View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ScholarWorks@UMass Amherst

University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Computer Science Department Faculty Publication

) Computer Science
Series

1995
Adaptive Tracking and Model Registration Across
Distinct Aspects

S.Ravela
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty pubs

b Part of the Computer Sciences Commons

Recommended Citation
Ravela, S., "Adaptive Tracking and Model Registration Across Distinct Aspects” (1995). Computer Science Department Faculty

Publication Series. 219.
Retrieved from https://scholarworks.umass.edu/cs_faculty pubs/219

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Ambherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,

please contact scholarworks@library.umass.edu.

https://core.ac.uk/display/13600938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/219?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Adaptive Tracking and Model Registration Across Distinct Aspects®

S. Ravela

B. Draper

J. Lim R. Weiss

Computer Vision Research Laboratory
University of Massachusetts, Amherst, MA 01002

Abstract

A model registration system capable of tracking an
object through distinct aspects in real-time is pre-
sented. The system integrates tracking, pose deter-
mination, and aspect graph indezing. The track-
ing combines steerable filters with normalized cross-
correlation, compensates for rotation in 2D and is
adaptive. Robust statistical methods are used in the
pose estimation to detect and remove mismatches. The
aspect graph is used to determine when features will
disappear or become difficult to track and to predict
when and where new features will become trackable.
The overall system is stable and is amenable to real-
time performance.

1 Introduction

Maintaining object registration over time (tempo-
ral registration) can be defined as the ability to re-
tain up-to-date object-sensor pose relationships over
relative motion. Registration is useful in several do-
mains; as an example consider enhanced reality appli-
cations such as an interactive repair manual. In this
application technicians look through a visor at a cor-
rectly annotated object; together, the object’s image
and the overlaid annotations unambiguously provide
directions to the next repair step. Given that there is
relative camera-object motion (technicians can move),
spatially accurate annotations can be overlayed only
when the object is temporally registered.

Temporal registration can be achieved using two ba-
sic approaches. One relatively expensive yet proven
technology is to instrument the real world with loca-
tion beacons and position sensors. The other is to vi-
sually track modelled object features and use pose es-
timation to update the object-camera transform. This
approach is cheaper, can be used in unmodified en-
vironments and permits annotation of independently
moving objects’.

In this paper a system for temporal registration of
a modelled object using a single camera is developed
and it is claimed that robust, real-time registration is
possible through 360° of out-of-plane object rotation.

*The authors received support from ARPA and TACOM un-
der contract DAAE07-91-C-R035 and NSF under grants IRI-
9208920 and IRI-9116297.

! Automatic positioning systems may do this if each object
has it’s own beacon(s)

Figure 1: The interaction between components of the
registration system

Our system is initialized with a known set of model-
image correspondences, known camera parameters and
a pre-compiled aspect table that associates discrete
viewpoints? with object features visible from those
views.3. Once initialized, the system follows the sim-
ple three step loop illustrated in figure 1. Initial corre-
spondences are used to estimate an initial pose. Pose
information is used to index into the aspect table and
a list of visible features is extracted. Pose is used once
again in conjunction with camera parameters to hy-
pothesize image plane locations of feature templates.
These templates are tracked and a new pose is com-
puted. The cycle repeats.

System components (namely, view indexing, track-
ing and pose) individually and by virtue of their inter-
action contribute to the speed, stability and robustness
of the system. As the object undergoes relative out-
of-plane rotation in the camera, new features appear
and old ones disappear. By construction, only points
that are visible from a particular view are tracked and
used to compute pose, resulting in continuity of reg-
istration across viewpoints. The tracker localizes fea-
ture templates in search windows around hypothesized
locations using steerable filters and normalized cross-
correlation. This technique is relatively insensitive to
changes in lighting conditions and compensates fully
for feature translations and rotations in the image-
plane; it also compensates for some non-trivial out of
plane rotations. So long as the actual feature is within
the search window, un-occluded and free from specu-
lar reflections in the image, the tracker locates features
correctly. Pose computation [14] uses camera parame-
ters and the model-image correspondences to robustly
solve for a rotation and translation that minimizes the

2In this paper it is assumed that the camera will roughly
point towards the object throughout the relative motion

3An object feature is defined by two pieces of information;
A model coordinate on the object and a template that captures
the feature’s appearance in the camera.

projection error of model points on the object. The ro-
bustness in this iterative algorithm is obtained by us-
ing a median-filter to detect and exclude outliers from
the final pose. So long as a minimum of 4 non-coplanar
points track correctly pose can be reliably computed.

