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Electron transport in carbon nanotube-metal systems: contact effects
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Carbon nanotubes (CNT) have a very large application potential in the rapid developing field of
molecular electronics. Infinite single-wall metallic CNTs have theoretically a conductance of 4e2/h
because of the two electronic bands crossing the Fermi level. For finite size CNTs experiments have
shown that other values are also possible, indicating a very strong influence of the contacts. We
study electron transport in single- and double-wall CNTs contacted to metallic electrodes within the
Landauer formalism combined with Green function techniques. We show that the symmetry of the
contact region may lead to blocking of a transport channel. In the case of double-wall CNTs with
both inner and outer shells being metallic, non-diagonal self energy contributions from the electrodes
may induce channel mixing, precluding a simple addition of the individual shell conductances.

I. INTRODUCTION

Carbon nanotubes belong to one of the most promising candidates in the era of modern nanoelectronics. They can be
generated by wrapping a graphene sheet along different directions as given by the so called chiral vector1. Interestingly,
depending on the chiral vector, the tubes show markedly different electronic properties ranging from metallic to
semiconducting. A considerable amount of theoretical and experimental research has been done to explore their
varied interesting properties, which range from very hard inert materials through good conductors to storage devices2.
Concerning the electronic transport properties of metallic single-wall carbon nanotubes (SWCNT) experiments2 have
nicely demonstrated ballistic transport and conductance quantization with conductance values equal to 2×G0, G0 =
2e2/h being the conductance quantum and the factor 2 in the first expression arising from two spin degenerated bands
at the Fermi level. Similar quantization effects have been recently observed in multi-wall nanotubes (MWCNTs)3,4.
However, in contrast to the theoretical expected values conductance steps as low as 0.5G0 or 1×G0 were found3. Even
under the usual assumption that only the outermost shell is the one contributing to transport, such small conductance
values suggest that transport channels may be partially or completely closed. Blocking of conductance channels in
MWCNTs has been recently addressed in other theoretical works5. We will investigate in this paper conductance
quantization in finite size CNTs contacted with metallic electrodes. We will show an example of channel blocking and
demonstrate that the total conductance of muti-wall CNTs cannot be simply obtained by just adding the individual
shell conductances.

II. THEORETICAL MODEL

We investigate electronic transport in a simple model system consisting of carbon nanotubes which are attached to
semi-infinite electrodes having an fcc(111) geometry. A typical configuration is shown in Figure 1.
To describe the electronic structure of both subsystems we use a single-orbital nearest-neighbours tight-binding ap-
proach. It includes the π-orbitals of the carbon atoms on the tube and s-like orbitals in the electrodes. The metal-CNT
coupling terms are set constant for all neighbours of a given carbon atom. The Hamiltonian is

H = HM + Hleads + Vleads,M

HM = −tpp

∑

l,j

c†l cj − β
∑

l, j

cos θlje
a−d l j

δ c†jcl

Hleads =
∑

k

∑

α∈L,R

ǫα
kd†kαdkα

Vleads,M =
∑

i,k

∑

α∈L,R

Vi,αc†idkα + H.c.

HM is the CNT Hamiltonian. Its first term describes the intra-shell interaction with a hopping integral tpp which
is set at the constant value of 2.66 eV. The second summand is the inter-shell interaction in the case of MWCNTs
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(β = tpp/k, k > 1). δ = 0.45Å is a normalizing factor , a is the difference between the shell radii and θij is the angle
between the two pz orbitals on different shells. Finally, Hleads is the Hamiltonian of the electrodes and Vleads,M is the
mutual interaction.
The linear conductance G(E) can be related to the electronic transmission probability T (E) according to the Landauer
formula (at zero temperature): G = G0T (EF). T (E) can be calculated using Green function techniques6 via

T = TrM[G†
MΓRGMΓL]

GM is the Green function of the scattering region (in our case the CNT plus two surface layers) which can be calculated
by means of the Dyson equation

[E1M − HM − ΣL − ΣR]GM = 1

The self-energies Σα = V †
αgαVα, α = L, R contain information on the electronic structure of the leads (via the surface

Green function gα) as well as on the electrode-scattering region coupling (via Vα). Finally the spectral functions Γα

are related to the self-energies by iΓα = (Σα − Σ†
α). We do not consider charge transfer effects between the tubes

and the metallic electrodes.The use of a single-orbital picture to describe the electrodes allows to write an analytic
expression for the electrodes surface Green function in k-space (assuming L=R)7.

g(k, E) =
E − ǫ(k) ±

√

(E − ǫ(k))2 − 4|V01(k)|2
2|V01(k)|2

ǫ(k) = 2t0(cos kxa + 2 cos
kxa

2
cos

√
3kya

2
)

V01(k) = −t0(2 cos(
kxa

2
)e

ikya

2
√

3 + e
−

ikya√
3 )

FIG. 1: View of a (2,2)@(6,6) double walled carbon nanotube sandwiched between two fcc(111) leads (upper panel) and details
of the contact region (lower panel). The first two layers of the electrodes belong to the scattering region while the third layer
extends to infinity and is part of the contact.

