this paper is de­
voted. to proving th at null t ransitions do not occur , so that all computational
windows considered reverse parity.

Definition 10 . The computational window

1 0 0
o 0 0

is called the t ime irreversable tr ansition window and its associated transit ion
a time irreversab le t ransition.

Although the time irreversable t ransit ion sat isfies the parity reversing
rule, it is t he only valid computat ional window that would not repr esent a
valid t ransit ion if the roles of times t and t + 1 were reversed, t hat is, if time
were "run backward " and updat ing done from right to left.

Definition 11. The computational window

o 0 1
o 0 0

is called the left particle boundary window and i ts transition a left particle
boundary tr ansition because it occurs at the leftmost nonzero state value in
a configuration. Th e computational window

o 0 0
1 0 0

is called the right parti cle boundary window and its associated transit ion a
right par ticle boun dar y transit ion.
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Left par ticle boundary tr ansitio ns occur at the leftmost nonzero state
value in a configur a tion , as well as at. t he leftmost nonzero state va lue of any
subconfigurat ion whose evolut ion at t ime t is not influenced by the nonzero
states to th e left of it . In par ticular, left par ticle boundary t ra nsit ions occ ur
at. t he leftmost non zero states of subconfigurat ions called particles, to be
studied nex t.

Sim ilar ly, right particle boundary t.ransit ions ofte n occur at the rightmost
non zero state values in a configurat ion, as well as at t he rightmost non zero
state value of any subco nfigurat ion whose evolut ion at t ime t will not influ­
ence t he evolut ion of nonzero states to the righ t of it . In particular , r ight
par ticle boundary t ra nsitio ns will occur at the right end of par ticles.

7. Dynamics of small particles

D efinition 12. A small configurat ion is a con fig uration of th e automaton
in which all nonzero sta tes are contained within a span of r + 1 consecuti ve
vertices .

D efini t ion 13. T he num ber r + 1 is called the byte size for the parity filter
automaton.

Vle describe the evolut ion of a small par ticle with k nonzero states. If
k = 1, then the configurat ion "dies," i.e., decays to the zero configura t ion
in one t ime per iod because no computat ional window has more than one
nonzero value. We ass ume henceforth that 2 ~ k .:::; r + 1. Using t ime-shifted
diagrams, the situa t ion is as follows.

i ; 0 0 o 0

where bo is the left most nonzero st at e value at t ime t . All computat ional
windows to the left of th e ODe for Co are null windows, and the window for Co is
a left part icle bou ndary window. T hus Co = O. Th ereafter, the computat ional
window becomes "primed" in t he sense of the following definit ion.

D efinition 14. A computational window with t ime-shifted diagram

al.
J

a l.+I
J

is called paired if aj_i = aj: ~ for all i in the range 1 ::; i ::; r . I t is called
primed if there is exactly one i in the range 1 ::; i ::; r for which aj_i +aj~: = 1
an d aj_i = aj:~ for th e remaining i in this range. The etymology of the ter m
derives from "priming a. pump" and not from prime numbers.

Since a primed window cannot be a null window, aj+l = aj for prim ed
windows. If a pa ired window is not null, then aj+l = 1 - aj because par ity
must he reversed.
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Lemma 1 (P r im ed W indow Lemma) Once a comp utational window be­
comes primed, it remains primed {or r consecut ive vertice s and then i t be­
comes paired.

P r o of. First we show t ha t if the window for aj+ l is primed bu t the window
for aj!i is not primed , then the unmatched pair of states is aj!i i aj~ l'

Conside r the time-s hifted diagram

a;_r_ l
t+J

aj_ r_ l

Because aj_i+a;:~ = 1 for some i in the range 1 ~ i ~ r1 th e window for aj!i
is not null. Thus parity is reversed an d a;_r_l = ai!~_ l' If i were greater
than 1, the window for aj!.i would be primed. We conclude that i = 1 and

t t + l 1a j _ 1 + aj _ l = .
As a result, the next r - 1 computational windows are not null windows

and therefore reverse parit y. We easily show that ait~ = aj+i for 0 ~ i S r c-L.
Thus each of these computat ional windows is primed and the window for aj--t~

is pai red . •
T he Prim ed Window Lemma provides an ext remely ra pid way of upd ati ng

st ate values from time t to t ime t +1, which is exp ressed in the next theorem
in the form of a three-state automaton. T he updating mechani sm is either
in its initial state SLPB ( vseek ing a left parti cle boun dary" ) where it cop ies
st rings of zero state values, or in the sta te PW ("primed window" ) where it
cop ies possibly nonzero state values unchanged from time t to t ime t+ I, or in
the state CT BB ("critica l transit ion on the byte boundary" ) where it inverts
a state value and cont inues in t he P W ("prim ed window") state. Updating
is ext remely rapi d because at most one of each r +1 consecuti ve state values
changes from time t to time t + 1, and the sum of the state values in the
computational window never needs to be calcula ted .

T h eo rem 2 (R apid Updating Rule) A parity iilter automaton may be
updated from time t to time t + 1 by the following eutom eton with three
states SLPB , PW, and CTB B. State SLPB is the initial state.

St a t e SLPB If a zero sta te aj = 0 is encountered, then aj+l is set to zero
and the a utomaton remains in state SLPB to read ai+! . If aj = 1 then
aj+! is set to zero, an d the automaton enters sta te PW.

St ate PW r consecutive states a} are copied to the corresponding aj+l .
If all copied states were zero, the automa ton returns to st a te SLPB;
otherwise it enters sta te CT BB to process the nex t node.

State C TBB The current sta te value aj is inverted, i.e., aj+1 = 1 - aj and
the automaton enters stat e PW regardless of tlle st a te value a}.
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P roof. All cases follow immediately from the Pri med Window Lemma and
the definit ion of the state transition rule for parity filte r automata.. •

T he Rap id Updating Rule provides a simple proof of t he Stability The­
orem , restated here in terms of time-sh ifted state diagrams. The orig inal
form of the Stability Theorem is immediately seen to be equivalent to the
time-shifted version of the theo rem, and therefore follows as soon as theorem
3 is proved .

Theo rem 3 (Stability T h eo rem, T ime-shift ed Ve rs ion ) Iftbe sta te of
a parity filter automaton at time t contains only finitely many nonzero values,
then the state of the automaton at time t + 1 will also contain only finitely
m any nonzero values. Moreover, if a~ is the leftm ost non zero value and a:n
the rightmost nonzero value at time t, then a~t:_k = 0 and a::~r+k = 0 [or
al1 k > O.

Proof. The Rapid Updating Automaton is in state SLPB copying zero states
until a~ where it switches to state P\¥ after set t ing a:+l = O. This proves the
assert ion of the Stabiltiy Theorem at the left side of the configuration. At
the right side, if a:" = 1 is encounte red in the state CTBB, then a:: 1 = 0, the
next r zero states a:"+l ' a:"+2 ' . . ., a:n+r are copied to a::; l ' a::~2' ..., a::~r '
and t.he Rap id Upd ating Automaton enters the state SLPB forever , since
there are no remaining nonzero states to the right . If on the ot her han d a:"
is encountered as one of a group a~+i_r ' a~+i-r+l ' ... , a:n+i-l' 0 < j .$ r ,
of r state values copied hy the Rapid Updati ng Automaton in the state PW,
then a:"+i = 0 is encountered in the state e T BB. In this case, a~~i is set
to 1, which turns out to be the right most nonzero state value at time t + 1,
the Rapid Upd ating Automaton switches to state PW to copy r consecut ive
zero states before retu rning to the state SLPB forever. In either case, the
rightmo st nonzero state at t ime t + 1 is a::~i for some j , O S j S r , and the
conclusion follows. If a~ is encountered in the state SLPB , then a~l = 0,
the next r zero states are copied with the Rapid Updating Automaton is in
state P W, and t he Rapid Updating Auto maton ente rs state SLP B forever.
In this case, the rightmost nonzero state value at time t +1, if any, is to the
left of a:: 1, and the conclusion also follows. •

E volu t ion of small configur at ions

Retu rning to the analysis of small configurat ions and the singly subscripted
notation introduced for small configuratio ns, the Rap id Updating Theorem
implies that all states at t ime t +1 to the left of Co are zero, that Co = 0 as the
automaton ente rs the primed window state PW at a left part icle boundary,
and that Ct = b., C2 = ~ , ..., c, = b,. . IT bo is the only nonzero state, the
automaton returns to state SLPB and stays there copying all the remaining
zero states. If at least one additional bi is nonzero, the automaton enters
state CTaB, sets Go = I , and ret urns to state PW to copy r zero states and
then to state SLPB to copy the remaining zero states 50 that a j = 0 for all
j ~ 1. Thus the window for Co is a left particle boundary window termi nating
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a sequence of null windows extending to minus infinity, and the window for
c, is a right part icle boundary window followed by nothing but null windows
extending to plus infinity.

The dynamics of small configurations can now be described precisely. If
the number of nonzero state values k = 1, then the configurat ion dies in
the next t ime period. If k ~ 2, the configura t ion t ransforms in each time
period to another configurat ion that also has k nonzero state values contai ned
wit hin t he span of a single byte of size r + 1. Each individual state value
of the configurat ion remains fixed in the t ime-shifted diagram , except for
the leftmost nonzero state which makes a quantum leap of exact ly one byte
width to the right . Thus the configurat ion tr ansforms like a cat erpillar t read
of circumference r + 1 or a perfect undamped accoustical delay line.

In the second time period, the second nonzero state value (from the left)
of the configura t ion is the leading edge of the configurat ion, and it ju mps
r + 1 positions to the right in the t ime-shifted diagram. T hus, afte r k t ime
periods, each of the k nonzero state values in the init iaJ configuration has
jumped r + 1 posit ions to the right on exactly one occasion and remained
fixed in the ot her k - 1 transitions . T he result is that afte r k time periods,
the original configuration reapp ears, displaced by r + 1 positions to the right
in the time shifted diagram.

In the unshifted diagram, the displacement d = kr - (r + 1) to the left .
Although a small configurat ion appears to move wit h average velocity v =
dj k = r -!f-, which is less than r , the speed of light , in fact this mot ion is
composed of two parts:

1. Motion of the individual bits of the configurat ion to the left at t he
speed of light, and

2. Rot at ion of the nonzero states of the configurat ion by quant um leaps
of r + 1 verti ces to the right.

If n is a divisor of the byte size r + 1, and the init iaJ configurat ion con­
sists of n repetitions of a subpattern of width (r + l )jn verti ces, then each
subpattern will have k jn nonzero states, and the configura t ion will repeat
after k jn time periods, a divisor of the full period k predicted for genera l
small configurations with k nonzero states within one byte.

D efinition 15. A small configuration is called a particle if i t repeats after
p time periods at a displacement d, to the right in the time-shifted diagram
and d = 'P" - d. to the left in the unshifted diagram.

Theorem 4 (Small Particl e Period and Velocity T h eorem) All small
configurations with k 2: 2 nonzero states within a span of one by te of size
r + 1 consecutive vertices are particles. Their period is k, shifted displace­
ment d. = r + 1 to the right , unshifted displacement d = kr - (r + 1)
to the left, average shifted velocity u, = (r + I)jk and unshift ed velocity
v = (kr - (r + I» j k . ff n divides r + 1 and the initial con figuration consist s
of n repet itions of a subpattern of width (r + l )j n , then there is a divisor
period of k j n with displacements d. jn and dj n .
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Figure 2: Electrons for r = 4.

_....,...~~~~~ ...-~- . .....~ ...... ......
.----~.. ............ ........
-~ ...... . ...

Figu re 3: Unshifted configurat ion diagram for five smal l particles ,
r = 5.

8. Examples of small particles

T he simplest examples of small par ticl es consist of r +1 consec uti ve non zero
state values. In addition to its full period k = r + 1, with displacement s
d, = r + 1 an d d = (r + 1)(r - 1), it has a divisor subperiod of kin = 1
based on t he di visor n = r + 1. The displacements for th is subperio d are
d, = 1 and d = r - 1. The average velocity, v = r - 1, for this particle is th e
fastest possible by t he St abili ty T heorem, which is why thi s particle is called
a "pho ton" in earlier litera ture [1 ,4J.

Th e slowest possible sma ll pa rticle consists of exact ly two nonzero states.
(There are slower, even mot ionless, larger particles.) If the two nonzero sta tes
are adjacent, we have an "electron" or "inchworm" that moves with per iod
2 in cycles of one short step and one long step (see figure 2).

Figure 3 shows a collect ion of small particles of differing velociti es for
t- = 5. Th e influence of density [i.e ., number of nonzero sta tes) on velocity
is clea rly illustrat ed.

Figure 4 shows their time-shift ed diag ram s in which the "rot ation" of
nonzero states is more evident becau se the component of the particle evolu­
tion consisting of un iform motion of states to the left at the speed of light
has been factored out .

Figure 5 shows something called the energy diagram of th e same five
parti cles in th e sense defined in sect ion 9.

,
..... . ~ . "111 1 • I I I"111 ....-. I I I

" 10 • • 10 Ilh.
I I I I

I I I •

Figu re 4: Time-shifted configuration diagram for five small particles,
r = 5.
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Figure 5: Energy diagr am for five small par ticles wit h r = 5.

105

I • .