One important result of the interaction of the pose
and tracking components is system stability. The
tracker compensates for feature motions, thereby sup-
pressing errors in computed pose. Similarly, the me-
dian filter based pose computation is designed to sup-
press tracking errors. Neither tracking nor pose errors
are fed back, thus making the system stable. A second
important result of combining pose and tracking com-
ponents is that tracking is adaptive. Feature templates
are updated during registration without any slip from
their intended features. Finally, real-time performance
is possible on current hardware, within reasonable lim-
its. For 11211 size search windows and 9z9 templates,
the speed of the tracker for 6 points is 8 Hz. If a maxi-
mum of one tracking outlier per frame is detected, the
system can produce registration data at 7 Hz. Sta-
bility, adaptivity and speed are discussed in detail in
section 4.

2 Related Work

Temporal registration has been addressed by sev-
eral researchers [5, 10, 15, 18, 19, 20]. Dickinson et.
al. [5] use an aspect prediction graph together with
a network of active contours introduced in [13]. Ac-
tive contours are purely gradient based in that they
minimize the error between the gradient maxima and
the contour (external energy), and also the internal
energy of the contour itself. This technique can be
sensitive to undesirable local edge maxima. Work in
[10, 15, 18, 20] do not address changing aspects. Ueno-
hara and Kanade [18] use normalized cross-correlation
for tracking and combine it with pose estimation, but
do not handle changing aspects and claim robustness
by examining invariant geometric constraints between
features. Both Gennery and Walters [10, 20] employ
a Kalman filter for predictive pose and edge based
tracking. We agree with Lowe [15] in that a Kalman
filter may not always be advantageous especially in
enhanced reality applications. Lowe uses line data as
image features with a weighted least squares fit to the
model parameters. Matching itself is achieved via a
best first search using Bayesian theory to measure the
probabilities feature matches. Owur technique is dif-
ferent from all these approaches in that it uses both
intensity as well as edge information for tracking, uses
least median squared pose computation to detect mis-
matches in tracking.

Tracking which is a central component in tempo-
ral registration has been addressed by using lines [15,
4, 16], edges [10, 20] including edge contours [5, 13|
and intensity [18, 11, 17] including optic flow [1]. For
example Crowley [4] used a set of parameterized line
tokens which were matched using the Mahalanobis dis-
tance with predicted feature vectors. Sawhney [16] ex-
tended this approach to triples of lines, grouped under
the shallow structure assumption under affine transfor-
mations. These techniques however are slow. Other
model-based tracking such as [11] uses a hierarchy

of features to represent a model. Constraints on the
state of the feature are propagated down the hierar-
chy and at the lowest level tracking is accomplished
using convolutions (edges) or SSD methods [1]. Hager
does not explicitly address the issue of mismatches as
is done by Shi and Tomasi [17]. Affine feature dissim-
larity over multiple frames is used to identify good
features to track. This method is image based, while
ours is model based and can detect outliers after just
one frame.

The pose estimation component in our paper is sim-
ilar to [8] and the reader is referred to [14] for a de-
tailed review. Although the use of aspect graphs is not
new(e.g. [2, 3, 12]), most systems do not use coarse
quantizations of the view sphere as employed in this
system.

3 Registration System Components

In this section we describe each of the system com-
ponents individually, paying particular attention to
the tracking module which contains novel elements
(the pose determination module is as presented by Ku-
mar [14], and the feature indexing module is quite sim-
ple).
3.1 Tracking

The tracking module localizes a set of feature tem-
plates in a newly acquired image given hypothesized
2D feature locations. Within the context of the reg-
istration system, the hypothesized 2D locations are
the positions of features (templates) obtained from the
previous pose. The role of the tracking module is to
find the position of the templates in the new image,
by searching windows around their previous positions.

