
CORRECTLY ROUNDED CUBIC ROOT EVALUATION IN DOUBLE
PRECISION

ALEXEI SIBIDANOV AND PAUL ZIMMERMANN

The cubic root x = 3
√
a is a real root of an algebraic equation:

(1) f(x) = x3 − a = 0.

There is a closed form solution for Eq. (1) but it already requires the cubic root function
so other methods have to be employed e.g. Newton iteration.

Let x0 be an initial approximation of the cubic root then

(2) h0 = f(x0)/a = (x3
0 − a)/a = (x3

0 − a)ra

is the relative error of Eq .(1) with respect to a and ra = 1/a is the reciprocal of a. The
next better approximation x1 can be derived as

(3) x1 = x0 −
1

3
x0h0

with about two times more significant figures than in x0. This procedure should be repeated
until it reaches required precision.

The generalization of the Newton iteration method to higher orders gives the following
rule:
(4)

xi+1 = xi

(
1− 1

3
hi +

2

9
h2
i −

14

81
h3
i +

35

243
h4
i −

91

729
h5
i +

728

6561
h6
i −

1976

19683
h7
i +

5434

59049
h8
i − · · ·

)
,

where each additional term reduces the error of the next approximation xi+1 by h. The
coefficients of the polynomial expression in Eq. (4) are given by the series expansion of

(5)
1

3
√
1 + h

=
∞∑
j=0

cjh
j.

Since a and x are represented as IEEE-754 double precision floating point numbers aka
binary64 we can reduce exactly the input argument a to the [1, 8] range to get x ∈ [1, 2]
range and then scale it accordingly to get the final result. The binary scaling is a cheap
and exact operation in the binary64 format and particularly for the cubic root without the
danger of the overflow or underflow since the limited exponent range of the final result.
The argument a can be further reduced to the [1, 2] range but the result has to be scaled
by 2n/3 before the final refinement to get the correctly rounded result since the values of
2n/3 with n = 1, 2 are inexact in the binary64 format.

Date: November 22, 2021.
1

2 ALEXEI SIBIDANOV AND PAUL ZIMMERMANN

For arguments in the range [1, 2] Newton iterations for the cubic root always converges
with the initial approximation x0 = 1.104 in all orders in our tests. An example is shown
in Fig. 1 for the high order given in Eq. (4). It shows that with a moderately precise
initial approximation Newton iterations converge rapidly. For fast evaluation the initial
approximation can be selected as a low order polynomial.

The error h0 of the minimax approximations of the cubic root function by the second,
third, fourth and fifth order polynomials is shown in Fig. 2. The error h1 after the first step
are shown in Fig. 3 for the second order Newton iteration, Fig. 3 for the third order, and
Fig. 3 for the quartic order. These calculations are performed in the binary64 format so the
limited precision of the format is immediately seen even after the first high order iteration.
So itself the cubic root calculated by this method cannot be correctly rounded due to
intermediate rounding errors. The final refinement step using a compensated algorithm is
needed.

The final step has to be as simple as possible so it is the second order Newton iteration
(Eq. (2) and (3)) where intermediate values are represented as an unevaluated sum of two
binary64 numbers so the internal precision should be about 100 bits which largely exceeds
the target precision of the result of 53 bits in binary64.

The precision of the result before the final step should not hit the binary64 precision
limit it should be just good enough that after the refinement—which doubles the number
of significant figures—an additional refinement has to be done only in very rare cases when
the rounding test fails. Based on this consideration and performance tests we select the
initial cubic polynomial approximation and the third order Newton iteration step, see the
top-right plots in Fig. 2 and 4.

After the refinement with the compensated algorithm, the cubic root value is represented
as an unevaluated sum a + b of two binary64 numbers, where ea ≥ eb (i.e., the exponent
of a is larger or equal to that of b). We then apply the Fast2Sum algorithm to compute

xhigh
2 ← ◦(a+ b), z ← ◦(xhigh

2 −a), xlow
2 ← ◦(b− z), where ◦() denotes the current rounding

mode.

