Towards primitive data types for CoQ:
63-bits integers and persistent arrays*

Maxime Dénes
INRIA Sophia Antipolis - Méditerranée

Maxime.Denes@inria.fr

April 6, 2013

As formal methods are applied to an increasingly wide variety of areas of mathematics and
program verification, the need for efficient computations inside proof assistants is becoming more
present. Typical applications are proofs inherently relying on costly computations, like the four color
theorem [Gon07], the Kepler conjecture [Hal05] or the certification of big prime numbers [GTWO06].
But computational capabilities can also be used to enhance proof automation, like tactics deciding
algebraic identities over rings [GMO5] or Kleene algebras [BP10] or calling external solvers without
trusting them [Arm+11; BCP11]. Other original applications may include importing proof objects
from different proof systems [KW10] or emitting formally verified assembly code [JBK13].

Addressing this need, the CoQ proof assistant has evolved to offer new features for efficient
computations. Runtime environments for terms evaluation have been improved, a key step being
definitely the introduction of a bytecode compiler along with a dedicated virtual machine [GL02].
This has been recently refined to evaluation by compilation to native code [BDG11]. However,
another critical source of performance (or lack thereof) is the choice of data structures to represent
the objects involved in the computation.

The case of numbers is symptomatic: the traditional unary representation for natural numbers
quickly becomes intractable, even for simply parsing and storing them in memory. That is why
CoQ’s standard library provides an alternative, binary representation, achieving logarithmic space
and time complexity for basic operations like addition, which is already better but still does not scale
to real-world computations.

The envelope was pushed further by the introduction of machine arithmetic inside the evaluation
mechanism of CoQ [Arm+10]. This approach consists in defining a data type and operators reflecting
OCawmL’s standard 31 bits arithmetic. This data type behaves like a regular inductive type, except for
evaluation and conversion tests, in which case it is substituted with actual OCawmr integers. The
leitmotiv of this approach is that the extension is local to the evaluation machinery, hence no change
in the formalism and an easier implementation. However, there are two main drawbacks: first,
when generalizing this methodology to other data types, it is not clear whether there always exists
a suitable inductive type reflecting the same computational behavior. And second, objects (in our
case, integers) are stored in compact form only during evaluation. In particular, a huge amount of
memory is still required to allocate them for type checking, and to store them in proof terms.

*The research leading to these results has received funding from the European Union’s 7th Framework Programme under
grant agreement nr. 243847 (ForMath).



We propose an alternative approach, initiated by Benjamin Grégoire after having hit memory
limits when defining terms representing proof traces from SMT solvers, which consists in extending
Coq’s terms with primitive data types like integers and persistent arrays, along with operators, and
axiomatizing their equational theory'. As usual, this is open to discussion since it lies at the heart of
the tension between De Bruijn’s criterion and the practical efficiency of proof systems.

As a side benefit of our ongoing work, we extend the current 31-bits arithmetic to 63-bits, which
should lead to a significant performance improvement on 64-bits architectures for libraries relying
on machine integers, like big numbers [GT06], floating-point arithmetic [Mel12] or fast exact re-
als [KS11]. We also design a minimalist axiomatization, for both integers and persistent arrays and
give a suitable user view by deducing elementary properties.

References

[Arm+10] Michaél Armand et al. “Extending Coq with Imperative Features and its Application to
SAT Verification”. In: ITP 2010, Edinburgh, Scotland. 2010.

[Arm+11] Michaél Armand et al. “A Modular Integration of SAT/SMT Solvers to Coq through Proof
Witnesses”. In: CPP. 2011.

[BCP11] Frédéric Besson, Pierre-Emmanuel Cornilleau, and David Pichardie. “Modular SMT Proofs
for Fast Reflexive Checking Inside Coq”. In: CPP. 2011.

[BDG11] Mathieu Boespflug, Maxime Dénés, and Benjamin Grégoire. “Full Reduction at Full
Throttle”. In: CPP. 2011.

[BP10] T. Braibant and D. Pous. “An efficient coq tactic for deciding Kleene algebras”. In: Inter-
active Theorem Proving (2010).

[GL02] B. Grégoire and X. Leroy. “A compiled implementation of strong reduction”. In: Proceed-
ings of the seventh ACM SIGPLAN international conference on Functional programming
(2002).

[GMO5] B. Grégoire and A. Mahboubi. “Proving equalities in a commutative ring done right in

coq”. In: Lecture notes in computer science 3603 (2005).

[Gon07] G. Gonthier. “The Four Colour Theorem: Engineering of a Formal Proof”. In: ASCM.
2007.

[GT06] Benjamin Grégoire and Laurent Théry. “A Purely Functional Library for Modular Arith-
metic and Its Application to Certifying Large Prime Numbers”. In: IJCAR. 2006.

[GTWO06] Benjamin Grégoire, Laurent Théry, and Benjamin Werner. “A Computational Approach
to Pocklington Certificates in Type Theory”. In: FLOPS. 2006.

[Hal05] Thomas C. Hales. “Introduction to the Flyspeck Project”. In: Mathematics, Algorithms,
Proofs. 2005.

[JBK13] Jonas Braband Jensen, Nick Benton, and Andrew Kennedy. “High-level separation logic
for low-level code”. In: POPL. 2013.

[KS11] Robbert Krebbers and Bas Spitters. “Type classes for efficient exact real arithmetic in
Coq”. In: Logical Methods in Computer Science 9.1 (2011).

[KW10] Chantal Keller and Benjamin Werner. “Importing HOL Light into Coq”. In: ITP. 2010.

[Mel12] Guillaume Melquiond. “Floating-point arithmetic in the Coq system”. In: Inf. Comput.
216 (2012).

LA prototype implementation can be found at http://github.com/maximedenes/native-coq


http://github.com/maximedenes/native-coq

