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Every Clutter Is a Tree
of Blobs

Gus Wiseman

Given a finite vertex set, one can construct every connected
spanning hypergraph by first choosing a spanning hypertree,
then choosing a blob on each of its edges.

Introduction

If V is a finite vertex set and E C 2V is a collection of finite subsets (called edges), none
of which is a subset of another, we recursively define the swell of E, Swell(E), to be the
collection of all sets that either:

1. belong to E
2. are the union of some pair of overlapping sets, both already belonging to Swell(E)
For example, if
E={{1,2},{1,3},{2,3, 4},
then
Swell(E) = {{1, 2}, {1, 3}, {1, 2,3},{2,3,4},{1, 2, 3, 4}}.

If we also have U(E) € Swell(E), then the set system E is called a clutter. This condition
means that (except in the case |U(E)| = 1) each edge contains at least two vertices, and
the hypergraph spanned by the edge set is connected. Here the hypergraph (V, E) spanned
by a set of edges E is defined to have vertex set V = U(E) and edge set E. (There is no
agreed-upon definition of “hypergraph.” For some authors it is any set system; for others
it is a simplicial complex; for others it is an antichain of sets.)

subsetQ[t_, s_] :=0r[
Length[t] === 0,
And [MemberQ[s, First[t]], subsetQ[Rest[t], s]]
]
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stableQ[u_] := stableQ[u, subsetQ]

stableQ[u_, Q0 ] :=
Not [Apply[Or, Outer[#1l =!=H#2 &&Q[#1, #2] &, u, u, 1], {0, 1}1]

swell[c: {{__}?OrderedQ..}] :=
Union @@ FixedPointList [
Union[ReplaceList [#,

{___ras{___rx_y __Yr___+bs{___sx_, ___}r___1}w»
Union[a, b]]] &, c]

connectedQ[c: {{_, __}?OrderedQ..}] :=
MemberQ[swell[c], Union @@ c]

clutterQfc: {{_, __}?OrderedQ..}] :=
And[stableQ[c], connectedQ[c]]

clutterQ|
clut = {{1, 2}, {1, 3, 4}, {1, 3, 5}, {3, 6, 7}, {6, 7, 8}}]

True
Here is a larger clutter.
swell[clut]

{{1, 2}, {1, 3, 4}, {1, 3, 5}, {3, 6, 7}, {6, 7, 8},

{1I 2’ 3’ 4}’ {1’ 2’ 3’ 5}’ {l’ 3’ 4’ 5}’ {31 6’ 7’ 8}’

{1l 2’ 3’ 4’ 5}’ {1I 3’ 4' 6' 7}’ {ll 3' 5’ 6’ 7}l

{1I 2’ 3’ 4’ 6’ 7}’ {11 2’ 3’ 5’ 6’ 7}’ {ll 3’ 4’ 5’ 6’ 7}’
{1l 3’ 4’ 6’ 7’ 8}’ {ll 3' 5' 6l 7’ 8}’ {1l 2’ 3’ 4’ 5' 6’ 7}'
{1, 2,3, 4,6, 7,8}, {1, 2,3,5,6,7, 8},

{11 3’ 4’ 5’ 6/ 7/ 8}/ {11 2/ 3/ 4/ 5’ 6’ 7/ 8}}

The number of clutters |C (n)| spanning n =1, 2, ..., 8 vertices is given by A048143
(oeis.org/A048143),

1,1,5,84,6348,7743728,2414572893 530, 56130437 190053299918 162.
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This sequence varies as 22, so the number of digits required roughly doubles with each
consecutive term. Our main example is just one of some 56 sextillion members of C(8).

normalizeColumns[m_List, aft_Integer] :=
Module[{allcols, cols, mx, leads, resets},
allcols = Transpose[m] ;
If [Length[allcols] < aft, Return[{m}]];
cols = Drop[allcols, aft-1];
mx = Plus @@@ cols;
leads = First /@Position[mx, Max[mx]];
resets =
Union|[
Function|[par,
Sort [Transpose[Join[Take[allcols, aft-1],
Prepend[Delete[cols, par], cols[par]]]]]] /e
leads];
Union@e@ (normalizeColumns[#, aft + 1] & /@ resets)