Lemma 1. Whatever the rounding mode, we have |xlow
2 | < 2−52.

Proof. For rounding to nearest, this is a direct consequence of the Fast2Sum algorithm,
since in that case we have a + b = xhigh

2 + xlow
2 exactly, and since xhigh

2 is the rounding

to nearest of a + b, we have xlow
2 ≤ 1

2
ulp(xhigh

2). For directed rounding, according to [1,

Theorem 3.1], xlow
2 is a faithful rounding of the error in the FP addition xhigh

2 = ◦(a + b).

Let ε = (a+b)−xhigh
2 be that error. Since 1 ≤ a+b ≤ 2, and xhigh

2 is a directed rounding of
a+b, we have |ε| < ulp(1) = 2−52, thus a faithful rounding of that error cannot exceed 2−52.
Now if a faithful rounding of ε is ±2−52, this implies |ε| > 2−52 + 2−105, since 2−52 + 2−105

is representable in binary64. This in turn implies ulp(b) < 2−105, otherwise a+ b would be
an integer multiple of 2−105, which would contradict 2−52 + 2−105 < |ε| < 2−52. But since

|b| < 253ulp(b) this yields |b| < 2−52. In the Fast2Sum algorithm, when xhigh
2 = ◦(a + b)

is rounded towards a, we get z = 0 and xlow
2 = b, thus |xlow

2 | < 2−52. If xhigh
2 = ◦(a + b)

is rounded away from a, say upwards if b > 0, then z = 2−52, and since xlow
2 = ◦(b − z)

CORRECTLY ROUNDED CUBIC ROOT EVALUATION IN DOUBLE PRECISION 3

is rounded in the same direction, we get xlow
2 > −z. The same reasoning when rounding

downwards for b < 0 also gives |xlow
2 | < 2−52. □

According to Lemma 1, we thus get an approximation xhigh
2 + xlow

2 of the cubic root
with |xlow

2 | < 2−52. The difference of this approximation with the exact cubic root value
is shown in Fig. 6. The maximal found error is −0x1.fe62ec338p− 77 ≈ −1.32 × 10−23

and it occurs near the upper bound of the range. Thus to perform the rounding test in the
round-to-nearest mode we need to check that ||xlow

2 | − 2−53| > 2−76 which means that xhigh
2

is a correctly rounded cubic root value in binary64. In the directional modes we need to
check both borders |xlow

2 | > 2−76 and ||xlow
2 |− 2−52| > 2−76 to be sure that xhigh

2 is correctly
rounded. For safety the limit 2−76 is increased in 2 times to 2−75. Considering this limit
we can conclude that the probability to fail the test is about 2−75/2−52 ∼ 10−7. There is a
special case of exact cubic roots which will be described later.

If the rounding test fails we perform an additional second order Newton iteration step
starting from xhigh

2 which is known to be very close to the correctly rounded cubic root just

might be 1 ulp off. The difference of xhigh
3 (again x3 = xhigh

3 + xlow
3) with the exact cubic

root value is shown in Fig. 7, 8, 9, 10 when FPU is operating in various rounding modes.
As it is seen the maximal visible error is about 2−102 on the limited number of arguments.
Unfortunately even the last refinement is not enough for the worst cases to provide

the correct rounded results, fortunately there are only a few such cases so we can test
arguments and return already precomputed correctly rounded values.

In the round-to-nearest mode the exact cases, when both a and x are representable in the
binary64 format exactly, always pass the first rounding test and round to correct values.
Unfortunately one also finds that the inexact flag is risen despite the exact roots due to
the intermediate rounding errors. In the directed rounding modes both rounding tests fail
for exact cubic roots and xhigh

3 can be 1 ulp off of the correctly rounded value. Such cases
have to be detected and the flag has to be restored to the state just before the function
call.