The basic algorithm for matching templates to im-
age patches is a combination of normalized cross-
correlation and steerable filters. The normalized cross-
correlation of a template (image patch) 7(z, y) with an
image y(z,y) at a location (¢, j) is given in a compu-
tationally efficient form by

Txy(3,7) =

2*Zr(m—i,n—j)*'y(m,n) (1)

m,n

R1# Z T(m—i,n—j)?+R2x Z y(m,n)?

m,n m,n

where, R2 = %

Theoretically, this measure assumes that the sur-
faces in the environment are Lambertian, that they
can be locally approximated by a plane, and that the
illumination incident on the surfaces can be locally
approximated by a constant. Under these assump-
tions the correlation measure is normalized in that it
is independent of the illumination incident on the sur-
face. However, good experimental results have been
obtained with this measure on surfaces that do not

%Error
MCC fails after 157
feature rotation

[

[S e B s |
=2 o Bom

25 E0 75 ioo 125 150 175
Rotanonldegress)

Figure 2: Comparison of NCC and NCC-R algorithms
under 2D feature rotation

fit the Lambertian assumption(see [6] for a derivation
and [7] for experiments with this measure).

Normalized cross-correlation degrades when there
is a relative rotation between the templates and image
patches. To compensate for 2D rotations it is suffi-
cient to note that equation 1 is linear shift invariant
in cartesian space and hence is translation invariant.
Equivalently, linear shift invariance in polar space is
equivalent to rotational invariance in cartesian space
and we formulate an equivalent correlation expression
in polar space.

A feature template is defined as a pair (7, ;) where
T is an image patch centered over a dominant image
edge and 6;e [—7, 7] is the phase of the maximum re-
sponse of a steered Gaussian derivative filter [9] with
the edge at the patch center. Templates are then lo-
calized within a search window < in a new image as
follows:

1. Spatial gradients and their orientations are com-
puted by filtering ~ with steerable Gaussian
derivative filters and suppressing non-maximal
edges within the search window.

2. Each local maximal edge location (%,7) in v is
a potential candidate for the new location of
the template, and normalized correlation in po-
lar space is used to identify the best match.

The advantage of using steerable filters is that they
can be represented as a set of basis filters from which
an arbitrary orientation of a template can be esti-
mated [9]. For edges, first derivatives of Gaussian
masks can be used. Their performance is better than
that of box filters, for example, when there are non-
step edges. While polar correlation compensates for
any changes in orientation of the feature, there is how-
ever an issue of sampling and interpolation accuracy
when going from cartesian coordinates of the image to
the polar coordinates under which normalized corre-
lation is performed. Accuracy is traded for speed to
a certain degree in the real-time applications we have
investigated, and sampling is performed without inter-
polation. In this system corners are routinely used as
features. Observe however that first derivative oper-
ators will typically fail at a corner. Despite this, it

is possible to obtain good tracking results by assign-
ing to the template an angle sampled on any one of
the edges leading to the corner. The reason this strat-
egy works in tracking corners is because rotations are
needed only to determine a sampling order and only
the relative angle (between the template and the can-
didate match location) is important. During the lo-
calization process in a search window, a match is still
found at the right spot, if there exists a location in the
search window that corresponds to the sampled point.
Alternatively, higher order filters may be used, at the
expense of increased computation and noise.

The performance of rotation compensated normal-
ized cross-correlation (NCC-R) is observed to be much
better in terms of 2D rotational tolerance. Figure
2 shows the percentage correlation error (w.r.t. the
auto-correlation value of the template) for varying ro-
tations under NCC-R and normalized cross-correlation
(NCCQC). 15215 templates correlated over 43243 search
windows and while NCC fails after 15° of feature ro-
tation, NCC-R finds the correct matches over all ro-
tations. Note that the NCC-R scores fluctuate due to
the integer discretization of rotation space but never
exceed 0.05%. NCC-R can correlate under arbitrary
2D rotations up-to the discretization of rotation and
has been observed to work well with varying search
windows and template sizes. Similar experiments with
out-of-plane rotations showed that NCC-R can at best
handle about 25° of feature rotation.