Spaced particles

Given a small part icle in the pa rity filter auto maton with window rad ius r ,
there are associated "spaced" particles in th e automaton wit h window radius
r' = n(r +1) - 1 formed by insert ing n - 1 zero states after each state, zero or
nonzero, of the original particle. Th us t he "photon'! 111 for r = 2 becomes
t he more tenuous par ticles 101010 for r = 5 and 100100100 for r = 8. T he
full period of a "spaced" small part icle remains k, th e same as the original
par ticle, but the shifted displacement d~ and velocity v, are mult iplied by n.
Any divisor periods present in the original part icle are also present in the
space d particles.

9. Dynamics of large particles

We start by consider ing arbitrary, large configurat ions, i.e., those for which
the nonzero st ates cannot be contained in a single byte of width r + 1 consec­
ut ive vert ices. On ly configurations wit h a finite number of nonzero states at
some time t are considered in thi s paper. The Stability Th eorem then guar­
antees t hat such configur ati ons will remain of finite extent for all subsequent
time per iods. We reserve the word particle for t he following special class of
configurations.

D efinit ion 16. A configuration or state of a cellular automaton is ca//ed a
parti cle if

1. It reappears after p time periods at a right displacement d, [rom its
original posit ion in the shifted diagram, and

2. In each time period, there is exactly one Jeft particle boundary transi­
tion and one right boundary transitition.

We remark that small pa rticles, as defined in sect ion 7, sat isfy this def­
init ion. For such small particles, the period p is the number k of nonzero
states! a quanti ty preserved in all phases of the part icle's evolut ion. Th is
result does not generalize in the most obvious way to large particl es. Th e
per iod of a large par ticle is not equal to the num ber of nonzero states in th e
par ticle, nor is th e number of nonzero states even constant over tim e during
the evolut ion of a large particle. The following quant ity, called th e energy
of a configurat ion, takes over t he role of th e number of nonzero states of
a small configuration in a way that permits generalizing t he results about
period and velocity to large configurat ions. It is then shown in retrospect
tha t th e calculat ions of period and velocity based on energy that app ly to
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all particles, large or small, give the sa me resul ts for sma ll particles as those
based on the num ber of nonzero state values .

Definit ion 17 . The energy of a configu rat ion is th e sum

oc

£1= L la~ - aLr_11
i=-oo

For small part icles , each nonzero state makes exactly two contributions
to the sum , so the energy £' = 2k at a ll times t.

The energy of a configura t ion may be decomposed into a double summa­
t ion to show the independe nce of each relat ive position wit hin a byte.

, =
£t = E L: lal +n(r+I ) - al+(n- l )(r +I) I

j=On =- oo

There is a contribution to the energy whenever a relative pos it ion in a byte
is turned either on or off relat ive to th e state of the sa me bit in the previous
byte. Consequently, the energy of a (finite) configurat ion is a lways even.
The most imp ort ant fact abo ut energy is contained in the following th eorem ,
whose proof occupies th e remainder of this section .

Theorem 5 (S econd Law of T hermodynamics) The energy of a. con­
figuration is never in creased, i.e., £1+1 ~ e',
Corollary 1. E very configuration evol ves to a configuration of constant en­
ergy.

To prove the Secon d Law, we must st udy the transit ions of a con figuration
with pa rticular regard to where the energy associa ted with a position a t
time t ap pears at t ime t + 1. T he first non null window encountered is the
left par ticle bou ndary window associated with the left most non zero bit bo of
the configurat ion . (All diag ra ms are t ime-shifted .)

Since Co = 0, the energy asso ciated with bo = 1 at t ime t is not carr ied over
in th e same pos it ion as energy associated with Co at t ime t + 1. Instead ,
we may consider th is ene rgy as being t ransformed into energy assoc ia ted
with the pr iming of the computat ional window that occurs at a left particle
boundar y. The conservation or redu ct ion of total configurat ion ene rgy will
depend on whether t he energy associated wit h the primed window can be
re t ransformed into positional energy associated with another vertex of the
graph.

By the P rimed Window Lemma, the windows for Ct,C2, . •• ,e,. are pr imed
windows , so CI = bl , C2 = b2 , . ,', c; = br • Since the previous byte was all
zero at both times t and t + I , whatever ene rgy was car ried by btl b2 , .• " br

is st ill carried by ell C2, . . . , c- ,
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D efinition 18. In the updating ofa parity filter automaton, the calculat ion
of c, is called a critical transit ion jf the following three conditions are saUsfied.

1. Th e calculational window for c, is paired, i.e., Ci_ l = hi_ I, £; -2 = hi_ 2 ,

•• OJ Ci_r = bi_f"

2. Ci-r- l = 1- bi - f' - ll i.e., there was a state change on the byte boundary
in the previous by te.

3. Since the most recent left particle boundary, there is exactly one bit
of positional energy a t time t that has not yet been trans formed into
posi tional energy at time t +1.

A transit ion sat isfying th ese condit ions is called a critical transition be­
cause what hap pens at c, determines whether a par ticle ends there or whether
it cont inues into the next byte . Crit ica l t ransi tion s can on ly take place on
a byte boundary , i.e., a multiple of r + 1 positio ns to th e right of t he most
recent left part icle boundary tr ans it ion.

Lemma 2 (Critical Transition Lemma) If th ere is a crit ical transition
at c; then the following five cases, 1, 2al , 2a2, 2hl , and 2b2, descrihe what
can happen to the energy pending from the last left particle boundary.

C a se 1 If b,_. i 0 for some k wi th 1 $ k $ r, then there will be no
particle boundary at c; 7 the window will be primed from Ci+I to Ci+r so
th e pend ing energy is still pending, and there will be another crit icsl
transition at Ci+r+l '

Case 2a If bi_' = 0 for all k with 1 $ k $ r and b'_' _l = 0, then there
is a right parti cle boundary window at Ci _ I, energy is conserved in the
sense that all positional energy encountered at time t starting at the
most recently encountered energy-bearing left particle boundary up to
the current right particle boundary reappears at time t + 1, and the
comp utational window has r consecutive paired zeros seeking the nex t
nonzero state at time t. Case 2a has two subcases.

C ase 2a1 If b, = 0, th en there is a null transit ion at Ci-

Case 2a2 If bi = 1, then there is another left particle boundary tran­
sition at c..

Case 2b If bi_ . = 0 for all k with 1 $ k $ r and b'_' _l = 1, then there is a
time irreversable transition at Ci_l and there are two subcases.

C ase 2b1 If bi = 0 then two bits of energy present at time t between
th e most recent left particle boundary and c, are lost at time t +1.

Ca se 2b2 If bi = 1 then there is an unusual left particle boundary
window at Cj whkh did not contribute additional energy at time t,
the windows are prim ed from Cj+l to Cj+ r so energy from a previous
left particle boundary is still pending, and th ere will be another
crit ical transit ion at Ci+r+ J '
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P roof. In Case I, hi-k :f. 0 for some k wit h 1 ~ k $: r. T hus pa rity is
reversed in th e ce lculaton of c, and Ci = 1 - hi_ Calculating the energy at
position i,

[c, - Ci_,_ .1 = [I - bi - (1 - bi-,-tl l
= 1- hi + bi-r-tl
= Ibj - bi_r_11

Thus there is energy at c, at time t + 1 if and only if th ere was energy at
hi at tim e t. Since the calculat ional window is paired. when c; is calculated
from hi, the Primed Window Lemma. implies th at the next r windows will
be primed, the next r states will be copied unchanged, and that there will
t herefore be a. crit ical t ransit ion at Ci+r+ l .

In Case 2, hi_ Ie = 0 for all k with 1 ~ k :5 T . We break Case 2 into two
subcases depending on the value of bi_ r_ 1o In Case 2a, the state bi _ r _ 1 = o.

o
1

o
o

o
o

bi

o
Thus at the previous crit ica l t ransit ion Ci - r - I = 1 as shown and the win­
dow for !:i - I is a right particle boundary window. There are two subcases
de pending on th e value of bj , and in both of th em energy is conserved.

In Case 2a l, the state bi = O. T hen c; = 0 as the resu lt of a null t ran sitio n,
and there is energy at Ci, but not at b., The part of the configuration between
th e most recent left pa rticle bou ndary and the right particle boundary has
transformed wit hou t loss of energy since th e energy lost at the left pa rticle
boun dary is regai ned at Cj.

In Case 2a2, the state b, = 1. Again c, = 0, but now there is positional
ene rgy at both bj and Cj. However t here is a way of interpret ing th e energy
dist ribut ion that is cons istent wit h Ca se 2a1. We consider t he energy at c,
as complet ing the energy transformat ion of th e particle whose right particle
boundar y wind ow is at Cj_ I ' We rega rd bj as the leftm ost nonzero state of
a new part icle. Wi th this interp retation, the energy at bi is not expected
to appear at c., but to go instead in to energy associated with priming th e
computational window at th e star t of a new particle. T his happens in Cas e
2a2, as it did for the init ial left part icle bou ndary t ra nsit ion.

To summarize what happens in Case 2a, a right particle boundary window
is en countered. T he ene rgy of the primed calculational window is deposited
at c. , and ene rgy is conserved . T he difference between Cases 2a1 and 2a2
is that in Case 2a l , there are one or more null window s before the leftmost
non zero state of a new particle is encountered (if there is another one) , whi le
in Case 2a2, th e left particle boundary of the next particle is encounte red
imm edia tely at bi.

D efini t io n 19. We call the situation of Case 241 oscu lating par ticles or
tangent particles. Th e defining characteristic is that the JiLS t bit of energy of
one particle transforms to the poeitoa tha t the first bit of energy of the nex t
particle is leaving.
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In Case 2b}the state bj _ r _ 1 = 1.

1
o

o
o

o
o

b,
o

Thus Ci _ r _l = 0 to have a primed window for C;_ I, and c: = 0 as in Case 2a.
T he calculational window for Ci_ 1 is a t ime irreversable window. There are
two sub cases, depending on the value of b;.

In Case Zbl , the state bj = O. In th is case} c, = 0 and its window is
the null window. T here is energy at bi but not at c;} so a bit of energy of
position is lost . Since the computat ional window also becomes unprimed
at th is time, the updating automaton reenters t he (energy free) initi al state
SLPB to seek ano ther energy-bearing left particle boundary} and a total of
two bits of positio nal energy have been lost since the most recent left pa rticle
boundary window. T he updating of the automaton t hen proceeds throu gh
null transit ions seeking the next left particle boundary tr ansit ion , if any.

In Case 2b2, the state b; = 1. Again in th is case, Cj = 0, but the
calculationa l window for c, is a left particle boundary window. However,
unlike the initial left pa rticle boundary window, there is no energy associated
with b;. Neither is energy ga ined at Cj because c, = C; - r - l = o. Thus the
computat ional window again becomes primed and there is st ill exactly one
bit of positiona l energy from time t that is not yet transformed to posit ional
energy at t ime t + 1. Th e Primed Window Lemma completes the proof that
there will be a crit ical t ransition at Ci+1'+I. •

Case 2b2 is st rang e} unexpected} and poorly understood. It is why the
definition of a par ticle specifies bot h exactly one left part icle boundary tran­
sition and one right par ticle boundary transit ion. If Case 2b2 could occur
in a particle, the number of left and right par ticle boundaries would not
necessarily be equal. Th ere is a reasonable chance th at I may someday be
able to prove that Case 2b2 cannot occur in a reasonable "particle," but in
its current form , the proof is inelegant and probably also incomplete. T he
difficulty is avoided in th is paper by defining particles in such a way that
Case 2b2 cannot occur.

Comp letion of the proof of the Second Law: At every posit ion except a
byte boundary, state values and consequently energy cont ributions are not
cha nged. On the byte boundaries, there are left particle boundary transition s
and crit ical tra nsitions of the five kinds. The Critical Transit ion Lemma says
that combining the energy contribut ions of the most recent energy beari ng
left part icle boundary transition with one of these five cases, energy is con­
served in four of the cases and lost in Case 2b1. Applying this fact as many
times as there are energy bearing left part icle boundary transitions in the
configura tion}we prove that the energy of a configuration is never increased
in the next time period . •

10. Dyna m ics of pa rticles

'We can now provide descrip tions of the evolution of large particles similar
to t hose given earlier for small part icles. For simplicity} the particles are de-
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scribed in te rms of their ene rgy distri but ion pattern . Reca ll that the leftmost
nonzero energy bit coincides wit h the leftmost non zero configuration state,
an d that the righ tmost nonze ro energy bit lies exactly one byte (i.e ., r + 1
vert ices) to the right of the r ightmost nonzero configurat ion stale.

LCJTIma 3 (Conservation of Energy in Par t icles) The energy of a par­
ticle is the same in all phases of the particle's evolutio n, i.e., £ t' = £1 for all
r 2: t .

Proof. T he Second Law says that energy can never increase with t ime.
Since the configuration of a parti cle reappears every p t ime periods with a
displacement that does not affect the energy calculat ion, £ t+ np = £l . If for
some t' 2: t the energy of the particle dec reased to £t' < £1, then for a
suitable multip le of p such that t + np ~ t', we have £ t+np = £ t > e', which
contrad icts the Second Law. T hus the energy of a par ticle does not dec rease
with t ime, so it remains constant. •

T heorem 6 (P eriod a n d Ve loc ity Theorem ) If the positional energy of
a particle is contained in precisely w contiguous bytes of size r +1 starting a t
the leftm ost node which has nonzero state value or energy, then the par ticle
has period p = E:' and shifted displacement d, = w(r + 1) . Th e unshifted
displaceme nt d = pr - d, = -e: - w(r + 1). T he enerlO' of a particle is the
same in all phases of the particle's evolut ion, i.e., £1 = £t for all t' ~ t.
Moreover, tbe nonzero positions in the energy diagram of eacb phase of the
particle's evolution are always contained in w contiguous bytes, but not in
w - 1 cont iguous by tes.