There are 104032 distinct binary64 numbers x in the [1, 2] range which might be exact
solutions of Eq. (1) with the one with largest numerator being 208063/217, where 208063 =

⌊253/3⌋. Thus, for exact cubic roots, and rounding to nearest, at least 35 last bits of xhigh
2

have to be zero. For exact cubic roots with a directed rounding mode, the last 35 bits of
xhigh
3 should be all 0 or 1 (note that the first rounding test will always fail in that case).

The test of the last bits of x alone to detect the exact cases is not enough since there are
cases when the cubic root of a has 35 zero bits but it is not an exact root. For example,
when we have exact relation x = 3

√
a in binary64 then 3

√
a± 1 ulp would be also very close

to x and thus would inherit the property of the last 35 bits. So we also need to test that
the difference between x and its rounded-to-nearest value in binary64 is smaller than the
smallest difference between the cubic root values of two consecutive binary64 values to
detect exact cases.

Lemma 2. Let a be a binary64 number such that 1 ≤ a < 8, and a1/3 is not exactly
representable in binary64. Let x be a binary64 number such that x3 is also a binary64

4 ALEXEI SIBIDANOV AND PAUL ZIMMERMANN

number, and x is closest to a1/3 (in case of tie, any value is ok). Then the distance from
a1/3 to x is at least 4.66 · 10−17.

Proof. We first deal with the special cases where a is a power of 2. First a cannot be
1, since 11/3 is exactly representable in binary64. If a = 2, we get x = 165140/217,
and |a1/3 − x| > 2 · 10−6. If a = 4, we get x = 104032/216, and |a1/3 − x| > 1 · 10−6.
Now assume that a is not a power of 2. Since x3 is a binary64 number, and x3 ̸= a,
we have |x3 − a| ≥ ulp(a) (since a is not a power of 2). Write a1/3 = x + ε. Then
a = x3 + 3x2ε+ 3xε2 + ε3. Thus |3x2ε+ 3xε2 + ε3| ≥ ulp(a). In the case where 1 ≤ a < 2,
we have ulp(a) = 2−52, and writing δ = |ε|:

δ ≥ 2−52

3x2
− δ2

x
− δ3

3x2
,

where x ≤ x0 = 165141/217. Thus

δ ≥ 2−52

3x2
0

− δ2 − δ3

3
.

The corresponding equation has a single real root δ0 ≈ 4.66 · 10−17, and for δ < δ0, the
above inequality does not hold. In the case where 2 ≤ a < 4, we have ulp(a) = 2−51, and
writing δ = |ε|:

δ ≥ 2−51

3x2
− δ2

x
− δ3

3x2
,

where x ≤ x1 = 104032/216. Thus

δ ≥ 2−51

3x2
1

− δ2 − δ3

3
.

The corresponding equation has a single real root δ1 ≈ 5.87 · 10−17, and for δ < δ1, the
above inequality does not hold. In the case where 4 ≤ a < 8, we have ulp(a) = 2−50, and
writing δ = |ε|:

δ ≥ 2−50

3x2
− δ2

x
− δ3

3x2
,

where x ≤ x2 = 2. Thus

δ ≥ 2−51

3x2
2

− δ2 − δ3

3
.

The corresponding equation has a single real root δ2 ≈ 7.40 · 10−17, and for δ < δ2, the
above inequality does not hold. In summary, for |ε| ≤ min(δ0, δ1, δ2), the inequality does
not hold, thus we have |ε| > min(δ0, δ1, δ2) ≥ 4.66 · 10−17. □

As a consequence of Lemma 2, if the distance from the approximation xhigh
2 + xlow

2 —or

xhigh
3 + xlow

3 —to the nearest binary64 number x is less than 2−53/3, then a1/3 is exactly

representable. Indeed, since |xhigh
2 + xlow

2 − a1/3| < 2−76, and |xhigh
2 + xlow

2 − x| < 2−53/3,
this yields |a1/3 − x| < 2−53/3 + 2−76 < 4.66 · 10−17.
To cover the exact cases we test that the last 35 bits of x are identical then to cover

the directional modes we round x to the nearest value independently of the FPU status