]

normalizeColumns[m_List] :=
First[Sort[normalizeColumns[m, 1]]]

clutterToArray[c_] := Transpose[Outer[Count, c, Unione@@c, 1]]

arrayToClutter[m_] :=
Table[Join@@Position[m[All, i]], 1], {i, Length[m[1]]}]

normalizeClutter[c_] :=
Sort [arrayToClutter[normalizeColumns [clutterToArray[c]]]]

This normalizing function is a universal invariant for the species of labeled clutters, mean-
ing two clutters are isomorphic iff they have the same image.

normalizeClutter[clut]
{{1, 4}, {2, 4, 6}, {3, 4, 6}, {5, 7, 8}, {6, 7, 8}}

Here is a list of nonisomorphic representatives for all clutters with up to four vertices, cor-
responding to “unlabeled” clutters. This brute-force enumeration may not work for n > 4.

allNormalSpanningClutters[n_Integer] :=
If[n===1, {{{1}}},
Union[normalizeClutter /@
Select[Subsets[Select[Subsets[Range[n]],
Length[#] > 1&]],
And[Union@@# === Range[n], clutterQ[#]] &]11;
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Table|[
Column [Apply[SequenceForm, allNormalSpanningClutters[n],

{2}11, {n, 4}]

(1234)
(14, 234)

(134, 234)

(12, 134, 234)

(13, 14, 234)

(13, 24, 34}

(14, 24, 34}

(124, 134, 234} }
{12, 13, 14, 234}

(12, 13, 24, 34}

(14, 23, 24, 34}

{123, 124, 134, 234)

(13, 14, 23, 24, 34}

{12, 13, 14, 23, 24, 34)

(123)
[ty 2y, 13,23y
{12, 13, 23}

B Kernels and Caps in Clutters

A kernel of E is a clutter E|w (the restriction of E to edges that are subsets of w) for
some w € Swell(E).

kernels[c: {{_, __}?OrderedQ..}] :=
Function[s, Select[c, subsetQ[H#, s] &]] /@swell[c]

kernels[clut]

{({{1, 23}, {{1, 3, 4}}, {{1, 3, 5}},

({3, 6, 7}}, {{6,7,8}}, {{1, 2}, {1, 3, 4}},

({1, 2}, {1, 3, 5}}, {{1, 3, 4}, {1, 3, 5}},

{{3,6, 7}, {6, 7,8}}, {{1, 2}, {1, 3, 4}, {1, 3, 5}},
({1, 3, 4}, {3, 6, 7}}, {{1, 3,5}, {3,6,7}},

({1, 23}, {1, 3, 4}, {3, 6, 7}}, {{1, 2}, {1, 3,5}, {3,6, 7}},
{{1, 3, 4}, {1, 3, 5}, {3, 6, 7}},

({1, 3, 4}, {3, 6, 7}, {6, 7, 8}},

({1, 3,5}, {3, 6,7}, {6,7, 8}},

({1, 2}, {1, 3, 4}, {1, 3,5}, {3,6,7}},

({1, 2}, {1, 3, 4}, {3, 6, 7}, {6, 7, 8}},

({1, 2}, {1, 3, 5}, {3, 6,7}, {6,7,8}},

({1, 3, 4}, {1, 3, 5}, {3, 6, 7}, {6, 7, 8}},

{{1, 2}, {1, 3, 4}, {1, 3, 5}, {3, 6, 7}, {6, 7, 8}}}
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Define f*({a, b, ..., 2}) = {f(a), f(D), ..., f(D)}.
A set partition t+ S is a set of disjoint sets with U(rr) = S.

Suppose 7w+ E is a set partition of E such that each block T 7 is a kernel of E (i.e.
U(T) € Swell(E) and T = E | U(T)). Since S € T would imply E|S C E|T, it follows that
the set of unions F' = U*(n) is itself a clutter, which we call a cap of E.

setPartitionsUsing[pile_, span_] := Module[{samples},

If [Length[pile] === 0,

If[Length[span] === 0, Return[{{}}], Return[{}]1]];
samples = Select[pile, MemberQ[#, First[span]] &];
Join @@

Table[Prepend[#, samples[i]] & /@

setPartitionsUsing|[

Select[pile,
Length[Intersection[samples[i]], #]] === 0 &],
Complement [span, samples[i]]],

{i, 1, Length[samples]}]

clutterPartitions[c: {{_, __}?OrderedQ..}] :=
setPartitionsUsing[kernels[c], c]