C oro lla ry 2 (Diviso r P er iod and Ve locity C orollary) [f n is a divisor
of W(T+ 1) and if the energy diagram at time t consists of n repetitions of a
subpattern, then the particle has this property at all subsequent times t' ~ t,
and it has a divisor period E:' ln and a sbi fted displacement w( r + l )l n for
this divisor period.

Proof. Since we are deali ng with a part icle and not an arbit ra ry config­
uration , critical transit ion Cases 2a2 and 2b2 cannot hap pen because they
involve second left particle bou ndary transitions. Case 2bl is impo ssible in
a par t icle because it results in the loss of energy, which the Second Law says
can never be regained, cont radicting the Conse rvat ion of Energy Lemma.
T hus only Cases 1 and 2a1 can happen. T he following theorem completes
the proof of the Period and Velocity T heorem and Corollary.

Theorem 7 (Part icle Evolutio n T heorem) At each tim e period, a par­
ticle's energy diagram transforms as follows. The leftmost energy bit (corre­
sponding to the leftm ost nonzero state value) disappears, i.e., is not present
in this position at time t +1. All other positions containing posit ional energy
at time t cont inue to contain posit ional energy at time t+1, an d a new energy
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bit is created at time t + 1 at a position w(r + 1) vertices to the right of the
leftmost energy bit at time t.

In terms of state values, the leftmost nonzero state disappears, all states
not on s ubsequen t by te boundaries remain unchanged, and all states on by te
boundaries are changed, including creating one new nonzero state to the righ t
of all previous nonzero state values in the time-shifted diagram.

Proof. At the leftmost nonzero state, energy is lost as the state flips from I
to O. T he next r vert ices have primed calculat iona l window s and t ra nsform
unchan ged. Since the previous byte consists of r + 1 zeros, all posit ional
energy at th ese position s is preserved. At th e second byte boundary, which
is t he next position , there is a crit ical tr ansition. Only Cases 1 and 2al
can happen, and Case 2a l , which carries forward a window with r paired
zero states, can happen on ly once per t ime per iod because if there are any
nonzero st ates to the right of a Case 2a l crit ical transit ion , t he first of t hese
will cause anoth er left pa rt icle boundary t ransition.

If the width of the energy diagram is w bytes, Case 1 critical t ransit ions
occur at the second through wt h byte boun daries, and a Cas e 2al crit ical
trans itio n occurs at. the (w+ l)st byte boundary. At posit ions not on the byt e
boundaries, all sta tes remain unchanged , and t herefore so does th eir ene rgy.
T he Case 1 crit ical transitions flip sta te value, but leave positional energy
unchanged on th ese byte boundaries because state values were also flipped at
th e previous byte boundary. Finally, at the Case 2a l crit ical t ransition, the
state value does not change, but energy is created (or redistributed) because
the state value was 1 in the previous byte; it was the rightmost nonzero state
value at tim e t + 1. •

T he following t ime-shift ed diagram summa rizes the state t ran siti ons of a
particle.

0 1 bl i. br+I br+'l
0 0 bl b, 1 - br+ 1 br+ 2

b2r+ 1 b2(r+ l ) b2r+3 b(w-l)(r+l )- l 0 0
b2r+ 1 1 - "'( '+ 1) b2r+3 b(w- l)(r+I)- 1 1 0

T he energy sta te transit ions of a particle are even simpler: th e leftmost
energy bit at time t disappears from t hat position at time t + 1 and reappears
w(r + 1) posit ions to t he right .

T he proof of th e Per iod a.nd Velocity T heorem can now be completed .
When the leftmost energy hit of tim e t moves w(r +1) positions to th e right ,
it exposes th e second to leftmost nonzero energy bit as th e new leftmost
nonzero energy bit at t ime t + 1. In th e next tr ansit ion, t his nonzero energy
bit moves w( r + 1) posit ions to the right, exposing th e th ird to leftm ost
nonzero energy bit as the byte boundary for the following t ransit ion. After £1
t ime periods, each nonzero energy bit will have been the leftm ost nonze ro bit
of a tr an sition exact ly once, and will have consequent ly moved right exactly
w(r + 1) positions. The period of the particle is thus £' and its shifted
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displacement d. = w(r + 1). Since the unshifted displacement d = pr - d.,
its value is r EI - w(r + 1) and the theorem is pro ved . T he Divisor Period
an d Velocity Corollary follows simila rly. •

T heorem 8 (C onsist ency of Energy and Small Particl e Descriptio ns)
T he period and velocity theorems [or small parti cles that calculate these
quanti ties based on the number of nonzero sta tes give the same answers as
the ene rgy based period and velocity theorems that apply to all particles.

Proof. For small par ticles, [t = 2k for all t, and the second energy byte of
a small pa rt icle is always ident ica l wit h the first. energy byte. T he energy
dia.gram of a sma ll par t icle therefore always has a divisor period of Et / 2 = k,
so t hat the energy based pred ict ions based on this divisor period agree with
the "full period" predicti ons based on the numb er of nonzero states . Divisor
periods of the form kI n in the small par ticle model correspond exactly to
div isor periods of the form £1/ 2n in the energy model. It is eas ily checked
that the calculated displacements and velocit ies agree . •

11. Exam p les of particles and t he ir evolut io n

T he Particle Evolu tion Th eorem or the more genera l Rap id Updating Rule
provide a very powerful and efficient way to calculate state tra.nsit ions. For
exa mple! consider t he following configurat ion with r = 2. It is a part icle of
energy width 4 bytes.

• • •• • •
1

•
o o o

•
0 0 0

T he states with dots over them carry positional energy. T hus £1= 8. T he
Period and Velocity T heorem predicts a fundamental period of 8 and dis­
placement d, = w( r + 1) = 12. However , the energy diagram (but not the
pattern of state values) consists of n = 2 repeti tions of the energy subpat ­
tern III 010, and so there is a divisor period of 8/2 = 4 with displacement
12/ 2 = 6. T he transit ions are calculated as follows, with [QI indicating a state
that changed to zero at a len part icle boundary transit ion and underscored
state values indicat ing that their states flipped due to crit ical transitions of
type 1 on the byte bound ar ies.

• • • • • • • • • • • •
1 1 1 1 0 1 0 1 0 0 0 0

~ 1 I 0 0 1 1 1 0 1 0 0 0

@] 1 0 1 1 1 0 0 I 1 0 0 0

~ 0 1 0 1 0 1 1 1 1 0 0 0

@] 0 1 1 1 1 Q 1 0 1 0 0 0

T he tran sition diagram for energy is even simpler. In each time period, the
leftmost nonzero energy bit jumps four bytes to t he right and all ot her energy
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bits remain the same. It is obv ious from the energy diagram that the period
p = 4 shown is a d ivisor period and not the full predict ed period because
only half t he nonzero energy bits of th e configuration have rota ted in fou r
t ime peri ods.

1 1 1 0 1 0 1 1 1 0 J 0
J 1 0 1 0 1 1 1 0 J 0 1

1 0 1 0 1 1 1 0 J 0 j J
0 J 0 1 1 1 0 J 0 1 1 1

0 1 1 1 0 1 0 1 J 1 0

12. By t e descriptions of particle evolut ion

In the examples of sect ion 11, it was visua lly convenient to group together
bytes of r+ 1 consecut ive state or energy values and to put an extra separat ion
between byt es for readability of the diagrams. In t his sect ion, we descr ibe
th e evolut ion of energy and configurat ion in terms of operations on ent ire
byt es.

D efini tion 20. We say that All A 21 • •• 1 An is a byte decomposition of a
parti cle if cadl Ai is a by te of r + ] adjacent state values, if the position in
the configuration of the rightmost bit of each Ai is adjacent to and to the
Jeft of the position of the leftmost bit of A j +1J and if all the nonzero stete
values of the particle are contained in the bytes AlJ A 21 • • • 1 An.

Defin it ion 21. A byte decomposition is called a canonical byte decomposi­
tio n if the leftmost bit of Al is nonzero and at least one bit of An. is nonzero.
These conditions are not in general req uired of a, by te decomposition of il

particle. The number of by tes n in a cauonica j byte decomposition is called
the configurat ion byte width.

Defin it ion 22 . Similarly, we say that E J 1 £ 21' . . , Ew is a byte decomposi­
t ion of th e energy of a particle if each E i is a byt e or T + 1 adj acent energy
values, if the position in the energy diagram or the rightmost bit of each Ei

is adjacent to and to the left of the position of the leftmost bit of Ei+l , and
if all the nonzero energy values of the particle are contained in the byLcs
ElJ E 21 • • • 1 E w .

Defini ti on 23 . A byte decomposition of the energy of part icle is canonica l
if the JefL most bit of E1 is nonzero and at least one bit of Ew is nonzero.
'1~)e numb er of bytes w in a canonical byte decomposit ion of the energy of a
particle is called the energy byte width.

D efiniti on 24 . We define the bitwise sum modulo 2 of two bytes A ffi B
to be the by te that results from adding the corresponding bits of A and B
modulo 2. If Ai denotes the ph bit of A , then (A Ell B )' = (Ai + B i ) mod 2.

D efin it io n 25. We denote the number of nonzero bits in a byt e A by N (Il ).
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Theorem 9 (Byte Description of Energy Evolution of a Part icle I)
If w is the energy byte wid th of a. particle and E ), E 2 , • .. , E w is a byte de­
com position of the periicle, then the following diagram gives a byte decom­
position description of the evolut ion of the particle.

E, E, E3 Ew
E2 E3 Ew E,

E3 E E, E,w

Ew E, E, E
w

_
1

E, E, Ew - 1 Ew

Th e transition from the i t h to the i + 1st lines in this diagram takes N(Ei )

time periods.

Proof. This theorem is really a restatement of the Particle Evolut ion T he­
orem in the new te rminology. If one looks at t he bit wise evolut ion of the
ene rgy of a particle after N(Ed t ime periods, after N(Ed + N(E,) t ime
periods, after N(Ed +N(E,)+N(E3 ) t ime periods, etc., one fi nds precisely
the lines of the bytewise energy evolut ion diagram.•

Note that this th eorem does not prove th at th e leftmost bits of E 2 1 E 3 1

"0 , E w are nonzero, nor could such a st atement be proved because it is not
necessaril y true, even if the init ial ener gy byte decomposit ion is canonical.

Theorem 10 (B y t e Description of En ergy Evolution of a Particle II)
If w is the energy byte width of a particle and El l E 2 1 · • • I EW I E W+I is a by te
decomposit ion of the particle, then the following diagram gives a by te de­
composit ion description of the evolut ion of the pa.rticle.

E1 E, E3 Ew EW +1

E, E3 Ew EW+lffiE1

E3 Ew E w+I(J)Et E,

Ew E w+1eEI E, E
w

_
l

Ew+I$E, E, E
w

_
l Ew

E1 E, Ew - 1 E EW +1w

The transition from the i t h to the i + 1st lines in this diagram takes N(E j )

time periods.

P roof. T his is also a resta tement of the Energy Evolution T heorem, hut
with byte bound aries falling so th at the energy byte width appears to be one
byte larger than it actually is. Note that in this ease, EW+1 and E1 have their
nonzero bits in disjoint par ts of the byte.•

Theorem 11 (By t e D escript ion of Par ti cle Evolution Theorem I ) ](
n is the con figuration by te widt h of a particle and All A2 , . . . , An is a by te
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decomposit ion of the particle, then the following diagram gives a byte de­
comp osition description of the evolution of the particle configura.tion.

A, A, A, A.
A l EM2 A1$ A3 A1$An A,

AiM, AiM. A, AlEM2

An_lEBA" An_
1 AlffiA.._ 1 An_iBA.._ l

A. AIEBA" An_-ze..t .. A"_leA..
A, A"_2 A"_I A.

P roof. Referri ng to the byte description of energy evolut ion in theorem 9,
we see that w = n +1 and E; = Ai E9 Ai_ 1 for 2 ~ i ~ n . VVe can extend this
equat ion to £ 1 and Ew by defining Ao = An+1 = 0, the zero byte. Vie now
reconst ruct the sequence of configu rations of the part icle from the sequence
of energy diagrams given by theorem 9. In general, th e ph configuration byte
B j of a byte decomposit ion is given in term s of the corresponding ene rgy byt e
decomposition { E;(B») by the formula

i
Bj = L: E.(B).

k= 1

All lines of configurat ion byte descript ion in the cur rent theorem are proved
by applying t his formula to the energy byte description and ca ncelling term s
modulo 2. For example, th e ph byte on the first line is calculated as E 1 ED
E, ffi · · · ffi Ej = Al ffi (A, ffi A,) ffi · · · ffi (Aj _1 ffi Aj) = Aj. The configuration
byt e unde r t his on th e second line is calcula ted as £2 EB E3 E9 ... E9 Ej =
(A , ffi A, ) ffi (A , ffi A3 ) ffi . .. ffi (A j _1 ffi Aj) = A, ffi Aj . All others are
calculated similarly. •

Theorem 12 (Byte Description of Particle Evolution Theorem II)
If n is the configuration byte width of a. part icle and AI, A2 1 . .. , An' An+l is
a byt e decomposition of the particle, then the following diagram gi ves a byt e
decomposit ion descript ion of the evolution of the par ticle configura tion.