CORRECTLY ROUNDED CUBIC ROOT EVALUATION IN DOUBLE PRECISION 5

register in the general purpose registers assuming the exact case. Then we subtract from
the rounded value x2 or x3 depending on the rounding mode and check that the difference
is less than 2−53/3 according to Lemma 2. In fact the threshold can be any value between
2−76 and 2−53/3 and in the function it set to 2−60. If the result passes the test we restore
the status register to the state before the function has been called and return the rounded
value.

1 1.2 1.4 1.6 1.8 2
a

0.01−

0

0.01

3−10×

 a
)

/ a
− 3 1

(x

Figure 1. The cubic root error h1 after the first 9th order iteration step
starting from x0 = 1.104.

1. Rounding Error Analysis

Below is the C code corresponding to the algorithm proposed above, with a cubic
minimax polynomial for the initial approximation, a first cubic Newton iteration in dou-
ble precision, and another classical second-order Newton iteration in double-double pre-
cision. Here zz is the input reduced to the range [1, 8)], and z is reduced to [1, 2).
The constants c0, c1, c2, c3 are those of a minimax polynomial of x1/3 over [1, 2], namely
(in hexadecimal notation) c[0]=0x1.1b0babccfef9cp-1, c[1]=0x1.2c9a3e94d1da5p-1,
c[2]=-0x1.4dc30b1a1ddbap-3, c[3]=0x1.7a8d3e4ec9b07p-6. The value cvt2.f is either
1 when 1 ≤ zz < 2, the approximation 0x1.428a2f98d728bp+0 of 21/3 when 2 ≤ zz < 4,
or when 4 ≤ zz < 8 the approximation 0x1.965fea53d6e3dp+0 of 22/3. All variables have
double precision, and we renamed some variables for a better clarity:

• r = 1/z

• z2 = z*z

• c0 = c[0]+z*c[1]

• c2 = c[2]+z*c[3]

• y0 = c0 + z2*c2

• y2a = y0*y0

6 ALEXEI SIBIDANOV AND PAUL ZIMMERMANN

1 1.2 1.4 1.6 1.8 2
a

0.002−

0.001−

0

0.001

0.002

 a
)

/ a
− 3 0

(x

1 1.2 1.4 1.6 1.8 2
a

0.2−

0.1−

0

0.1

0.2

3−10×

 a
)

/ a
− 3 0

(x

1 1.2 1.4 1.6 1.8 2
a

0.02−

0

0.02

3−10×

 a
)

/ a
− 3 0

(x

1 1.2 1.4 1.6 1.8 2
a

4−

2−

0

2

4

6−10×

 a
)

/ a
− 3 0

(x

Figure 2. The error h0 of initial approximations. Top-left plot – second
order, top-right – third order, bottom-left – fourth order, and bottom-right
– the fifth order polynomial.

• h0 = y2a*(y0*r) - 1

• y1 = y0 - (h0*y0)*(u0 - u1*h0)

• y1 *= cvt2.f

• y2h = y1*y1

• y2l = fma(y1,y1,-y2h)

• y3 = y2h*y1

• y3l = fma(y1,y2h,-y3) + y1*y2l

• h1 = ((y3 - zz) + y3l)*rr

• dy = h1*(y1*u0)

Then y1 - dy is a good approximation of zz1/3.
If there are no rounding errors, the algorithm corresponds to a rational approximation

p(x)/q(x), where p has degree 84 and coefficients up to 569 digits, and q(x) = kx9, where
k is an integer of 569 digits (in the case 1 ≤ x ≤ 2).