3.2 Pose Estimation

The pose estimation module finds the transforma-
tion (both rotation and translation) given at least four
3D-2D correspondences. The transformation is what
registers the artificial world to the real one, and is
therefore the goal of the registration system. At the
same time, this transformation is used as an index into
the feature index table to predict what image features
should be visible in the next image, and is used to
project the corresponding points into the image frame
as a starting point for the tracking module.

The pose estimation module uses Kumar’s algo-
rithm [14] to solve for the rotation and translation
that maps a set of 3D model points onto correspond-
ing 2D image points. Kumar’s algorithm is an itera-
tive approach that minimizes the squared image-plane
distance from the data points to the projected model
points. The Levenberg-Marquart method is used to
solve this nonlinear optimization problem, starting
from an initial ”guess” of the approximate object pose.
For small inter-frame motions, the change in pose be-
tween successive images is small enough that the pose
from the previous image can be used as an initial guess
in the pose algorithm.

Pose estimation techniques such as the simple ver-
sion of Kumar’s algorithm described above work well
when the correspondence between model and data
points is correct. Unfortunately, tracking errors will
sometimes result in a model point being matched to an
erroneous image point. Even a single such outlier can
have a large effect on the resulting pose. Robust sta-
tistical approaches such as least median squares pro-
vide a powerful method to detect mismatches and cat-

egorize them as outliers. These methods are typically
better than image based methods such as threshold-
ing a correlation score which may vary from experi-
ment to experiment and feature to feature. NCC-R
for example, can produce a high correlation score at
mismatches and thus a threshold will not work. Ku-
mar used an approximation to least median squares,
where subsets of size N(typically six) were sampled
and transformations (both rotation and translations,
calculated together) were computed for these samples.
The sample which minimized the median of squares
was used to eliminate outliers, and the final pose was
computed using the remaining set of correspondences.

The computational cost associated with the least
median squares filter over all subsets grows exponen-
tially with the number of k sized subsets considered,
where k ranges from the size of the original set down to
4 (the minimum required to compute pose). In prac-
tice, we generally compute pose from sets of five points,
allowing the computation to grow with the number of
points tracked (up to eight in the experiments inves-

tigated in this paper). With fast machines* (since the
pose computation is purely compute bound) and for
up to eight tracked points, the time expended in com-
puting pose remains a fraction of the image acquisition
and tracking time and is amenable to real-time perfor-
mance.

3.3 Aspect Tables and Feature Indexing

As an object undergoes rotation with respect to
the camera, features change in appearance, and new
features may appear while old ones disappear. The
range of viewpoints over which a set of features can
be tracked is an aspect and an aspect table is used to
encode sets of model points that are visible from each
aspect. This table therefore contains lists of model
points visible from the surface of a discretized sphere®
encompassing the object, and is indexed using the lat-
itude and longitude.

For this paper, model points were extracted manu-
ally and aspect tables were constructed off-line. In ad-
dition to the model points the aspect table is also used
to store feature templates. At run-time, the current
pose is used to determine the latitude and longitude.
These angles are discretized to index into an aspect
and a set of 3D points and possibly their correspond-
ing templates are extracted for points that appear new
for this aspect. In this paper the view hemisphere was
discretized to 18 longitudes and 3 latitudes.

4 Discussion

The registration loop described in section 1 is ex-
amined for stability. Further (as discussed in 1) it is
observed that pose and tracking can be combined to
make the tracker adaptive. These properties of the
registration system, issues concerning system speed,
and an example demonstrating registration over dis-
tinct aspects are presented in this section.

4We are currently running on a Sparc-2.

5For the experiments in this paper, the feature index table
encompassed a viewing hemisphere, since the object is not visi-
ble from below the table.