A I A2 AJ

A leA2 A1e ·13 ·

AiiM3 •

A..+I

A 1eA ..+1

AiPA..+1

An_IS- I.. A.._IeA n +! A I$An_I · .. A.._iElA.._1
A..aA..+l A .E9A.. An_i!3A.. A .._.6'.4n

A1$.4...+ I . .. A.._i?A..+1 An- leA n+! A"EiM..+ 1

Al A"_2 An_ l A.. .-\"+ .

P roof. T his byt e descript ion of configuration evolut ion follows from the ­
orem 10 which applies to a byte decomposit ion with byte boun dar ies that
increase the apparent byte width of the par t icle. T he only extra observat ions
necessar y for the proof are that At = E I and that An+1 = En+2 = Ew+1• •



116 Charles H. Goldberg

13. Comparisons w ith empirical frequencies

In [t], Pa rk, Ste iglitz, and Thurston repo rt on com pute r simulat ions to find
a ll particles with bit width ::s: 16 for window rad ii r = 2,3 , 4,5, and 6. Their
tables of frequ encies of pe riods and displacements show very lar ge peaks at
certain periods and displace ments. Since the Period and Velocity T heorem
shows th a t th ese quan tities depend on ly on th e byte wid th and ene rgy of
a par ticle, but not on other details of t he particle 's config uration, all t hese
peaks may now be ex plained in term s of t he la rge number of pa rt icles that
sha re a common byte width a nd energy that produces t hese periods an d
di splaceme nt s.

For exa mp le, all of the most frequently observed period-displacement
pa irs in [1) for r ::::; 4, r = 5, and r = 6 are characterist ic of particle s of
configurat ion byte width 3 and "average" energy for thei r size. Since the
size of a byte is 5, 6, or 7 in t hese cases and the sea rch was conducted using
configurations of bi t width at most 16, we find very few particles of configu­
ration byte wid th 4 in th eir tables for r = 4, and none whatsoever for r = 5
and l' = 6.

However , there is ample room within 16 bits to have sa mpled all of the
par ticles of byte width 3 for T = 4 and 7' = 5, and nea rly all of them for r = 6.
Th eil' periods are given by their energy and are thus are even int egers, as
predi cted. For all three rad ii, th e maximum observe d frequency occur s for
period p = E = 2(r +1), an energy most readil y obta ined [rom par ticles wit h
two ene rgy bit s in each relati ve posit ion in th e byte. Since for such particles ,
the leftmost energy bit of the particle can be pair ed with a corresponding
energy bit in any of th e t hree remaining energy bytes , and the remaining l '

rela tive positions in a byte ca n have their nonzero energy bits chosen in G)
ways, and each such energy configura t ion will appear in [; different phases

during a period , a rough est ima te of th e number of such particles is 3G)r / E ::::;
3·6' / 2(r + I) , which app roximates the observed frequencies. [For .r = 6, a
sub stant ial fraction of t hese three-byte part icles have bit widt h more th an
16 an d would not be includ ed in the tables of [I).)

Accompanying each collect ion of par t icles of configura t ion byte width 3
ar e part icles of di visor period 2 having half the period a nd displ acement.
These are necessar ily far fewer in number because their ene rgy pat tern must
consist of two ident ical halves.

For r = 3, the maximum obser ved frequ encies correspo nd to particles
of byte width 4 which fall within th e 16 bit configura t ions sampled . Most
frequent periods and there fore energies a re 10 and 12, approximate ly half
the pos itions in the energy wid th of 20 possib le posit ions carry ing nonzero
energy. Second ary peaks in frequency corres pond to particl es of byte width
3. Par ticl es of byte width 5 a re not represented , as expected.
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14 . Impossible p a r ticles
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Not all sta te configurations can evolve as particles. The purpose of this
sect ion is to show that th ere are a sufficient number of classes of forbid den
configurations for part icles to prove that the total number of dist inct pa rticles
supported by th e parity filter automaton with window radius r is finit e.

It is shown in [2] that the number of particles with fixed period p is
bounded, bu t this is a much stronger result, that there are uppe r bounds
(although necessarily large ones) on the total number of particles and on the
maximum period of a particle.

Lemma 4. T he energy of a particle cannot have r +1 consecutive po si tions
of energy zero between its leftmost and rightmost nonzero energy positions.

Proof. Cons ider th at stage of the ene rgy ro tat ion of the particle when the
nonzero energy bit to the left of the r + 1 zeros is the leftmost ene rgy bit of
th e particle. 'When this bit rotates to the right , the energy byte width of t he
particle decreases by one becau se the new leftmost nonzero energy position
is more than r + 1 posit ions to the right of the previous one . Thi s reduction
in width cannot be recovered during later evolut ion of the configuration , so
the st art ing energy pattern of the particle never reappears , a cont radiction .
T hus there cannot be r+1 consecut ive zero states in the middle of the energy
pattern of a part icle. •

Lemma 5. Two consecutive nonzero bytes Ai and Ai+1 of the byte decom ­
position of a particle cannot be equal.

Proof. If Ai = A i+1 then Ei+1 = 0, which is forbidden by lemma 4.•

Lemma 6 . No two byt es Ai and A j of a by te decompositi on of a particle
can be equa.l, nor can any int erior by te be zero.

Proof. Assu me for purposes of contradiction th at the configuration is a.

part icle and Ai = Ai' If j = i +1 or i = j +1, lemma 5 gives the conclu sion .
Assumej # i+! and i # j +1. Define Ao = 0, the zero byte, so that a typical
byte Aj in the top row in the byt e descript ion of the par t icle's evolu tion can
be written as AoEIJAj, and a typical byte of the middle column ca n be writ ten
as Aj EIJ Ao· Now every possible bitsum of bytes, 0 .:s i,j .:s n , appears twice
in the diagram , once as Ai EB A j and once as Ai EIJ Ai'

If the leading byt e Ai ED Ai +1 of the row wit h Ai EIJ Ai has its left most bit
nonze ro, th is row represents a canonical byte decomposit ion of the part icle
a t this ti me, and there will be a right part icle boundary when Ai EB Ai is
reached by the rap id updating automaton . Since j i: i +1 a nd i =fi j +1, thi s
part icle boundary is in the middle of th e particle, a contradict ion. Simila rly,
Aj EEl Aj+ ) cannot have its leftmost bit nonzero. T hus the leftmost bits of Ai ,
Ai+1, A j, and A j +1 are equal.

We now do an induct ion proof, assuming that for all bits to the left of
relat ive posit ion k, th e correspond ing bits of Ai, Ai+1 , A j , and Aj+l are equal.
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If rela ti ve bit k of Ai EB A i+1 is nonzero, the rapid updating automaton
will encounter T + 1 consecut ive zero sta tes a fter bit k of Ai ED Ai l some of
them at t he end of the byte Ai ffi Aj and the rest of them at the start of
the byte A i Ell Aj+I' (Recall tha t the leftmost bits of A j+! are equal to the
corresponding bi ts of Aj by the indu ction hypoth esis.) T hese consecut ive zero
st a tes start ing at relat ive posit ion k which is being used as the byte bou ndary
by the rapid updating au tomaton would again cause a righ t par t icle boundary
in the mid dle of the pa rt icle, a cont ra dict ion , so rela t ive bit k of Ai ffi Ai+t

is zero. Similarly, the kt h bit of A j EB A j+1 is zero. Thus th e kl h bits of Ai,
Ai+1 1 Aj , and A;+1 are equal, and the induction is complete .

As a result , th e complete bytes Ai = Ai+l = A j = A i +lJ and lemma 5
shows that the configurat ion cannot be a part icle.•

T heorem 13 (F ini t e Number of P ar t icles T heorem ) For fixed parity
filter a. utoma.ton with window radius 7', the number of distinct particl es is
finite.

P roof. Since no interior byte of a particle can be zero and no two nonzero
bytes can be equal, the byte widt h n of a par t icle is at most 2T +I - 1 bytes.
Since all bytes must be dist inct, there are at most n ! par ticles, •

15 . Particles of p eriod 1

Parti cles with period 1 are a special class of part icles th at can be described
complete ly. Since the period is 1, t he velocity v and shifted velocity v,
are equal respect ively to the displacement d and shifted displacement d$.
Th ese particles ra nge in speed from the fast est possible particle, the so-called
"photon," with velocity r - 1 to the slowest possible particle , the stationary
pert icle. with velocity zero. T he most important result abou t part icles of
period 1 is tha t for each velocity in th is range, the re exists one and only
particle with that velocity. In ot her words, parti cles of period 1 are uniquely
determined by t heir velocity.

T heorem 14 (Existence a n d Uniqueness of Particles of P er iod 1.) For
any velocity v with 0 ::; v .::; r - 1 there exists one and only one pa.rticle with
period 1 and velocity v.

P roof. The proof proceeds by const ructing the energy pattern of a part icle
of period 1 and velocity v. At each ste p, the choice is forced, so there is at
most one particle with velocity v. Th en it is shown that the energy pattern
so constructed correspo nds to a par t icle, which establishes the existence par t
of the result.

If there is a particle with period 1 and velocity v, its shifted displacement
d, = r - d = r - v . Thus dtl lies in the range 1 .::; d, :::; r-. Since the
energy configurat ion of a particles evolves by moving t he leftmost nonzero
bit w bytes to the right while all other energy bits remain fixed, the second
nonzero energy bit (from the left) must be d, nodes to the right of the first
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Fig ure 6: Ene rgy pattern for a particle of period 1 wit h r = 4, v :;:: 2,
and d$ :;:: 3.

one. Since the period is 1, t he energy pattern at t ime t +1 must be t he same
as that at t ime t displaced to th e right by d, nodes. T hus the third nonzero
energy bit , if any, must be d, nodes to the right of th e secon d nonzero energy
bit , and so forth. Figure 6 shows such an energy pat tern for l' = 4, v = 2,
and d, = 3.

Since each nonzero energy bit represents a difference of configurat ion state
valu e between one node and the node r + 1 positions to the left of it , and
since all nodes sufficient ly far to th e left and to t he righ t are in state zero , the
energy pat tern of a configuration must have an even number of ones in each
relati ve posit ion wit hin a byte. T he repetiti ve energy pat tern of a par ticle of
perio d 1 starts with a 1 in th e leftmost position of a byt e an d does not aga in
have a 1 in the same relati ve position in a byt e unt.il lcrnfd, , r+ l) nodes to the
right . Th ereafter, the pattern repeats in the Same relati ve position s with in
bytes, so th at after 2 lcm (d", r + 1) nodes, th e contri bu tion s to the energy
are even in each rela t ive position within a byte for t he first t ime. In fact,
each rela tive position has eit her 0 or 2 nonzero energy bits. All th a t remains
to be shown is that thi s stopping place in the energy pattern corresponds to
a par ticle and th at continuing the pattern further results in a configurat ion
th at has at least two left part icle boundaries and thu s cannot be a single
par ticle.

T he configurat ion correspond ing to this energy pat tern adds new nonzero
states each byte th roughout the first half of th e energy pa t tern because each
new nonzero energy bit is in a different relative position within t he byte .
In byte lcm(d"r + 1)/(r + 1), every possible relat ive posit ion of the form
kd, mod (r +1) is nonzero. Th ereafter , configurat ion bit s become zero in the
same order they became I , so th at byte 2 lcm(d" r t I )/ (r +1) is all zero, and
th e previous byte ha s at least one nonzero state not in th e leftmost pos itio n
of t he byte (See figure 7). Th is means t hat th e PW (primed windo w) state
in the Ra pid Updat ing Au tomato n does not copy r consecu t ive zeros unt il
th e rightmost energy byte we have considered , which corresponds to the
all zero configurat ion byt e. Th ereafter, th e automaton ente rs state SLP B
(seeking left part icle bou ndary). If th ere were ano th er nonzero energy bit to
th e right of the 2 lcm (d",r + 1) bit s we considered , th ere would be anot her
nonzero configuration sta te and consequently anot her left part icle boundary
tr ansit ion . T hus stopping the energy pattern at 2lcm(d", r+1) positions gives
a particle an d cont inuing further cannot produce a single par ticle becau se of
the extra left par ticle bound ary. Th e repet itio n of th e energy pat tern every
d, posit ions guarantees that this is the particle desired . •
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Figure 7: Configuration pat tern correspo nding to t he energy pattern
in figu re 6 and its evolut ion.

As figu re 7 shows, the configuration pattern of a par ticle of period 1
displays a lmost none of t he regu larity of it s ene rgy pattern. To calculate
the exact width w of the configuration from its leftmost nonzero state to
its rightmost nonzero state , we start with the 2lcm(d lf 1 r + 1) nodes it takes
before the ene rgy pat tern lands on the byte boundar y for the th ird time,
subtract the last full byte of zero configurat ion states and the d, ~ 1 final
zero states in the prev ious byte. The result ing form ula is

w = 2lcm(d"r+ I)-(r+ I )-(d,-I)

= 2 lcm(d" r + I ) - r - d,

The constant disp lacement bet ween success ive nonzero bits in the energy
pattern means that if the pattern is reve rsed, i.e., written wit h left an d right
interchanged and leftmost nonzero bits aligned, it remains the sa me. Vve say
that such a pattern is symmetric.

The next th eorem says that symme t ric energy patterns correspond to
symmetric par ticl e configurations .

T heorem 15 (Sy m m etric Configurat ion T heorem) A configuration is
symmetric if and only if its energy pat tern is symmetric.

P roof. Start by pa iring the leftmost nonzero energy bit (which coinc ides
with th e leftmost nonzero configuration bit) with the energy bit r-l-I posit ions
to the right of the rightmost nonze ro configuration bit. T hese energy bits are
both nonzero. Move the pai ring one position at a t ime toward the center of
th e configur at ion. At each stage, the two configuration bits involved in the
calculat ion of the energy bit are symmet rically placed wit h respect to the
center of the configuration. Thus the paired energy bits are all equal if and
only if all t he symmetrica lly placed configuration bit s are eq ua l.