CORRECTLY ROUNDED CUBIC ROOT EVALUATION IN DOUBLE PRECISION 7

1 1.2 1.4 1.6 1.8 2
a

2.5−

2−

1.5−

1−

0.5−

0

6−10×

 a
)

/ a
− 3 1

(x

1 1.2 1.4 1.6 1.8 2
a

30−

20−

10−

0

9−10×

 a
)

/ a
− 3 1

(x

1 1.2 1.4 1.6 1.8 2
a

0.4−

0.2−

0

9−10×

 a
)

/ a
− 3 1

(x

1 1.2 1.4 1.6 1.8 2
a

10−

8−

6−

4−

2−

0

12−10×

 a
)

/ a
− 3 1

(x

Figure 3. The error h1 after the first second order Newton iteration step
for various initial approximations. The plot order is the same as in Fig. 2.

To each floating-point operation which can produce a rounding error, say a + b, we
associate a variable, say δ, representing the corresponding error. We replace the expression
a + b by a + b + δ in p(x)/q(x), differentiate with respect to δ and replace δ by 0. This
yields the first-order derivative, say f(x), of the cubic root approximation p(x)/q(x) with
respect to the rounding error δ. We then compute the maximal absolute value of f(x) over
the whole interval [1, 8]. We call this value the sensitivity with respect to δ, and we denote
it by s. By the Taylor theorem with explicit remainder, the error in the approximation
of x1/3 coming from the rounding error in a+ b is bounded by s times the maximal value
of δ. And for several rounding errors δ0.δ1, ... with sensitivities s0, s1, ..., the final error is
bounded by s0max|δ0|+ s1max|δ1|+ · · ·
Note: we take into account that the subtraction h = y2*(y*r) - 1 is exact due to

Sterbenz’ theorem.
The two instructions y2h = y1*y1 and y2l = fma(y1,y1,-y2h) compute a double-

double approximation y2h + y2l of y1*y1. In the rounding to nearest mode, we have

8 ALEXEI SIBIDANOV AND PAUL ZIMMERMANN

1 1.2 1.4 1.6 1.8 2
a

4−

2−

0

2

4

9−10×

 a
)

/ a
− 3 1

(x

1 1.2 1.4 1.6 1.8 2
a

5−

0

5

12−10×

 a
)

/ a
− 3 1

(x

1 1.2 1.4 1.6 1.8 2
a

10−

5−

0

5

10

15−10×

 a
)

/ a
− 3 1

(x

1 1.2 1.4 1.6 1.8 2
a

0.5−

0

0.5

15−10×

 a
)

/ a
− 3 1

(x

Figure 4. The error h1 after the first third order Newton iteration step for
various initial approximations. The plot order is the same as in Fig. 2.

exactly y2h + y2l = y1*y1. For directed rounding modes, since y1*y1 can be repre-
sented exactly with 106 bits, we can write y1*y1=h+l with h being the rounding of y1*y1
towards zero, and l representable in double precision. If y2h=h, then y1*y1-y2h=l and
can be represented exactly, thus y2h + y2l = y1*y1. Now if y2h = nextabove(h), then
y1*y1-y2h=h+l-(h+ulp(h))=l-ulp(h), and since ulp(l) is larger of equal to ulp(h)mul-
tiplied by 2−53, the difference ulp(h)-l is exactly representable. In summary, for all round-
ing modes we have y1*y1 = y2h + y2l exactly. Similarly, we have y2h*y1 = y3 + y3l

exactly, thus y1*y1*y1 = y3 + y3l + delta17, where delta17 is the rounding error in
y1*y2l. Since y1 is less than 2, and y2l is less than ulp(y1*y1) which is 2−52, y1*y2l is
bounded by 2−51, and the rounding error on y1*y2l is thus |δ17| ≤ 2−104.
When one adds all rounding error bounds from Table 1, one gets a maximum error (due

to roundings) of 1.13 · 10−26. If we add the 1.13 · 10−26 bound for the rounding error to the
1.32 ·10−23 bound for the mathematical error, we get a global bound of 1.322 ·10−23 < 2−76,
thus we can use 2−76 as error margin in the rounding test.