40 .)
Projecton
35]

=p| Error
25
20
1t
i0

least me
SQUaTe

least median
gquare

3 & 9
Iinage Frames

Figure 3: Least Mean Squares vs. Least Median

Squares

4.1 Stability

To show that the system is stable, all possible
sources of error or variation within the system need
to be considered. There are three such sources.

The first source of variation (which in this case is
not an error) is image motion. On each iteration of
the loop, the system projects points based on the pose
of the object in image N, and uses these positions as
starting points for the tracker in image N + 1. If the
image motion of points is greater than the size of the
tracker’s search window, then tracking will fail.

The second source of variation is tracking error.
There are several reasons why tracking might fail:
specular reflections might distort the appearance of the
feature, an un-modeled object might occlude the point
being tracked, or the feature might not be unique, so
that another point matches the template as well or
better than the intended feature.

The third source of variance is pose computation
error. As shown in simulation studies by Kumar [14],
the residual pose error resulting from simple noise in
the positions of point features is very small for most
images. In practical systems, however, modeling errors
and camera calibration errors can create non-trivial
pose errors; in our experiments, we have noticed that
projected model points may be off by as much as three
or four pixels.

The overall system is stable because the tracking
module compensates for pose error and image motion,
while the pose modules compensates for tracking er-
ror. The median filter of the pose estimation module
identifies mis-tracked points and excludes them from
the pose computation. Since the starting point of the
tracker on the next iteration is the projection of the
model points from the computed pose (rather than the
tracking results from the previous image) and outliers
are not used for pose computation, tracking errors are
not fed back into the tracker and the system remains
stable. Pose errors, on the other hand, are indistin-
guishable to the tracker from image motion; they sim-
ply imply a disparity between the (slightly inaccurate)
projected feature positions for frame N and their ac-
tual positions in frame N + 1. One way to look at it is
that the tracker never knows that the pose was wrong

— it just tracks the motion from the inaccurate com-
puted positions to the new positions. As long as the
tracker’s search windows are big enough to accommo-
date the largest expected image motion plus the pose
error, the result of tracking is not effected by pose er-
ror.

Catastrophic failures are possible, of course. If the
tracking module produces more errors than the median
filter was set to detect, an outlier will be included in
the pose computation and produce a grossly inaccu-
rate pose. One circumstance that might create such
simultaneous tracking failures is if the image motion
is larger than the tracker’s search window size. This
is essentially a configuration problem: the search win-
dows must be large enough to account for the image
motion plus the expected (typically small) pose error.
Fortunately, if such a catastrophic failure occurs it will
be detected in the residual error of the pose algorithm,
and the user will be informed.

In a registration example illustrated in Figure 3 sys-
tem performance under least mean square and least
median square policies are compared. The figure plots
the projection error sum for all the templates over a
9 frame out-of-plane object rotation, sampled every
3 frames. Given that there is about a 3 pixel error
after pose computation, the expected value of projec-
tion error sum for seven templates used in this experi-
ment is 21. At frame three during the object motion a
specular reflection obscures one of the features. Over
subsequent frames the least mean square policy cas-
cades to failure starting with incorrect pose estimates
and culminating in features falling outside the fixed
search windows of projected template locations. Thus
by frame six, the projection error goes high to 36, the
system neither tracks nor estimates pose correctly and
becomes unstable. In contrast, the median compu-
tation detects and eliminates the mis-tracked feature
from pose computation, all the way through the du-
ration of specularity (frame 6). Predictably the total
projection error (which includes the mis-tracked fea-
ture’s projection error) goes high at frame 6 but drops
subsequently. This is explained as follows; Pose com-
putation is un-affected from the tracking outlier and
thus, the feature location is always within a search
window from the projected template location. When
the specularity disappears the tracker re-localizes the
template and the projection error drops.

4.2 Adaptive Tracking

Templates can be updated on the fly as tracking
is in progress. However, if a template mis-tracks up-
dating it can cause incorrect feature-template asso-
ciations(template slip), resulting in system instabil-
ity. Template slip can be avoided as follows: First, a
policy is adopted wherein only correctly tracked tem-
plates(those that are not outliers) are updated (by cut-
ting out appropriate portions of the current image).
Second, non-maximal suppression during the localiza-
tion process ensures a correct sampling angle for the
template (see section 3.1). Together, these two steps
result in correctness of adaptivity, i.e. updating tem-
plates without introducing instability.