Equivalently, a cap F of E is a clutter satisfying both:
1. F C Swell(E)

2. every edge of E is a subset of exactly one edge of F

caps[c: {{_, __}?OrderedQ..}] :=
Sort /@Apply[Union, clutterPartitions[c], {2}]

caps[clut]

{({{1, 23, {1, 3, 4}, {1, 3, 5}, {3, 6, 7}, {6, 7, 8}},
{{1, 2}, {1, 3, 4}, {1, 3, 5}, {3,6, 7, 8}},
({1, 23, {1, 3, 4}, {6, 7, 8}, {1, 3, 5,6, 7}},
{{1, 2}, {1, 3, 4}, {1, 3, 5,6, 7, 8}},

({1, 2}, {3, 6, 7}, {6,7,8}, {1, 3, 4, 5}},
{{1, 2}, {1, 3, 4, 5}, {3, 6,7, 8}},

{{1, 2}, {1, 3, 5}, {6, 7, 8}, {1, 3, 4, 6, 7}},
{{1, 2}, {6, 7, 8}, {1, 3, 4,5, 6, 7}},

{{1, 2}, {1, 3, 5}, {1, 3, 4, 6, 7, 8}},

{{1, 23, {1, 3, 4,5, 6, 7, 8}},

{{1I 3! 5}! {31 6! 7}’ {61 7! 8}’ {11 2! 3! 4}}’
{{1, 3, 5}, {1, 2, 3, 4}, {3, 6, 7, 8}},

{{6I 7! 8}’ {11 2’ 3! 4}! {11 3! 5! 6! 7}}!

{{1, 2, 3, 4}, {1, 3, 5,6, 7, 8}},

({1,

3, 4}, {3,6, 7}, {6,7,8}, {1, 2,3, 5}},
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{{1, 4}, {1, 2, 3,5}, {3, 6,7, 8}},

3,
{{6, 7, 8}, {1, 2, 3, 5}, {1, 3, 4, 6, 7}},
{{1, 2, 3, 5}, {1, 3, 4,6, 7, 8}},
{({3,6, 7}, {6,7,8}, {1, 2,3,4,5}},
({3, 6, 7,8}, {1, 2,3, 4, 5}},
{{1, 3,5}, {6, 7,8}, {1,2,3,4,6,7}},
{{1, 3, 4}, {6, 7, 8}, {1, 2, 3, 5,6, 7}},
{{61 7’ 8}’ {11 2’ 3’ 4’ 5’ 6’ 7}}’
{{1, 3,5}, {1, 2, 3, 4,6, 7, 8}},
{{11 3’ 4}’ {11 2’ 3’ 5’ 6’ 7’ 8}}’ {{11 2’ 3’ 4’ 5’ 6’ 7’ 8}}}

To see that this does not establish a partial order of clutters with a vertex set, observe that
o {{1,2},{1,3},{2,3}, {3, 4}}
o {{1,2},{1,3},{2,3,4}}
o {{1,2,3},{2,3,4}}

is a nontransitive chain of caps. The following is the set of all set partitions of the edge set
indices corresponding to each cap of the clutter.

clutterPartitions[clut] /.
Rule @@@ Transpose|[{clut, Range[Length[clut]]}]

({13, {2}, {3}, {4}, {5}}, {{1}, {2}, {3}, {4, 5}},
({1}, {2}, {3, 4}, {33}, ({1}, {2}, {3, 4, 5}},
({1}, {2, 3}, {4}, {3}, {{1}, {2, 3}, {4, 5}},
({1}, {2, 4}, {3}, {33}, ({1}, {2, 3, 4}, {5}},
({1}, {2, 4, 5}, {3}}, {{1}, {2, 3, 4, 5}},
({1, 2}, {3}, {4}, {3}}, {{1, 2}, {3}, {4, 5}},
({1, 2}, {3, 4}, {5}}, {{1, 2}, {3, 4, 5}},
({1, 3}, {2}, {4}, {5}}, {{1, 3}, {2}, {4, 5}},
({1, 3}, {2, 4}, {53}}, {{1, 3}, {2, 4, 5}},
({1, 2, 3}, {4}, {5}}, {{1, 2, 3}, {4, 5}},
({1, 2,4}, {3}, {3}}, {{1, 3, 4}, {2}, {5}},
({1, 2, 3, 4}, {3}}, {{1, 2, 4, 5}, {3}},