CORRECTLY ROUNDED CUBIC ROOT EVALUATION IN DOUBLE PRECISION 9

1 1.2 1.4 1.6 1.8 2
a

6−

4−

2−

0

12−10×

 a
)

/ a
− 3 1

(x

1 1.2 1.4 1.6 1.8 2
a

1.5−

1−

0.5−

0

0.5

15−10×

 a
)

/ a
− 3 1

(x

1 1.2 1.4 1.6 1.8 2
a

0.6−

0.4−

0.2−

0

0.2

0.4

15−10×

 a
)

/ a
− 3 1

(x

1 1.2 1.4 1.6 1.8 2
a

0.5−

0

0.5

15−10×

 a
)

/ a
− 3 1

(x

Figure 5. The error h1 after the first quartic order Newton iteration step
for various initial approximations. The plot order is the same as in Fig. 2.

References

[1] Boldo, S., Graillat, S., and Muller, J. On the robustness of the 2Sum and Fast2Sum algorithms.
ACM Trans. Math. Softw. 44, 1 (2017), 4:1–4:14.

10 ALEXEI SIBIDANOV AND PAUL ZIMMERMANN

2 4 6 8
a

10−

5−

0

24−10×

1/
3

 a− 2x

Figure 6. The error of the cubic root evaluation after the refinement step
where the root x2 is represented as an unevaluated sum of two numbers in
binary64 x2 = xhigh

2 + xlow
2 .

Figure 7. The error of the cubic root evaluation for the worst case when
the rounding test fails and the additional Newton iteration step is taken.
FPU is operating in the round-to-nearest mode.

CORRECTLY ROUNDED CUBIC ROOT EVALUATION IN DOUBLE PRECISION 11

Figure 8. The error of the cubic root evaluation for the worst case when
the rounding test fails and the additional Newton iteration step is taken.
FPU is operating in the downward mode.

Figure 9. The error of the cubic root evaluation for the worst case when
the rounding test fails and the additional Newton iteration step is taken.
FPU is operating in the upward mode.

12 ALEXEI SIBIDANOV AND PAUL ZIMMERMANN

Figure 10. The error of the cubic root evaluation for the worst case when
the rounding test fails and the additional Newton iteration step is taken.
FPU is operating in the toward-zero mode.

δi instruction sensitivity si max|δi| simax|δi|
δ0 r=1/z 2−38.5 2−53 2−91.5

δ1 z2 = z*z 2−62.8 2−51 2−113.8

δ2 z*c[1] 2−60.0 2−52 2−112.0

δ3 c[0]+z*c[1] 2−60.0 2−52 2−112.0

δ4 z*c[3] 2−58.0 2−57 2−115.0

δ5 c[2]+z*c[3] 2−58.0 2−55 2−113.0

δ6 z2*c2 2−60.0 2−54 2−104.0

δ7 y0=c0+z2*c2 2−60.0 2−52 2−102.0

δ8 y2a=y0*y0 2−37.9 2−52 2−89.9

δ9 y0*r 2−36.9 2−53 2−89.9

δ10 y2a*(y0*r) 2−37.5 2−52 2−89.5

δ11 h0*y0 2−37.9 2−64 2−101.9

δ12 u1*h0 2−48.1 2−67 2−115.1

δ13 u0-u1*h0 2−48.1 2−54 2−102.1

δ14 (h0*y0)*(u0-u1*h0) 2−36.3 2−65 2−101.3

δ15 y1=y0-... 2−36.3 2−52 2−88.3

δ16 y1 *= cvt2.f 2−37.0 2−51 2−88.0

δ17 error on y1*y1*y1 2−1.5 2−104 2−105.5

δ18 h1 = ((y3 - zz) + y3l)*rr 2−0.5 2−90 2−90.5

δ19 y1*U0 2−37.4 2−52 2−89.4

δ20 h1*(y1*U0) 1 2−91 2−91.0

Table 1. The sensitivities si and maximal values of δi for all rounding errors
that can occur in the algorithm.