A. Electronic Transport in single- and double-wall nanotubes

We first consider the diameter dependence of the conductance for SWCNTs. In Fig. 2 we show the transmission as a
function of the energy for (2,2) and (6,6) finite size tubes (10 unit cells). As a reference we also plot the transmission
of an infinite tube. For the latter clear quantization steps are obtained and the conductance around the Fermi level
is 2×G0. The finite size tubes show however a more irregular, spiky behaviour which can be related to finite size
effects and to the lifting of some degeneracies as a result of the coupling to the electrodes. More importantly, while
the (2,2) CNT shows conductance oscillations peaking at 2×G0, the (6,6) tube reaches only on average one quantum
of conductance, i.e. a transport channel is apparently closed.
We can roughly understand what happens by representing the electronic selfenergy into the eigenstate basis |Φσ〉 of
an isolated CNT, with |Φσ〉 =

∑

n∈CNT cn,σ |pz,n〉. After some manipulations 8 and assuming a constant coupling of

each carbon atom to its nearest neighbours metal atoms 9,10, we arrive at the following expression:
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Σσσ′ (E) = |V |2
∑

k||

g0,k||(E)Λ†
σ(k||)Λσ′(k||) (1)

Λσ(k||) =
∑

m||[n]

∑

n

cn,σeik||m||
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FIG. 2: Electronic transmission of (2,2) and (6,6) SWCNTs (10 unit cells). The strong oscillations are related to finite size
effects. For (2,2) two transport channels at the Fermi level are open, while for the (6,6) CNT only one channel does contribute.

Notice that the index n runs now over the CNT atomic slice in direct contact with the metal surface and the index
m||[n] denotes the nearest neighbours on the electrode surface of a given carbon atom n. The function Λσ(k||) contains
information on the symmetries of the CNT wave functions via cn,σ, and on the electrode surface topology, via the
eik||m|| factor. We only need to look at the behaviour of Λσ(k||) for σ = π, π∗, since these are the two eigenstates
crossing the Fermi point in metallic CNTs. Remembering that the expansion coefficients cn,σ of the π and π∗ orbitals
along the nanotube circumference comprising 2m atoms are proportional to (+1)n and (−1)n, n = 1, · · · , 2m,
respectively, the sums in Λσ(k||) can be performed. As a result we find that Λπ∗(k||) identically vanishes for the (6,6)
CNT while it is nonzero for the (2,2) tube. Hence the antibonding π∗ orbital does not couple to the electrodes for
the (6,6) CNT and it thus gives no contribution to the conductance.
The next issue we have considered is if the conductance of a DWCNT consisting of two armchair SWCNTs can be
simply obtained by adding the corresponding conductances of the individual shells. If this holds then, accordning to
our previous result, the conductance of a finite size (2,2)@(6,6) DWCNT should yield 3×G0. Two factors can however
modify this simple picture. One is the inter-shell coupling, the other is the CNT-electrode interface. We have just
seen, that the latter can even induce channel blocking.
Figure 3 shows the transmission function for different values of the inter-shell coupling parameter β. The main
influence of β is to introduce mixing of the transport channels which is rather strong at energies far away from the
Fermi level EF and leads for some energies to a drastic reduction of the conductance when comparing with infinite
tubes. The effect near the Fermi level is however less strong. Thus, for β 6= 0 the conductances can not simply be
added since inter-shell interference effects must be considered. More interesting however is the behaviour for zero

inter-shell interaction. Even in this case the total conductance near the Fermi level is not simply 3×G0 although it is
larger than in the former case (β 6= 0). The imperfect addition of conductances is now related to interference effects
caused by non-diagonal contributions of the electrodes self-energies, Σσ 6=σ

′ (E). As a result the transport channels
are mixed in a similar way as for non-zero inter-shell coupling. Although there may be some special cases where
conductances can be added, we can conclude that in general quantum interference effects induced by finite size effects
(the existence of the metal-CNT interface) or by the coupling between the nanotube shells will preclude this simple
view.



4

-3 -2 -1 0 1 2 3

E/|tlead|
0

1

2

3

4

5

T
(E

)

β=0
β=t

pp
/8

β=t
pp

/10

3G0

FIG. 3: Energy dependent transmission of a (2,2)@(6,6) DWCNT (10 unit cells) for different values of the inter-shell coupling
β. The intra-shell hopping tpp = 2.66eV .

III. CONCLUSIONS

In this paper we have investigated quantum transport in finite size armchair single- and double-wall carbon nanotubes
contacted by metallic electrodes. We have shown that symmetries of the CNT-electrode coupling, hidden in the
electronic self-energies may lead to suppression of transport channels, thus reducing the conductance around the
Fermi level when comparing with the theoretical ideal case of infinite nanotubes. Moreover, for DWCNTs the simple
approach of adding the single-shell conductances has been shown to be incorrect, even in the case of no inter-shell
interactions. This can be traced back to interference effects induced by non-diagonal components of the self-energy.
These results accentuate the important role played by the interface in determining electronic transport on nanoscale
systems.
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