({1, 3, 4, 5}, {2}}, {{1, 2, 3,4, 5}}}

clutterPartitionPlot[ptn_] :=
ArrayPlot [Transpose[clutterToArray[Union@@ptn]] *
(Position[ptn, #, {2}, Heads -» False][1, 1] & /@
Union @@ ptn) , Background -» White, Frame -» False,
ImageSize » Length[Union @@ Union @@ptn] % 10];
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In these plots of clutter partitions, the filled squares correspond to all pairs of a vertex and
an edge such that the vertex belongs to the edge; these squares are then shaded according
to which block of the partition the edge belongs to.
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B Trees and Blobs
The density of a clutter E is

KE)= Y (Je|=D=|UE)

where the sum is over all edges e € E.

’

density[c_] := Total[ (Length[#] -1 &) /@c] - Length[Union@e c]

A clutter E with two or more edges is a tree iff k(E) = —1. This is equivalent to the usual
definition of a spanning hypertree [1].

treeQ[c_] := And[Length[c] 2 2, density[c] === -1];
A clutter E is a blob iff no cap of E is a tree.
blobQ[c_] := Apply[And, Composition[Not, treeQ] /@caps[c]]

The trees and blobs among the caps and kernels (respectively) of our running example are
as follows.

Select[caps[clut], treeQ]

{({{1, 2}, {1, 3, 4,5}, {3,6,7, 8}},
({1, 2}, {1, 3, 4,5, 6,7, 8}},
({3, 6, 7,8}, {1, 2,3, 4,5}}}

Select[kernels[clut], blobQ]

{({{1, 23}, ({1, 3, 4}}, {{1, 3, 5}}, {{3, 6, 7}},
({6, 7,8y}, {{1, 3, 4}, {1, 3, 5}}, {{3, 6,7}, {6, 7, 8}}}

Suppose a clutter E decomposes into a cap F and corresponding set of kernels £  E. Then

KE) = K(F) = ) ((H) + 1),

where the sum is over all H € £. In particular, k(F) < k(E), and x(E) = k(F) iff every He &
is a tree. Using this simple identity, one easily proves the following.

Lemma
Every kernel (with two or more edges) of a tree is a tree.
Every cap (with two or more edges) of a tree is a tree.
The union of a set of trees whose set of unions is a tree, is a tree.

The following is also straightforward.
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Proposition
A clutter E is a tree iff no kernel of E is a blob.

We now come to the main result.

maximize[c_] :=
Complement [c,
First /@ Select[Tuples[c, 2],
And [UnsameQ@@t, subsetQeeH#] &]]

treeOfBlobs[c_] :=maximize[Select[kernels[c], blobQ]]

For our running example, the theorem corresponds to the following decomposition into a
tree of blobs.

Union @@@ treeOfBlobs[clut] (* tree %)

{{1, 2}, {1, 3, 4, 5}, {3, 6,7, 8}}

treeOfBlobs[clut] (¥ blobs =)
{({{1, 23}, {{1, 3, 4}, {1, 3, 5}}, {{3, 6, 7}, {6, 7, 8}}}

Theorem

Assume E is not a blob. Let 7= 7(E) be the subset-maximal kernels of E that are
blobs. Then 7 is a set partition of E whose set of unions U*(7) is a tree.

Proof

First we show that any blob (kernel) is contained within a single branch of any tree (cap).
Suppose that B = E|w is a kernel of E and is a blob, and that 7' is a cap of E that is a tree. Let
T' be the subtree of T contributing to the set partition m+B of non-empty intersections
BN (E| 1) for each branch ¢ € T"'. The set of unions H = U*(;r) forms a clutter that is obtained
from T' by deleting in turn all vertices not in w, a process that weakly decreases density. Let
o+B be the set partition comprised of maximal kernels (i.e. connected components)
contained in blocks of 7. Then F' = U*(0") is a cap of B and k(H) — k(F) = |o | — |« |. Since F
is a connected clutter, we have —1 < «(F) < «(H) < k(T") < —1, and therefore F = H. But
since B is a blob, F cannot be a tree, hence it must be a maximal cap (viz. F = {w}, m = {B}).