Formally, if b~ = a~; is the reverse of configuration a, and eHa) =

l a ~ - aLr_l] is its ene rgy pattern, then the energy pat te rn of b is

e~H"+l (b) = Ib~i+"+l - b~il = laL-l - a:1 = e:(a)

T hus, except for a shift, t he energy pattern of b is the reve rse of the energy
pattern for Q ••

Corolla ry 3 (Symm etry of Particles of Period 1) Any particle of pe­
riod 1 ha.s a symmetric configuration .
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Figure 8: Stationary particles for T = 1,2,3, and 4.

St a ti on a ry particles

At one extreme of the par ticles of period 1 are the "photons," the part icles
of highest velocity, and at th e other ext reme are th e stat ionary par ticles,
those of velocity zero. Steiglitz discovered thes e par ticles and derived thei r
configura t ion pattern for any window rad ius T. He also observed that they are
symmet ric configurations, a property now known to be true for all par ticles
of period I.

Figure 8 shows the configurat ions of stationary part icles for window radi i
1 to 4. For such particles, d = 0, d, = T , and the configurat ion width

w = 21cm(d" r + 1) - r - d.

= 21'(r + 1) - 1' - 1'
= 21,2

16. U n iq ue ness of pa r t icl es

T he method used in the previous sect ion to find the ene rgy pat tern of a
particle of period 1 can be used to find the energy pat tern of any par t icle
for wh ich the sequence of (shifted) displacements d~ l' d~2 J' . . I d~p are given .
St ar t ing at the leftm ost nonzero energy bit, th e secon d nonze ro energy bit
must be d. , posit ions to the right, the third nonzero energy bit d.2 posit ions
to th e right , an d so fort h unt il the p + 1st nonzero energy bit is placed d $p

position s to the right of the previous one. Since a part icle of period p recurs
in its origina l configuration afte r p t ime periods, subsequent displacements
repeat the sequence d.1 , da , . . . , d.p• If there is a particle with this sequence
of shifted disp lacemen ts, its energy pattern must be some init ial subsequence
of the pattern we genera ted, te rminating when the associated configurat ion
pattern has its first full byte of zeros to produce a righ t par ticle bound­
ary transition. Thus for each sequence of displacements, t here is one and
only one candidate configurat ion for a particle with th e spec ified period and
displacements, which proves the following theorem.

Theorem 16 (Un iq ue ness of Particl es) For any period p and sequence
of shifted displacem ent s dd ) d~2 J Jd' P J there is at m ost one particle of th is
period with these displacem ents.

Although th ere is only one candidate for a particle, there is no gua ran­
tee that th e candidate energy pattern will indeed corres pond to a. par ticle.
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The quest ions of which configurations cannot he particles, which energy se­
quenc es cannot represent pa rt icles, and wh ich sequences of displacements
cannot form the fine structure of the velocity pattern of a par ti cle are thus
seen to be equ ivalent. Some partial results are given below, but a complete
characteriza t ion of these impossible configurations remain s an open question.

17. Mirror im a ge particles and revers a bili ty of t ime

If you take any part icle evolutio n diagram and turn it upside down by rota t ing
it 1800

, t he diagram st ill looks like a pa rt icle evolution diagram. In fact it is
the evolut ion diagram of a par t icle, and the part icle is the mirror image of
the original particle.

D efinitio n 26. If aj is a state configuration of the cellular automaton, then
its mirror image is the configuration b; = a _i '

T heo rem 17 (M ir r or Image T heorem } The mirro r image of a pa.rticle is
a particle wit h the same period, energy, shifted and unshift ed displacements,
and its particle evolut ion diagra.m is the 1800 rotatio n of the evolution dia­
gram of the original part icle.

Proof. Let a~ be th e shifted evoluti on diagram for the particle a?, which
is defined for t 2 O. Let p = .o(e?l and d, be its time-shifted displacement.
Th en e! = e~~~~n for all positi ve integers n. If t < 0 the n there is some n
big enough that t + pn > o. Define e~ = e~~:~n for negative t , With th is
defin itio n , t he diagram represents the evolut ion of the par t icle a? from time
t = -00 to t = 00.

Let b~ = a=: . We claim th at b~ is the evolution diagram for the par ticle
b? = a~;l the mirror image particle. T he conclusions on equality of period,
energy, an d displacements follow eas ily from this st ronger claim.

\iVe examine what the rapid updating automaton does in the t ransit ion
of b from time t to t ime t + 1. First , it copies zeros in the SLPB state unt il
it finds the leftmost nonzero b~ , from which it sets b~+ l = O. This is t he
left part icle bou ndary of b and the right part icle boundary of a where the
zero state a=~-l cha nges to a~i = 1. T he updatin g au tom aton then copies r
consecutive states b~+ l = bL at leas t one of which must be nonzero since at
least one of the corresponding a=~ = a= ~-l was nonzero to sustain th e cha in
of crit ical trans itions of Type 1 to th e right part icle boundary of a. T he next
st ate of b is inverted , i.e., b~+ l = 1 - bL which ma tches the crit ical transi t ion
in a of a=~ = l_a=:- l . If na. is the configurat ion byte width, the n this process
of copying t- st ates and inver ting one state cont inues for na t imes in bot h b
and a un til the left part icle boundary a= ~ = 0 an d a:::~-l = 1 is reache d.
Thi s correspo nds to a crit ical transition b~+l = 1 and b~ = O. Therea fter, the
rapid updat ing automaton opera ting on b encounters nothing but zero states
because there were nothing but zero states to the right of t he left part icle
boundary a:::1-1 of a . Thus the t ime-reversed mirr or image of the upd ati ng of
a part icle is th e correct t ransition of the mirror image configurat ion, which
is therefore a particle. •
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18. Collisions of particles

Many la rge configurat ions split natu rally into smaller subconfigurat ions that
evolve, at leas t for a time, independently of each oth er. If each of th e subcon­
figurat ion s is a particle, well separated from the other subconfigurat ions, we
may think of th e large configuration as a collection of part icles, each moving
with its own characteristic velocity and rotat ion unt il it comes suffic iently
close to another particle to interact with it .

One of the most interesting phenomena that Steiglitz [1] found in par ity
filter automata is t hat a large fract ion of such par ticle collisions arc "soli­
ton" collisions from which both particles emerge with th eir original ident ities
intact . Th ere is, however, for each pa rticle a displacement from its original
path due to the collision, and a phase shift consist ing of a modification of
the times that different configuration s within the period of the particles ap­
pear after the collision as compared to when they would have appeared if
th e two part icles had never interact ed. This phase shift in soliton collisions
is exploi ted in 121 to build a carry ripple add er.

Thi s sect ion makes precise definitio ns of what it means for a configurat ion
to split into subconfigurat ions called connected compon ents, what it m ean s

for these subconfigurat ions to be pa rti cles, and what it means for two parti­
cles to collide. The most important t heorem , T he Solito n Collision Theorem ,
calculates the num ber of ti me periods dur at ion of a collision of two part icles,
and the phase shift and displacement of each part icle after the collision.

D efinition 27. A config uration is decomp osed into its connected comp o­
nents in the following way. St arting at the leftmost nonzero state, the con­
figuration is parti tioned into bytes of r +1 adjacent nod es. A by te is called
it zero byte if all its states are zero, and a splitting byte if i ts riglii most. t­

states are zero irrespecti ve of the state of tlle leftm ost node, whidl is called
the byt e boundary. The leftmost connected component of a configuration
consists of all nodes {rom the leftmost nonzero node of the configura tion to
the right node of the first (i.e., leftmost) sp litting by te.

By this definition, a connected component always ends with at least r­
zero states and is an integral num ber of by tes wide. In fact, a connected
component can have as much as 2r consecutive zero states at its right end.

T he second connected component is obtained by realigning byte bound­
aries on the first nonzero state to the right of the split ting byte of the first
(leftm ost ) connected component. It continues from this nonzero node UIl­

til the rightmost node of the next splitting byte. The byte boundaries {or
the second connected component need not agree with the division points one
would get by continuing the byte boundaries of th e first connected component
beyond its splitting byte.

All subsequent connected components are obtained by the same m ethod
as the second. Byte boundaries are realigned at the leftmost nonzero state to
the right of the complete splitt ing byte of the previous connected component,
and the connected comp onent extends {rom there until the right end of the
next splitt ing byt e using the new by te boundaries.
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Definition 28. The sma lJest possible conn ect ed component of a. configu ­
ration consists a single splitting by te {i.e., a single nonzero sta te followed
by T zero states). It is caned a moribund component because it "dies" OJ'

disappears com pletely in the next time period.

Defin it ion 29. A configuration is called connected if it has exact ly one con­
neeted componen t.

Defi n ition 30. A com ponent of a configuration is called a const ituent par­
t icle, or sim ply a particl e if it would evolve as a par ticle when a11 s tates of
al1 oth er com ponents are se t to zero.

Compa ring the definition of conn ect ed component s of a configurat ion with
th e Crit ical Transit ion Lemma, we see that crit ical transit ion s t ake place on
the byte boundari es used to determine connected component s, and that there
is a. Case 2 critical trans ition if and only if the previous byte is a splitt ing
byte.

T heorem 18. A particle is a connected configuration .

Proof. It was shown earl ier that part icles can have on ly Case 1 an d Case
2a1 crit ical transit ions, with th e only Case 2a1 critical tran sition occurring
a t the righ t par ticl e boundary. T hus t he on ly splitt ing by te of a particle is a t
it s right end, and a particle configuration has a single connect ed component
a nd is t he re fore connected. •

Connected components ar e sufficient ly separated from each oth er t hat
they evolve for at leas t one time period ind epend ently of each othe r . A
sp litt ing byte is precisely where the Rapid Updating Rule automaton leaves
the P\¥ (primed window) s ta te and reenter s the SLPB st ate to see k a new
left part icle boundary transit ion.

V'./e can t race t he evoluti on of a component of a configura tion in two
di ffer ent sen ses; fir st as a component of the evolv ing configur at ion, a nd sec­
on d as the component would e volve independ entl y if a ll states of a ll othe r
components were se t t o zero.

Definition 31. \Ve say th at a connected component 0 of a configuration at
time t evolves into a conn ecte d component 0 ' of th e configuration at time t+1
ifex' has nonzero states a t precisely tho se nodes where a would have genera te d
nonzero s tates i f a,/lowed to evolve wit h a/l states of all other components a t
time t set to zero . We m ay then use the same nam e to refer to the connected
com ponent in both time p eriods, calling a = a rt ) and a' = a(t + 1).

D efin ition 32. We say tha t two nonm oribun d connected componen ts a sn d
i3 collide at time t if a (t - 1) and i3(t - 1) are (necessarily adjacent) conn ected
component s of the configuration at time t~ 1, but their independent evolu tion
configuration s a(l ) and j3(t ) are not sep arate connect ed componen ts of (an d
in (act are no t entirely present in) the configuration at time t .
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For the remaind er of this section, a and 13 will be par ticles colliding at
t ime t . Since a and 13 were not in collision at tim e t - 1, there is a full null
split t ing byte of r + 1 zero states at th e right of a (t - 1) plus a possib le gap
of 9 2: 0 addit ional zero states before the leftmost nonzero state of 13( t - 1).
Using the Rapid Updating Rule to calcul ate states at time t , we see that
th e leading 1 of a( t - 1) moves to the leftmost bit of th e split t ing byte [or
O'(t - 1), but th e remaining r stat es of thi s byte remain zero. Since th e byte
boundary for 13 moves ds(I3 , t -1) > 0 positio ns to the right , there are exactly
r + 9 + d.(fJ,1 - 1) 2 r + 1 zero states between a and fJ at time t.

Let Al ,Az, .. . ,An o be the canoni cal byte decomposition of a(t ) and
Bl , B z, . . • , Bn p be t he canonical byte decomposition of l3(t) . Lab el the in­
dividual sta tes of a(t) from ao at th e left of A r to ano(,+rj- r at the righ t of
An"' Similarly lab el the states of fJ(l) from bo to bn, I,+1)- I '

The byte boundaries for a(l ) are d, (a ,1 - 1) furth er to the right th an
those of a(1 - 1), leaving only r +9 +d.( fJ, I - 1) - d.(a, I - 1) zero states
after the byt e hou ndary in what would have heen t he split t ing byte of a( I) .
Since the part icles are in collision at tim e t, this number is less than the r

zero sta tes required for a splitt ing byte, so that d.(a, I - 1) > d.( fJ , I -1) +8 ·

Defin it ion 33. T he quantity k = d.(a, t - 1) - d,( fJ , I - 1) - 9 > 0, is called
the collision offset of two colJiding particles.

The quant ity k is called the colJision offset for the following reason. At
t ime 1-1 , th e left most nonzero bits of a(t- 1) and fJ (I - 1) are (no+1)(7'+1 )+8
positi ons apart. At time t, they are only (no + 1)(r + 1) + 9 - d, (a ,1 - 1) +
d,(fJ,t-1) = (no + 1)(r +l ) - k posit ions apart so that when a(l) is upd ated ,
there are crit ica l transitions on the byte boundaries of Az, A3 , . . . , An o ' and
the next critical t ransition is at bk l the posit ion which is offset k to t he right
of the byte boundary of B ,. T hus byte boun da ries of a (t ) are offset by k
pos it ions to the right with respect to those of fJ(I) .