Adaptivity provides the system with several advan-

Set Size 11 8 6 4
Time(ms) | 15 [8.2 | 6.3 | 4

Figure 4: Time for Pose Computation

Search Size

i1
: 15 180 [150 | 70
Size {137 77 | 54
9 T80 | 47 [20

Template

Figure 5: Time for Tracking

tages. First, it allows for building aspect tables with-
out regard to the tracker’s sensitivity to out-of-plane
rotations. Consequently the discretization of the ob-
ject view hemisphere in this paper takes no consider-
ation of the amount of rotation that the tracker can
handle in 3D. It is purely based on the appearance or
disappearance of features. A second important effect
of adaptivity is that scale changes can be handled in-
crementally. Third, templates will need to be loaded
once per every viewpoint transition for each new fea-
ture.

4.3 Registration Rates

The search window size and template sizes deter-
mine the speed of tracking. The rate of tracking
in the worst case drops quadratically with increasing
search window and template sizes. The median fil-
ter in pose computation is combinatorial and imposes
an exponential increase in computation time with de-
creasing feature set size. Figures 4 and 5 tabulate
the computation times on a Sparc-2 host for pose and
tracking respectively. Note that in comparison to the
tracking time, image acquisition time is much smaller
since only windows around hypothesized locations are
copied from the frame buffer. Similarly, pose computa-
tion times for eight templates is around 5% of the time
spent tracking. For 11z11 size search windows and
929 templates, the computation speed of the tracker
for 6 points is 8 Hz. If a maximum of one tracking
outlier per frame is detected, the system can produce
registration data at 7 Hz. Thus, within these limits
registration is amenable to real-time performance.

4.4 Example: Registration across distinct
aspects

Using NCC-R, adaptive templates and median fil-
tering registration of an object across 180° out-of-
plane rotation is demonstrated in frames 1 through
4 of Figure 6. An initial viewpoint corresponding to
frame 1 in figure 6 is assumed. This gives a nom-
inal pose, from which templates are extracted, pro-
jected in the image, and localized. Once initialization
is complete the registration loop is automatic. Five
to eight templates were used per aspect. Least me-
dian squared pose computation was used with subsets
of five. Figure 6 must be read in text book fashion
the snapshots of the registration sequence are sampled
approximately at 0°,45%,90° and 170°.

Frame 1

Frame 3 Frame 4

Figure 6: Snapshots of Registration across 180° rotation

5 Conclusions and Future Work

Using an existing pose algorithm, a new tracking
algorithm and aspect tables we have shown that it is
possible to construct such a temporal registration sys-
tem that is stable, operates in real time and handles
changing views.

One of the limitations of our system is that pose
computation is not predictive and therefore, search
window sizes must not only encompass pose errors but
also image motion. Kalman filtering style prediction
has been studied by a number of authors and incor-
porating a Kalman filter is the next immediate step.
Note however that in an enhanced reality application
the agent is normally a human and may not conform
to a low-order dynamical model. Examining the per-
formance of a extended-Kalman filter would be an in-
teresting step.

A second extension to the project is the automatic
extraction of feature templates. Tomasi’s work lays
a basis for measuring feature dissimilarity over small
frames of motion [17]. Small dissimilarities over a
range of motion typically yield a good feature. This
work is currently under examination.

Finally alternative techniques such as M-estimation
that provide a faster computation and yet are robust
statistical methods need to be examined for pose com-
putation.

Acknowledgement

The authors thank the Laboratory of Perceptual
Robotics for providing space and hardware to conduct
experiments. They are also grateful to Profs. Riseman
and Hanson for their support through the development
of this system.

References

[1] Anandan, P., “A Computational Framework and an
Algorithm for the Measurement of Visual Motion”,
Int. J. Comput. Vision, 2:283-310, 1989.