Next we show that 7(E)FE. If any two blobs overlap, both blobs must be contained
entirely in whatever branch (of any given tree) contains their intersection. This implies that
there is another blob containing their union, and hence that the maximal blobs 7(F) are
disjoint. Since every singleton is also a blob, we conclude that U*(7) is a cap of E.

Finally, if any kernel of U*(1) were a blob, so would be the restriction of E to its union,
contradicting maximality of 7. This proves that the set of unions of 7 is a tree.
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The following are the decompositions 7(E) for each nonisomorphic clutter £ with four
vertices.

treeOfBlobs /@ allNormalSpanningClutters[4]
clutterPartitionPlot /@%

({1, 2, 3,433, ({{1, 4}}, ({2, 3, 4}}},

({{1, 3, 4}, {2, 3, 4}}}, {{{1, 2}, {1, 3, 4}, {2, 3, 4}}},
{({{1, 3}, {1, 4}, {2, 3, 4}}}, {({{1, 3}}, {{2, 4}}, ({3, 4}}},
{({{1, 4}}, {{2, 4}}, {{3, 4}}},

{({{1, 2, 4}, {1, 3, 4}, {2, 3, 4}}},

{({{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}},

{({{1, 2}, {1, 3}, {2, 4}, {3, 4}}},

({1, 43, {2, 3}, {2, 43, (3, 4}} ),

{({{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}},

({01, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}},

{({{1, 23, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}}}

—k iy 1y o 0

by %n s

B Connected Sets of Kernels

Let ker(E) be the set of all kernels of E. If K C ker(F) is itself a (connected) clutter
with vertex set E = U(K), then there exists a unique subset-minimal upper bound
m(K) = E|U(U*(K)) satisfying both

1. m(K) € ker(E)
2. kcm(K)forallk e K

In general, we can only define m(K) uniquely for K a connected set of kernels, so m is
not strictly a join operation for the poset of subsets ker(E) C 2£. But if K is not connected
as a clutter, then letting 7+ K be its (maximal) connected components, we say that K is a
connected set of kernels iff m*(rr) is connected as a set of kernels, in which case the join
is given by

m(K) = m(m*(r)).

The Mathematica Journal 19 © 2017 Wolfram Media, Inc.



Every Clutter Is a Tree of Blobs 11

In practice, the verification of connectedness and the computation of m may require several

iterations constructing joins of connected components. For example, consider the connected
set of kernels.

kerset = {{{1, 2}, {1, 3}}, {{1, 2}, {1, 4}},
{{1, 5}, {1, 6}, {5, 6}}, {{3, 4}, {3, 5}}, {{3, 6}}};

It has the following sequence of joins of connected components.

Most [FixedPointList |
Function[s, Select[Union@@#, subsetQ[#, Unionees] &]] /@
maximize[swell [#]] &, kerset]]
clutterPartitionPlot /@%

{({{{1, 2}, {1, 33}, {{1, 2}, {1, 4}}, ({1, 5}, {1, 6}, {5, 6}},
({3, 4}, {3, 5}}, {{3,63}}, {{{3,6}}, {{3, 4}, {3, 5}},
({1, 2}, {1, 3}, {1, 4}, {3, 4}}, {{1, 5}, {1, 6}, {5, 6}}},

{({{3, 63}, {{1, 5}, {1, 6}, {5, 6}},

({1, 2}, {1, 3}, {1, 4}, {1, 5}, {3, 4}, {3, 5}}},

{({{3, 63}, {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {3, 4},
{3, 5}, {3, 6}, {5,6}}}, {{{1, 2}, {1, 3}, {1, 4},
{1, 5}, {1, 6}, {3, 4}, {3, 5}, {3, 6}, {5, 6}}}}

’ r':.'r"'-'.'r'% r=ry

If K is a connected set of kernels, we define its compression cmp (K) to be the number of
iterations in the computation of m(K) by constructing consecutive joins of connected com-
ponents. For the previous example, we have cmp(K) = 5. Although it seems unlikely that
cmp is a bounded invariant, we do not know how to construct an example with compres-
sion greater than 5.

One Problem

1. For which positive numbers n = 1 does there exist a connected set of kernels K
such that cmp(K) = n?

2. Does there exist an infinite chain K! ¢ K2 € K3 C --- of connected sets of kernels
such that cmp(K?) < cmp(Ki*!) for all i > 1?