We need one more technical condit ion on the intersection of two par ticles
a and f3 before we can sta te the Soliton Collision Th eorem. T he leftmost
nonzero stat e of O'(t ) is ao and the rightmost nonzero stat e is am o , where
mo = (no - 1)(7' + 1) - d.(a, 1 - 1). Similarly, th e leftmost and rightmost
nonzero sta tes of fJ(l ) are be and bm , where rna = (na-1) (r + 1) -d,( fJ , I - 1).
We define ai = 0 if i < 0 or i > m t:Y and define bj = 0 if j < 0 or j > m{3 .

C ondition ICC (Intersection Compatibility Condition) Wh enever a i

carries ene rgy in o(t) , that is, whenever a i =f ai_r_h an d whenever
for that i the integer n makes the intersection of subscript intervals
[ k + i + n(r + 1) - r, . .. , k + i + n( t- + 1) - 1] n [0, . . . , rna ]nonempty,
there is a t least one j with 1 .:s j .:s r for which a i_ j =J. bk+i+n (r+ l )- j . In
ot her words, th e r configurat ion states of a (t ) to the left of G j do not
exactly mat ch the r configura t ion states of (3(t ) to the left of bk+i+ n(r+I ) .

We now have the terminology to state the main th eorem of the sect ion,
the Soliton Collision T heorem, describing precisely what happens when two
part icles collide without loss of energy.
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T heo rem 19 (S oliton C ollisio n Theorem) If a. configurat ion consists of
two cons tituent particles ,,(t - 1) and )1(t - 1) a t time t - 1 with " to the left
of {3, and jf these constituent part icles collide at time t, and jf the intersection
compatibili ty condition, Condi tion ICC, holds, tben

1. 0' an d f3 wiJJ remain in collision [or exactly £ (0') tim e periods.

2. During the collision, the nonzero energy bits of a will continue to rota.te
norma lly, excep t th at when they reappear at the righ t they appear
exac tly (n p + 1)(r + 1) nodes to the righ t of where they would have
appeared if a had evolved independently. ( Recall that n p is the number
of by tes in the canonical byte decomposition of p, and nlJ + 1 is the
numb er of bytes in the canonical byte decomposition of the energy
diagram of)1.)

3. During the collision, the energy bits of fJ will remain fixed in the shifted
diagram and move left at the speed of ligh t in the unshifted energy
diagram.

4. After the E(a) t ime periods of the collision, the part icles a and fJ will
evolve as separate constituten t com ponents of the con figuration for at
least one time period. T he particle /3 wilJ be to the left of a.

F igures 9} 10} and 11 show respectively the unshifted and ti me-shifted
configurat ion evolutions, and t he time-shifted energy evolution of a collision
of the same two const ituent parti cles with r = 4. All three figur es show
bot h particles emerging intact from the collision with their relat ive positions
reversed , i.e., it is a soliton collision. However bot h shifted and unshifted
configurat ion diagrams are confusing concernin g the locations of the two
part icles during the collision. On the other hand } the energy evolution dia­
gram clearly shows the right particle /3 stopping its rotat ion and remaining
fixed in one location t hroughout the 8 time periods of the collision, and it
clearly shows the left part icle Q leaping two extra byte widt hs over /3} while
rotat ing one energy bit at a t ime, consistent wit h the prediction of the Soli­
ton Collision Theorem th at the collision will take E(a ) = 8 t ime periods and
the par ticle a will jump to the right (n p + l )(r + 1) = (1 + 1)(4 + 1) = 10
posit ions.

The individual identit ies of the two part icles during the eight t ime pe­
riods of the collision} especially the identi ty of /3 are much less clear in the
configuration evolution figures. The unshifted configurat ion diagram even
shows some apparent diagonal patterns of slope 1 tha t tu rn out to be ar­
t ifacts of this part icular collision and have no general meaning. Knowing
that the energy configuration of /3 remains fixed in time-shifted diagrams for
the 8 time periods of the collision} one can locate the corresponding 8 x 5
rectangle where the configuratio n states of p might be expected to remain
fixed} and t here find a sum modulo 2 of the fixed} unrotat ing configurat ion
states of Pand offset copies of the rot ating configuration states of a during
those 8 time periods as they more accura tely "step on" p rather than nimb ly
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Figu re 9: Unshifted configuration diagram for collision of two parti­
cles.

Figure 10: T ime-shifted diagram for collision of two particles.

.• 11111 111"1111

111'1

Figure 11: Energy diagram for collision of two par ti cles.
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"leap over" f3 on their way to t he r ight. Mir aculously, {3 reappears intact
an d ready to resume its rotation in t he las t t ime per iod of the collision. All
th ese observat ions will now be pro ved as consequences of the evenness of the
e nergy of Q' in every rela ti ve posit ion of a byt e, and of the fact t hat the energy
configuration of f3 does not change throughout the t ime peri ods of collison.

P roof of t he Soli t on Coll is ion Theorem. We will show that duri ng t he
collision, the comb ined configurat ion has exactly one left par t icle boundary
an d one right particle boundary, and t hat between these , t he crit ica l t ran­
sitio ns that lake place are of two kinds: those that would have taken place
in the same t ime per iod (a lthough not necessar ily in the same posit ion) if
Q were allowed to evolve independent ly wit h. {3 set to zero, and those that
involve interact ions of a and (3 . T he former are "well-behaved" crit ical tr an­
sit ions of Type 1 because a is a par ticle and can have only Type 1 crit ical
t ransit ions between its part icle boundaries. Th at the lat ter are all Type 1
crit ical t ransit ions turns ou t to be equivalent to Condit ion ICC, the Inter­
sect ion Compatibility Cond it ion.

T he proof pro ceeds in three st ages: (1) T he evolut ion of the configura t ion
from tim e t to t ime t + 1 shows that ao, the leftmost nonzero state of o(t),
reappear s with an ext ra spa t ial displacement of n p + 1 bytes to t he right
in addit ion to its normal d isplacement of no + 1 bytes in the independent
rotat ion of o . T he t ransit ions in this t ime period establish the width of the
combined configurat ion d uring the collision, begin to show t hat 0' will cons ist
of two pieces, one part to the left of p, and the rest of 0' to the right of p.
Stage I forms the basis for the induct ion. (2) In each of the next E(a ) - I
t ime periods , one energy bit of a rotates to the right no +np+2 bytes without
any change of th e energy of the combined configurat ion between these two
posit ions, and with ou t a split t ing byte opening up. (3) At tim e t + E(a ), the
combined configurat ion splits into consti tuent part icles (3 and a , which once
more begin to evolve independently.

(1) T he rotation of ao: In the t ransit ion from t to t+ 1, the configura t ion
bit 00 = I disappears a t the left part icle boun dary of art) . Th en there are n .
subsequent crit ical transit ions of Type 1, just as there would have been if a( t)
evolved as a separate part icle. T he las t of these places the rightmost nonzero
state of a (t + I ) on the byte boundary to the right of An.. However , here
the evolut ion of th e colliding part icles configura t ion diverges from th at of the
independ ent evolu t ion of 0'. T his nonzero state does not form a right par t icle
boundary because th e next byte bound ary falls at b«, which is k > 0 positions
into B1 , the first byte of p(t) . Since bo , the leftmost bit of P(t ) is nonzero,
the upd at ing automaton inverts the state bk , and cont inues in the "primed
window" state P W. In the independent evolut ion of 0 , only zero states would
have been encountered in this byte, an d the updat ing automaton would have
returned to th e state SLP B.

VVe now show th at Condit ion ICC impli es that t he updating automa ton
will a lso inver t the kth sta te of B2 , B3 , • • . , Bn~, copying all other sta tes of {3.
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App ly ing Condition ICC to the case i = 0, and noticing that by definit ion
ai_ j = 0 for all j 2 1, Condit ion ICC says that for fixed n, not all of
the states bk+ n (r+l)-h bk+ n(r+l) -2 , , bk+n(r+ l )- r are zero if at leas t one of
their subscripts lies in t he range 0, , mp. For these n , t his is precisely the
condi tion that the t ransit ion at bk+ n(r+l ) is not preceded by a sp litting byte,
and is thus a crit ical tr ansit ion of Type 1.

To show that this argu ment based on Condit ion ICC extends to es ta b­
lishing a crit ical t ransition in the bytes Bnp and Bn p+b we need to know
that th e kth posit ion of B lip is to the left of bm p , th e rightmost nonzero sta te
of (3(1). The number of trai ling zero sta tes in Bn , is d,((3, t - 1) - 1, so the
rightmost nonzero state is in posit ion r - d,(f3, t - 1)+1 of th e byte. However
k = d.(a ,t - 1) - d, ((3 , t - 1) - 9 ~ r - d,((3, t - 1), proving the assert ion.
Thus there is a crit ical tr ansition of Type 1 gua ranteed by Conditio n ICC in
byt es B np and Bn~+l '

Tn fact, th e nonzero sta te bm p guarantees that th e next crit ical t ran sition
to the right of B np is of Ty pe I , wit hou t reference to Condit ion ICC, and
this t ra nsition inverts a zero sta te to nonzero . Th ereafter } all states to the
right are zero} so this is a right part icle boundary, exact ly n p + 1 bytes to
t he right of where it would have been if art ) had evolved independent ly.

Notice that ao, the leftm ost nonzero configura tion bit a t tim e t rea ppears
in the combined configurat ion at tim e t+l at two different places, respecti vely
ncr and ncr + n p + 1 bytes to the right of where it started . Between th ese
two posit ions, t he state of t he kth position of each of the configuration bytes
BloB" .. . ,Bn, of (3(t ) is inverted , so the configu ration pat tern of (3(t ) begins
to disappear. However, t he energy in t hese positions is unchanged } which is
ultimately the reason why (3(t) will reappear at tim e t +E(a ), after all the
energy of a has rota ted to t he right of these positions.

(2) Rotation of the remaining energy of a(t ): We use as indu ction' hy­
po thesis tha t a t tim e t', all configuration sta tes to the left of bo are as they
would be in a(t f

) , the independ ent evolut ion of 0' to t ime t' } that all con­
figuration states aj' to the right of bm~ are related to states of a (t' ) by the
formula aj' = a( t')i-lnp+t)(r+t ), and that for each t" with t S t" < t f the chain
of crit ical t ran sitions th at starts at the leftmost nonzero state at t ime t" has
n cr + nlJ + 1 crit ical transitions of Type I} the last of which places a right
par t icle bou ndary sta te, followed by a split t ing byte and a crit ical transit ion
of Type 2.

We have shown t hat t he induction hyp othesis holds for t' = t + 1. Now
assu me t hat the ind uct ion hypothesis holds for some t' wit h t ~ t' < t +E(a ).
We show that it holds for t' + 1. Since t' - t < E(a ), there is at least one
energy bit of a(t) th at as not yet moved in the independent evolut ion of
a(t) to a(t f

) . Th e leftmost of these nonzero energy bits af corres ponds to a
(possibly zero) configura t ion state a j that carr ies energy in a( t) . Since all the
energy of a(t) was to the left of bOI t he induct ion hypoth esis says that a:' is
also t he left most nonzero sta te of the combined configuration at t ime r. Th e
Rapid Updat ing Automaton begins by setting a f +1 = 0 and maki ng crit ica l
t ransit ions on subsequent byte boun daries. As long as th e positions of these
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crit ical tr ansitions are at bo or to the left of bo, all states in the preceding
byte arc as t hey would be in a (t/); thu s the tr ansit ions are of Type l.

V\'e pa use now for a lemma .

Lemma 7 (Interior Updating Le mma) Let af be the leftmost nonzero
st ate of a configuration at time t', an d suppose that for all t il with t ::; t il < t'
the chain of crit ical transitions st arting at tbe leftmost nonzero sta te of the
configu ration at time t tl has only crit ical transitions of Type 1 or Type 232
to the left of or at position j , then jf j' is the largest in teger of the form
j - n( 1' +1) that is Jess than i, the configuration state in position j at time t '
is given by the formula a~' = aj ffi aj,.