[2] Bowyer, K. W. and Dyer, C. R. “Aspect Graphs: An
Introduction and Survey of Recent Results,” Inter-
national Journal of Imaging Systems and Technology,
2:315-328 (1990).

[3] Burns, J. B. and Leslie L. Kitchen. “Recognition in 2D
Images of 3D Objects from Large Model Bases Using
Prediction Hierarchies,” IJCAI-10, Milan, Italy, 1987.

[4] Crowley, J. L. and Stelmaszyk, P., “Measurement and
integration of 3-D structures by tracking edge lines”,
Proc. European Conf. on Comput. Vision, pp. 269-
280, 1990.

[5] Dickinson, S. J., Jasiobedzki, P., Olofsson, G. and
Christensen Henrik I., “ Qualitative Tracking of 3-
D Objects using Active Contour Networks”, Proc. of
Comput. Vision and Patt. Recognition, pp. 812-817,
June 1994, Seattle, Washington

[6] Fennema, C. L., “Interweaving Reason, Action and
Perception”, COINS TR91-56, Dept. of Computer
Science, Univ. of Massachusetts, Amherst, 1991.

[7] Fennema, C. L., “Finding Landmark Features Under
a Broad Range of Lighting Conditions”, Proc. SPIE

[10

[t

[11]

[12]

[13]

[14]

[15]

[16]

[20]

Intelligent Robots and Computer Vision X11: Algo-
rithms and Technigues, 2055:181-191, Boston, MA,
Sept. 1993.

Fischler, M.A. and R.C. Bolles, “Random sample con-
sensus: A paradigm for model fitting with applica-
tions to image analysis and automated cartography,”
Communications of the ACM, Vol 24, pp 381-395,
1981.

Freeman, W. T. and Adelson, E. H., “The Design and
Use of Steerable Filters”, IEEE Trans. Patt. Anal.
Machine Intell., 13(9):891-906, Sept., 1991.

Gennery, D., “Tracking known Three-Dimensional ob-
jects”, Int. J. of Comput. Vision, 7(3):243-270, 1992.

Hager, G. D., “Real-Time feature tracking and projec-
tive invariance as a basis for hand-eye coordination.”,
Proc. Comput. Vision Patt. Recognition, pp. 533-539,
1994.

Ikeuchi, K. “Generating an Interpretation Tree from a
CAD Model for 3D-Object Recognition in Bin-Picking
Tasks,” International Journal of Computer Vision
1:145-165 (1987).

Kass., M., Witkin, A. and Terzopolous, D, “Snakes:
Active contour models”, Int. J. Comput. Vision,
1(4):321-331, 1988.

Kumar, R. and Hanson, A. R. “Determination of
Camera Position and Orientation,” Proc. of the
DARPA Image Understanding Workshop, Palo Alto,
CA., May 1989, pp. 870-881.

Lowe, D. G., “Robust Model-based Motion Tracking
Through the Integration of Search and Estimation”,
Intl. Jrnl. Comput. Vision8:(2)113-122, 1992.

Sawhney H. and Hanson A., “Tracking, Detection and
3D representation of potential obstacles using affine
constraints”, Proc. Img. Understanding Wkshp., pp.
1009-1017, San Diego California, January 1992.

Shi, J. and Tomasi, C., “Good features to track”, Proc.
Comput. Vision Patt. Recognition, pp. 593-600, 1994.

Uenohara, M., and Kanade, T., “Vision-Based Ob-
ject Registration for Real-Time Image Overlay”, (In
Press) Jrnl. Comput. Bio. and Med.

Verghese, G., Gale, K. L., and Dyer, C. R.,”Real-time
motion tracking of three dimensional objects”, Proc.
IEEE conf. Robotics and Automation, pp. 1998-2003,
1990.

Walters, W. J., “Visual Servo Control of Robots us-
ing Kalman Filter Estimates of Pose Relative To
Work-pieces”, in “Visual Servoing”, Hashimoto, K.,

(ed.), World Scientific, 1994.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1995

	Adaptive Tracking and Model Registration Across Distinct Aspects
	S. Ravela
	Recommended Citation

	intro.dvi