Define an invariant 4 : ker(E) - Z by
3w (&) --opln) = 17!
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for all H e ker(E), where the sum is over all clutter partitions ker(E) 2 é+ H. Here 6°
denotes the indicator function for a proposition P, equal to 1 or O depending on whether P
is true or false, respectively.

clutterMufc_] := If[Length[c] ===1, 1, 0] -
Total|
Times @@@Map [clutterMu,
Select[clutterPartitions[c], Length[#] > 1 &], {2}]]

clutterMu /@kernels[clut]

{t,1,1,1,1, -1, -1, -1, -1, 2,
-1, -1,1,1,2,1,1, -4, -1, -1, -2, 4}

clutterMu /@caps[clut]

{41 *41 *21 2/ *11 11 *21 11 2! *lr *21 2/
11 _11 _21 21 ]-l _]-I 11 _11 11 1! _ll _ll _11 1}

Theorem

For any Heker(E) we have p(H)=Y(— 1)K, where the sum is over all connected
sets of kernels spanning H.

Proof

Let cptn(E) be the set of all clutter partitions ker(E) D n+ E. What we have essentially
shown above is that cptn(E) C u~!(E), regarded as a subposet of the lattice of set partitions
ordered by refinement, is a lattice. We have the simple enumerative identity

SE=U" (@) — 1—[(1 _ 6Hs7r)’

where the product is over all non-singleton kernels H, here regarded as elements of
cptn(E) whose only non-singleton block is {H}. Expanding the right-hand side gives

Z(_ 1)|S| 6m(S)szr’

where the sum is over all sets of non-singleton kernels S C ker(E), again regarded as lattice
elements. Here m(S) € cptn(E) is algorithmically the same operation as the connected-join
operation on ker(E). Expanding and factoring accordingly, this becomes

ZZ(_ IS gor=m(s) = ZHZ(_ 1)K,

where the outer sum is over all o < «, the product is over all H € o, and the inner sum is
over all connected sets of kernels K C ker(E) spanning H. For any kernel F e ker(E),
define

dr)=>"[ D D,
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where the outer sum is over all clutter partitions o € cptn(F), and where the product and in-
ner sum are as before. Letting 7 be the set partition of £ whose only non-singleton block is
{F}, we have shown that

d(F) = oE=Ur(m = §IF=1
Hence our theorized expansion does indeed satisfy the defining identity of u. B

Note that it is sufficient in the preceding theorem and proof to consider only connected sets
of subset-minimal non-singleton kernels, and it is often practical to do so. The hypergraph
(E, minker(E)) whose edges are minimal non-singleton kernels is also of some interest. The
well-known Mobius function of a hypergraph is defined on the lattice of connected set parti-
tions, and in this context an element of Swell(minker(E)) may be called a pseudo-kernel. In
comparison, however, our invariant ¢, which is defined on essentially all clutters, seems to
be more interesting; we do not know if it has been studied before.

clutterMu /@ allNormalSpanningClutters[4]

{1, -1, -1, -1,¢0,1,2, -1, 2,1, 2, -1, 2, 3}

B Additional Considerations

A semi-clutter is any anti-chain of subsets £ C 2V. For each finite set S, let K(S) be the set
of semi-clutters spanning S. A species [2] is an endofunctor on the category of finite sets
and bijections, so here we have defined a species of semi-clutters. The compound semi-
clutter of a decomposition R(Ry, ..., R;), as defined by Billera [3], is obtained as a disjoint
“sum” of Cartesian “products.” Interpreted in the language of species theory, this is a cer-
tain natural transformation

com: KOK - K,

where © denotes the composition operation on species, a generalization of composition
of exponential formal power series. Let C(S) be the set of (connected) clutters spanning
S, let T(S) be the set {{S}} containing only the maximal clutter on S, and let P(S) be the set
of clutters having no expression as a compound of a proper decomposition (i.e. P is the
species of “prime” clutters). Billera’s main theorem (attributed to Shapley) establishes a
unique reduced compound representation, which is itself a species of decompositions

com(TOP+POK)=C.

From this it is evident that K = 1 ® C can ultimately be reduced to a nested compound
expression using only trivial and prime clutters. Hence the problem of enumerating semi-
clutters on a vertex set is reduced to the problem of constructing, for any connected
clutter, its “maximal proper committees,” which is the nontrivial solution of [2] for the
enumeration of prime clutters considered. This is a particularly interesting application of
formal species.
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