P roof. We rely on the expression of configurat ion states in terms of energy
I" I d"" I ' Subtract! d notista tes} aj = L..n~O ej_n(r+l) an aj = L..n ~O ej_n(r+l)- u ractm g an noting

t hat und er the condit ions of the lemma, e~ : = e~, if i ::; i ' ::; j and e~ : ::;: 0
' f '" I I' " I I Th I I'I t < t, we get aj - aj ::;: L.....j-r(n+l ):::;i ej _n (r+ l) = ap_ e ast equa it y
results from noti cing that j' is the largest possible subscript in the sum ,
which t herefore represents the configurat ion state aj,. Transposing te rms by
add it ion modu lo 2}we obt ain aj' = aj ED aj,. •

vVe resume the proof of the Soliton Collision T heorem. When any of t he
r posit ions precedin g a crit ical transit ion fall within the range be to bm " , we
apply Condit ion ICC. If the crit ical t ransit ion is at bk+ i+ n( r +J) , Condit ion
ICC says that there is some j with 1 :$; j :$; r such that a i _ j 'I bk+ i+ n( r+l )- j ­

However}bk+i+n(r + l )- j lies within the ran ge of posit ions to which the Interior
Updat ing Lemm a applies, so its value at t ime t' is given by t he formula
br + i+ n(r + I) _j ::;: bk+ i+ n( r+I)- j E9 ai- j. Combining th ese two results, we get

br + i+ n(r +l )_ j 'f:. 0, so the crit ical transition at bk+i+n(r+l ) is of Type l.
For th e ab ove argument to be completely correct} we should note that if

j' = k + i + n(r + 1) - j is ou tside the range [0"" ,m~ J, Cond ition ICC
uses t he defined value bj l = O} but the Interior Upd at ing Lemm ma uses the
actual sta te value in relative posit ion bi" Fort unately} the act ua l sta te value
bi' is also zero because at time t all states to the right of (3( t) and at least
r + 1 states to the left of f3( t) are zero,

When all th e r positions preceding a criti cal tra nsit ion are to the right of
bm ,, } the induct ion hypothesis says that exactly the same crit ical tran sit ion
would have taken place in cr(t ll

) exact ly np + 1 bytes to the left of where it
occurs in t he combined configuration. Again, thi s implies that the cr it ical
transit ion is of Ty pe 1, except if it correspo nds to the right most cr it ical
transitio n of rr[t"]. The resulting configurat ion state at this t ransit ion is
th us the same as th e one in o(t" + 1), except shifted no+ 1 bytes to the
right , so it makes that part of the induct ion hypot hesis true for til +1. Since
the cha in of critical tr ansition s begins at an unshifted left pa rt icle bou ndary
of o(t") and ends at a shifted copy of the right particle boundary of o(t"),
there are no +np + 1 crit ical t ra nsit ions of Ty pe 1 before a Typ e 2 tra nsit ion
occurs. Thus the complete induction hypot hesis is t rue for ttl + 1.
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(3) Splitt ing of the combined configurat ion at t ime t + E(a ): We wish to
apply the Interior Updating Lemma to the range of t imes t :S t" < t + E(a )
to show that the configuration (J( t) reappears in the same position at time
t + E(a ). If 0 :S j :S (n~ + I)(r + I ), then all left part icle boundaries for r
in this range of times arc to the left of bj because they are to the left of bo_
The position of the first Case 2 crit ical transition at time t il moves right with
increasing til I and [or time t" = t , the smallest in the range, it occurs at the
position of bk+(n, +I)(' +I)' Thus the Interior Updating Lemma applies to bj .

The leftmost nonzero configuration state at time t +£(0 ) is bo because 0'

has period E(a ), and the independent evolut ion of a(t) for E(a ) t ime periods
moves each configuration bit of a(t ) exactly n . + 1 bytes to tbe right. Since
these new positions are all at or to the right of bv, and thus not to the left
of bOl the induction hypothesis at til = t + c(a ) implies that the combined
configuration has no nonzero states to the left of ho , and that the only nonzero
states to the right of bm , derive from nonzero states of a(t + E(a )) shifted
right nl3 + 1 bytes, or, what is equivalent, states of aCt) shifted right by
no + nl3 + 2 bytes . The leftmost of these is at the position of bk+(n~+l ){r+ 1) .

so that if pet) reappears in its original position at time t + £(a ), it will have
a full split ting byte of zero states Bn,,+I'

Now that we have shown that the Interior Updating Lemma applies over
the time interval from t to t + I' (a) to each bj wit h O:S j :S ( n~ + I )(r +1),
and that the r +1 sta tes to the left of bo at t ime t are zero, the lemma proves
tha t b? £(·) = bj Ell 0 = bj •

Thus pet) reappears at time t + £(a ) in its original position in the time­
shifted diagram , complete wit h a full splitting byte of zero states, and a (t )
reappears at time t + £(a ), shifted right nO' + nl3 + 2 bytes, which places it
to the right of (3(t + E(a) ). Because there is a split t ing byte at the right of
(3( t + E(a )), the two component parfices evolve independently for at least
one time period. T his completes the proof of the Soliton Collision Theorem.

• Figure 1 is the time-s hifted configuration of the same collision as figure 9,
this time with nonzero configuration states identified with respect to whet her
they derive from a or from {3. The modified rotation (an d jump) of a is now
seen clearly, as well as the gradual disappearance and reappearance of the
nonzero states of Pduring the collision. If you look carefully, you can even see
the "footprints" of 0 as it steps across the fixed particle P in this time-shif ted
diagram.

Theorem 20 (Convers e of the Soliton Collision T heorem) If two par­
tieles a and {3 collide with" ini tially to the left of (3, and they stay in collision
for at least E(a ) time periods, then Condi tion ICC holds, they stay in colli­
sion for exact ly £(0) time periods, and the collision is a soliton collision.

Proof. The term staying in collision, means that there is only one compon ent
of the combined configuration in these time periods. As a result , there can
never be a splitt ing byte or a Type 2 critical transition to the left of a known
nonzero state, or even at the first byte boundary after a known nonzero state.
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Figure 12: Time-shifted diagram of the collision of two part icles wit h
T = 4. Nonzero states of 0: are open boxes and nonzero states of fJ
are filled boxes.

n

'vVe use the same not at ion as in the proof of the Soliton Collision Theorem.
At t ime t, the leftmost nonzero state is ao and the rightm ost nonzero state
is bm fj " As before, the crit ical transitions of interest occur at bk+n (T+ l ), that
is, at position k of every byte B j . As before, position k of B n p is to the
left of bm l' l so there will be a crit ical t ransit ion of Type 1 in position k of
Bn t3+1 depositing the rightmost nonzero state for t ime t + 1, an d a critical
transit ion of Type 2 at positio n k of Bn p+2 deposit ing the energy carried by
Go at t ime t.

Since the r states of a(t ) to the left of Go are zero states, Condition ICC
applied to the energy beari ng state ao is equivalent to the condition that not
all of the t- states to the left of bk+n(r+1) are zero states for 0 :5 n :5. n p + 1.
However, these bk+n (r+l ) are precisely where we have shown there are Type
1 critical t ra nsitions, so Condit ion ICC holds for t ime t.

As in the proof of the Soliton Collision T heorem, the left part icle bound­
ary for each of the £(a) t ime periods start ing at t corresponds to an energy
bear ing state Gi of a( t). Condit ion ICC applies only to these states. Since
there is only one component during these t ime periods, and since the po­
sit ion of the right most nonzero st ate of the single component moves right
with increasing time because energy bearing aj are never more than r po­
sit ions apart, there cannot be a splitting byte until well to the right of bm~

for any t ime t' wit h t $; t' < t + £(a ). Let i' be the time when af is the
left par t icle bou nda ry. Th e Inter ior Updat ing Lemma applies to the range
of t imes from t to t' and range of posit ions from b.; to bm .8+T so for all 't'
and k + i +n(T + 1) - j in t hese ranges, bk+i+n (T+!l-i = bk+i+ n(T+l)-i + a i_ i'

Th e absence of split t ing byt es in t his range means that for each ap plicable
n , there is at least one j with 1 :5 j :5 r for which bk+i+n(T+1)- j -:f:. O. For this
i . we have aj_j f:. bHi+n(T+I)-j and Condit ion ICC holds for t ime t' .

Since every energy bearin g state a j of aCt) appears as a left particle bound­
ary duri ng th e £(a ) time periods the two particles are assumed to be in
collision, Condition ICC is fully verified. As a resul t , the Solito n Collision
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Figu re 13: Unshifte d configur ation diagram of th e soliton collision of
a stationary particle with a par ticle of average velocity 1. Note the
gradual jump of the stationa ry par ticle 12 positions to t he right takin g
place over 8 time periods, and th e speeding up of th e ot her parti cle
to t he speed of light , r = 3, during th e collision .
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Th eorem may be appli ed to show that thi s collision is a soliton collision an d
lasts for precisely £(0) time per iods. •

C on st r u ctin g a clear unshifted collision di agram

Th e pr incip al fact s about the unshift ed configura t ion state transition diagram
of a solito n collision are (1) that the left particle Q' "jumps" to the right by
n,o +1 bytes; however this jump does not take plac e all at once, but gradu ally,
one energy bit at a time over the £(0') time periods of th e collision, (2) the
right part icle (3 speeds up to the speed of light during the collision , and (3)
the left parti cle " cont inues rotating, while the right part icle (3 does not . T he
next examp le we construct will illustrate prop erties (1) and (2).

To illustrate the "jump" of 0 , we use a stat ionary par ticle for Q' because
the persistence of the configurat ion states of a stationary particle in fixed
positions in the unshift ed diagram makes it easy to see when any part of Q'

moves. To show th e speed-up of {3 to the speed of light , we choose a particle
for {3 whose average velocity in t he unshifted diagram is recogn izably d ifferent
from the speed of light , and a value for r , th e speed of light , that is not so high
that th e trace of {3 during the collision does not appear nea rly hor izontal.
Choosing V,o = 1 and r = 3 sat isfies th ese objecti ves. Th e widt h of t he
stat ionary particle with r = 3 is exact ly 3 7,2 = 18 posit ions which is wide
enough for a sa t isfactory diagram. We choose a width of (3 of 2 bytes to
pro vide a jump of (np+ l)(r + 1) = 12 position s, '/3 of t he width of e. Th e
energy £(0) = 8, so there is a moderate t ime to observe the speed of {3 during
the collision . Figure 13 is th e result.

After a soliton collision

The Soliton Collision Th eorem guarantees only that th e particl es evolve in­
depe ndently for one time period after the collision. If the average unshifted
velocity of (3 exceeds that of Q, or what is equivalent, the average shifted
velocity of Q' exceeds tha t of {3, (which in most instances is why th ey col­
lided in the first place) , once they have participated in a soliton collision and
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I
Figure 14: Unshifted configuration diagram for two particles not or­
biting, r = 3.

switched places so that f3 is on the left , their differences in velocity will tend
to take them even fur ther apa rt in each succeeding t ime period.

However 1 neither of these two conditions is guaranteed. As we shall see in
sec t ion 19, pa rticles of equal avera ge velocity can collide, iden tical particles
can collide if th ey ar e a t different phases of t heir rotational cycle, and even
par ticles of slower average velocity can overtake and collide with par ticles
of faster average velocity if they start close enough together and if th eir
velocit ies du ring the early par t of the cycle differ mar kedly from th eir average
velocit ies.

19. Systems of orbit ing particles

When two particles have the same average velocity and sufficient initial sep­
arat ion, they do not collide. For example, the two part icles in figure 14 bot h
have shifted velocity 2 and unshifted velocity 1. The window rad ius r = 3.
The right part icle fJ has period. 1 (really a divisor period) and thus always
has the sa me displacement d.(t,fJ) = 2 in all t ime periods. T he particl e fJ is
act ua lly a spaced version of the "photon" for r = 1. T he left particl e 0', how­
ever, has a more variable "instantaneous velocity" which sometimes exceeds
the average velocity and somet imes is less than it . T hus the independent
mot ion of 0' consists of mot ion at the average velocity and a pertubation
that is somet imes to the left of the average path and sometimes to the right.

When t hese two part icles start somewhat closer together, as shown in
figure 15, they evolve independently for a few time periods until 0' moves
to the right of its average position. T hen they collide. The collision is a
soliton collision, and after £(0') = 6 time periods, 0' is to the right of /3.
Since /3 does not rotat e dur ing the collision, and 0' goes through a complete
revolution, they are in the same relat ive phase when independent evolut ion
resumes after the collision. However, since their average velocit ies are equal,
they do Dot tend to move apart, and when 0' reaches that part of its period,
say At t ime intervals later, when its per tu bation is to the left of its average
path, the par t icles are aga in close enough to collide.
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Figure 15: Unshifted configu ration diagram for twoorbiting particles,
r ;;; 3.
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T his t ime the collision takes £(fJ ) = 4 time periods. The particle o does
not rotate duri ng this interval, and the particle f3 goes through one complete
revolution. Dur ing the first collision, the energy bits of a jumped to the right
by n O' + n p +2 bytes, and during the second collision, the energy bits of P
jumped to the right by n p + nO' + 2 bytes, the same amount. Thus when
the particles resume independent evolution after the second collison, t hey
are in precisely the same relat ive position as they would have been evolving
independently for ti.t t ime periods from the time of the initial contact . As
a result , after £(cr) - .6t additional tim e periods, o has completed two full
rotations. In genera l, we cannot expect f3 to be in its init ial phase after £(0)
time per iods, but the part icular P of th is example has the divisor period
1 which divides the period E(a ) of a. Thus, when a completes its second
revolut ion, they are in exact ly the same relati ve posit ion they were in at the
initial contact , and the sequence of pairs of soliton collisions repeats for these
two par t icles every 2£(cr) +£(fJ) = 16 time periods.

Differences between single par t icles and systems of orbiting parti­
cles

It is important to make a distinction between single particles in the sense
we have made precise earlier and such sys tems of orbiting par ticles. For one
th ing, there are infinit e families of such systems of orbiting par t icles, while
the number of single par ticles for each T is large, but finite. For a second
thing, the period and velocity of a single particle are complete ly determined
by the part icle's energy and size in bytes, while these formulae do not ap ply
to systems of orbiting particles.

If the period of fJ does not divide £ (cr) or if the pert ubation of mot ion of
one or both part icles is more complex, there may be addit ional collisions be­
fore the par ticles repeat their original relati ve posit ion and rotat ional phase.
However, since their average relat ive posit ion remains constant except for the
jumps of no +n p +2 positions when the par t icles collide, as long as there are
t imes in their joint independent rot aton when 0' is relatively further to the
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right of it s average posit ion than {3 and other t imes when {3 is relatively fa r­
ther to the righ t of its average posit ion than Q , t he pa rticl es will repeatedly
cross and recross as a system of orbit ing particles .

20. Tangent or os cu lating particles

Tan gen t or osculating particl es occu r when the gap 9 between t he splitt ing
byte of the first particle and the left par t icle bou nd ary of th e second part icle
is zero. As a result , the byte bounda ries of the second part icle are aligned
with an d cont inue the pat tern of byte boundaries of the first particle. T here
is a crit ical tran sition of Typ e 2a2 at the left parti cle boundary of the second
par ticle , the energy inter pretation of which is ambiguous (see the Crit ical
Tr ansit ion Lemm a). It may be considered as a tr ansitio n where the energy
lost a t t he left particle bo und ary of the first par ticl e is restored to th e config­
ur a tion at the sa me posit ion where energy is being lost to the primed window
at t he left pa rticle bou ndary of the second par t icle, or it may be considered
ju st anot her energy preserving crit ical t ran sition t hat leaves the com puta­
t iona l wind ow pr imed for the next crit ica l t rans it ion r + 1 posit ions to th e
r ight.

Anot her way to express the ambiguity of tangent par t icles is to not ice
that you get exactl y the same configuration in the next t ime period jf you
cons ider the configurat ion as two part icles evolving independ ently, or as one
large part icle that evolves by rotat ing its leftmost nonzero energy state to
th e first byte bo undary to the right of the complete configurat ion.

Tangency a nd co ll isio ns

Suppose two par ticles a and f3 a re tangent , and remain tan gent for several
t ime periods. Since tan gent part icles have aligned byte boundaries, their
displacements must be the sa me dur ing these t ime per iod s, and therefore
the init ial {i.e. , leftmost ) states of their energy diagrams and configurations
must be equa l. It makes equa l sense to say that th e initi al non zero energy
states of Q ar e rota t ing to the right of the combined configuration while
all the energy of f3 remains fixed, i.e., that they a re in collision , as it is
to say that the non zero energy st a tes that are appearing on the right of t he
configu rat ion are the initia l non zero energy states of j3 which ar e disap pearing
from th e left part icle bounda ry of j3 somewhere in the middle of the combi ned
configu rat ion, only to be repl aced by the equa l initi al nonzero energy states
of Q .

Sup pose now 0' slows down relat ive to {3 in the next time period. A
pos it ive gap 9 > 0 will open up between the pa rticles, th e byte boundari es
will no longer be aligned, and the parti cles will evolve independently. Since
the tangency of t he two particles does not resu lt in a full collision last ing
£(0') t ime per iods, it was consider ed preferabl e to define tan gent par t icles as
not in collision .

Suppose however that after ~t t ime per iods of tan gency, 0' speeds up



Parity Filt er Automata 137

relative to P in the ti me-shifted diagr am . The gap is then negative and the
particles are in collision at time t. Assuming all goes well and the collision is
a soliton collision, at time t +£(0'), their relat ive phases are as they were at
ti me t, and Ct' has moved no + n {3 +2 bytes to the right relati ve to f3 . \Vc now
back up to t ime t + £(0:) - ti.t and claim tha t at this t ime we can already
fi nd the complete part icle Q at the right of the configurat ion. This is 6 t t ime
periods earlier than predicted.

By backing up !'.t tim e periods to t ime t + E(O' ) - !'.t , we do not allow
the last At non zero energy states of a to rotate to the righ t. T hese were
the energy slates that got to the right end of a duri ng the II I periods of
tangency, and are thus matched by a set of equal energy states a t the right
of /3 at the time t of the collision. Th ese sets of states are an exact number of
bytes apart , namely np+1 bytes apart. Thus we may interpret the combined
configuration at t ime t + £(0) - ti.t in two ways, first as a configur aLion in
the midst of a collision during which I:1t nonzero energy states of 0. have yet
to rot at e, and second as two particles, tbe particle (3(t - !'.t) to the left 01
and tangent to a second particle which is the tr ansposition of the par ticle
0'(t - !'.t) to the right by n. +n p + 2 byt es.

Strictly speaking, the conclusions of the Soliton Collision Theorem a re
not tr ue in this instance because the configurat ion splits into separa te par ­
ticles !'.t time periods earl ier t han predicted by the Theorem . (T his is not a
counterexam ple to the theorem because Condition I is violat ed by the equal
init ial energy patterns of 0 and f3 .) However , both in the time inter val from
t to t + E(O') and from t - !'.t to t + E(O' ) - !'.t, (as well as in all t he time
intervals of lengt h £(0.) between these tWO)1t he ot her conclusions of the Soli­
ton Collision Th eorem are fulfilled. It therefore makes sense to weaken the
hypotheses of the Soliton Collision Th eorem and the definition of "particles
stay ing in collison" in its converse so that tangency is perm itted within a
collision.

21. Collisions of small particles

Condition I, the intersection compatibility condit ion in the Soliton Collision
Theorem guara ntees that as the left par ticle 0 "steps" over the right par t icle
{J, it does not accidentally create a st ring of r consecutive zero states t hat
cause the colliding particles configurat ion to split prematurely. Some of the
transitions to which Condition I may be applied are also proved to be Type 1
crit ical t ransitions because of known nonzero states such as the leftmost and
rightmost nonzero states of {J and the first nonzero state of 0. to reappear to
the right of {J. If both colliding particles are small particles, i.e., contained
in one byte, we now show t hat prema tur e split t ing can never take place.

Theorem 21 (Small Part icle Collision Theore m ) T he collision or two
small particles is always a soliton collision .

P roof. Suppose the particles 0. and f3 collide at t ime t. For notat ional
convenience, we label nodes in the cellular automaton by an ordered pall',
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(byte number, relative position), with (0,0) at the leftmost nonzero state of
a(1 - 1). Th en all of a is contained in byte 0, and all the states of byte 1 are
zero . If 9 ?: 0 is the gap between pa rticles at time t -1, th e leftmost nonzero
state of f3 is at (2,g), and all states to the right of (3, g), inclusive, a re zero.
Let (O,i) be the position of the second nonzero state of aCt - 1) from the
left , and (2,9 + k) be t he posit ion of t he second nonzero state of [3(1 - 1).

At time I, t he nonzero states of a(t ) extend from (0, i ) to (1, 0), and those
of [3(1) extend from (2, 9 + k) to (3,9) . Since the particles are in collision at
t ime t, we have i > 9 + k. Consider the evolution of the configuration for
those time periods when the leftmost nonzero state is in byte O. The criti cal
tr ansition in byte 1 is of Type 1 because of the nonzero state at (1,0) , the
transition in byte 2 is of Type 1 because of the nonzero state at (2,9+k) I and
the transition in byte 3 is of Type 1 because of the nonzero state at (3,g ).
In the next time period , the leftmost nonzero state of the configurat ion is at
(1,0). The t ransition at (2,0) is Type 1 because of the nonzero state at (1, i ),
the transit ion at (3, 0) is Type 1 because of the nonzero state at (2,9 + k),
and the t ransition at (4,0) is Type 1 because of the nonzero state at (3 , i ).

Next we consider the remaining time periods when the leftmost nonzer o
state is in byte 1. Since i > g+ k , the transition in byte 2 is of Type 1 beca use
of the nonzero state at (2,g + k), the transit ion in byte 3 is Type 1 because
of the nonzero state at (3,g) if 9 > 0, and the transit ion in byte 4 is Type
1 because of the nonzero state at (4, 0). The remainder of the proof in the
case when g = 0 will be handled separately below after completing t he proof
in case 9 > O. For 9 > 0, the next (and it will turn out to be the last ) t ime
period of the collision has the leftmost nonzero state of t he configurati on
at (2, 0). The trans it ion at (3, 0) is Type 1 because of the nonzero state at
(2,9 + k), the transition at (4, 0) is Type 1 because of the nonzero state at
(3,9), and the trans ition at (5, 0) is Type 1 because of the nonzero state at
(4, i). In the next time period, every state from (3,9+ 1) to (4, i - 1) is zero
because it started at zero at t ime t and was inverted either two or no ti mes.
The leftmost nonzero state of the configuration is at (2,9 + k), it moves to
(3,9 + k), but there is a split t ing byte before (4,9 + k) since i > 9 + k.
Particles now evolve independently with the left part icle boundary of a at
(4, i ).

In case 9 = 0, the two part icles are tangent at t ime t - 1. Assume t he
they were first tangent at t ime t - ti.t for ~t ;::: 1. When two particles are
tangent , their leftmost nonzero states have the same relat ive position within a
byte. During t he L1t t ime periods of tangency, in each par t icle these nonzero
states moved exactly one byte to the right , $0 at time t , the rightmost ti.t
nonzero states of C' and /3 have the same relative position in a byte, and the
6.t +1st nonzero state is farther to the left in C'. Thus t he transit ion to byte
3 of all but the last ti.t nonzero state of a is guarantee of Type 1 because
of the 1).1 + 1st nonzero state of [3(1) from the right. Since there were 1).1
t ime periods of tangency before the two particles collided , the remaining L1t
time per iods of a soliton collision (in the exte nded sense) consist of tangent
evolution of the two particles, as was shown in section 20. •
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Comparison wi th em pi r ica l resu lts

The Small Par ticle Collision Theorem explains the large percentages of soli­
ton collisions reported in (1) when the window radius T approaches t he sam­
pled part icle size. In this case, nearl y all the sampled collisions are collisions
of small particles, which by the theorem must be soliton collisions.

The empirical stat ist ics in [1] for the case of window rad ius T = 9 a nd
particles of size at most 10 were init ially of some concern . Whereas Table
II in [I] reports t hat 99.42% of a random sample of 2000 such collisions
were soliton collisions, the Small Particle Collision Theorem pred icts that
all collisions of such parti cles should be solit ion collisions. Replica tion of
the original emp irical study and examina tion of the 23 par ti cle interactions
reported as non-soliton collisions show that in each case the interact ion is
indeed a soliton collision of two par ticles of nearly equa l velocity, but the
simulat ions on which Table II are based were run an insufficient number of
t ime periods after the soliton collision to allow these par ticles to separate
sufficiently so that the corred nature of t hese collisions could be det ected
by the criteria used in [1] . (T hey use a gap of at least 2T consecutive zero
states to partition a configuration into components.) Thus even the most
prob lema tic of the empirical stat ist ics in [1], when examined closely, not only
do not provide counterexamples to the Sma ll Particle Collision Theorem; in
fad t hey provide 2000 examples confirming the theorem.

Collisions of part icles of configurat ion byte widt h 2 can also be analyzed
by the same techniques. Th ey are not all soliton collisions because some of
the compatibility relations that are part of Condit ion I are not autcmat i­
cally sat isfied. Th e probabi lity of randoml y chosen particles violat ing any
one of the compatibility conditions is in most cases the same as th e proba­
bility of two random sequences of T binary digits agreeing, which decreases
exponentially with T. T he number of such conditions in Condi t ion I increases
quadratically with r (for fixed byte size of the two part icles), so for large r,
almost all the requirements of Condition I are sat isfied with high pro babil ity,
However, compatibility conditions near the end of the collision rely on agree­
ment of very small numbers of states and therefore bound the probab ility of
soliton collisions of such parti cles away from 1.

22. Almost orbiting particles

Soliton collisions in filter automata are used in (2) to embed computation in
the evolut ion of par ticles in the filter au tomaton by observing t he phase shift
of selected particles during soliton collisions. For the particles and window
radiu s they choose, they observe phase shifts in both particles. The Soliton
Collision Theorem, however 1 says that only one of the colliding part icles
should have a phase shift . The right par ticle f3 does not rotate during the
[ (a) ti me periods of the collision, so its phase would be expected to be
delayed hy [(a), but the left par ticle a does rot ate throu ghou t the ti me
of the collision, and so should experience no phase shift . Th e resolut ion- of
this seeming inconsistency is that the "solito n collision" they use in their
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Figu re 16: Almost orbit ing pa rt icles used in a. carry-ripple ad der. In
each collision, two part icles of nearly equa l velocity or bit three l imes
before finally separa ting.

carry adder is really the product of th ree success ive soliton collisions of two
particles of nearly equal average velocit ies. As can he seen in figure 16,
t he par t icles collide a.t a low relati ve velocity, near ly orbit each ot her for
several oscillations, but since their average velocit ies differ, the faster part icle
eventually escapes before the slower part icle can overtake it again for yet
another soliton collision and orbital period .

23. Op en qu es tions

Pro gressing from the genera l to the specific, there are a number of interesting
quest ions as yet unanswered. First , what is the proper contex t in which to
give a general definition of a cellular automaton? Should a group of symme­
tr ies of the underlying graph be taken into account and the updat ing funct ion
required to be invariant under these symmet ries? Most parallel synchronous
cellular automata studied have this proper ty, but serial automa ta may have
a fundamental assymetry forced by the order relation. What happens when
the time dependence function in the updating rule also looks at ti me t - 1
50 that three (or more) time period s are involved in the relat ion?

15 there an interest ing serial automaton on the integer grid points in the
plane that exhibits all or some of t he interesting properti es of parity filter
automata on the line? What is the evolution of infinite configurat ions in
a parity filter automaton? (T he updati ng rule will have to be modified at
minus infi nity, perhaps to start in state PW.) How many of the results carry
over to a finite circular integer graph? Are there int eresti ng serial automata
on the line with k possible state values?

For parity filter automata, give a complete characterizat ion of "irnpossi­
ble" confi gurations, th at is, configurat ions that cannot appear after one or
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n time periods, or which cannot appear in a particle. Show that t he re­
st rict ion to exact ly one left and one right particle boundary in a particle is
unnecessa ry.

Finally, is there any connection between the "solitons" found in parity
filter auto mata and the "solitons" found as solut ions of differential equa tions?
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