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Amalgams of Inverse Semigroups and
C∗-Algebras

ALLAN P. DONSIG, STEVEN P. HAATAJA &
JOHN C. MEAKIN

ABSTRACT. An amalgam of inverse semigroups [S, T ,U] is full if
U contains all of the idempotents of S and T . We show that for
a full amalgam [S, T ,U], C∗(S ∗U T) ≅ C∗(S) ∗C∗(U) C∗(T).
Using this result, we describe certain amalgamated free products of
C∗-algebras, including finite-dimensional C∗-algebras, the Toeplitz
algebra, and the Toeplitz C∗-algebras of graphs.

1. INTRODUCTION

Inverse semigroups are playing an increasingly prominent role in the theory of
C∗-algebras. This paper connects certain amalgams of inverse semigroups and of
C∗-algebras. Using this connection, we describe amalgams of various C∗-algebras.

The first work on amalgamated free products of C∗-algebras that we know
of is due to Blackadar [4]. Shortly thereafter, Larry Brown noted in [5] that for
countable discrete groups G and H with a common subgroup K, C∗(G ∗K H) ≅
C∗(G) ∗C∗(K) C∗(H). The obvious generalization for inverse semigroups is not
true, even for finite inverse semigroups, without some restriction; see, for instance,
Example 2.2 below. In Section 2, we prove an analogous result for full amalgams
of discrete inverse semigroups; namely,

C∗(S ∗U T) ≅ C
∗(S)∗C∗(U) C

∗(T).

We apply this result to describe the structure of certain amalgams of C∗-
algebras. First, we describe amalgams of finite-dimensional C∗-algebras over the
natural diagonal matrices in Section 3. These amalgams turn out to be direct sums
of matrix algebras over the C∗-algebras of free groups. The ranks of the free groups
and the sizes of the matrix algebras are easily computed using graphs arising from
Bass-Serre theory [16]. These methods extend to direct sums of matrix algebras
over group C∗-algebras.
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Section 4 gives some structural results for amalgams of a strongly E∗-unitary
inverse semigroup with itself. These results allow us to apply work of Khoshkam
and Skandalis [20] and of Milan [27] to decompose certain amalgams of C∗-
algebras as either crossed products or partial crossed products of abelian C∗-
algebras and groups. Specifically, Section 5 shows that a full amalgam of the
Toeplitz algebra with itself is strongly Morita equivalent to a crossed product of an
abelian C∗-algebra and a group, while the amalgam of a Toeplitz graph C∗-algebra
with itself over the natural diagonal is isomorphic to a partial crossed product of
an abelian C∗-algebra and a group.

We remark that the structure of amalgamated free products of semigroups or
of inverse semigroups is far from understood in general. For example, it is known
that the word problem for an amalgamated free product S1 ∗U S2 of semigroups
(in the category of semigroups) may be undecidable even if S1, S2 and U are finite
semigroups [34]. On the other hand, the word problem for an amalgamated free
product S1∗U S2 of finite inverse semigroups in the category of inverse semigroups
is decidable [7]. It follows from results of Bennett [2] that the word problem for
S1 ∗U S2 is decidable if U is a full inverse subsemigroup of the inverse semigroups
S1 and S2.

The structure of amalgamated free products of C∗-algebras has been studied
extensively by Pedersen in [31], which also includes an excellent introduction and
bibliography.

Next, we review the background we need. For more information, see [19],
[21], or [32] for introductions to inverse semigroups; see [11] or [13], for example,
for more on C∗-algebras.

Amalgamated free products may be defined in any category by the standard
universal property. Given objects U , S1, and S2, with monomorphisms ij : U →
Sj , j = 1,2 in some category, the free product of S1 and S2, amalgamated over U , is
an object T and morphisms ψi : Si → T with ψ1i1 = ψ2i2 so that for any object
R and morphisms ϕj : Sj → R with ϕ1i1 = ϕ2i2, there is a unique morphism
λ : T → R so that the following diagram commutes:

(1.1)

S1

U T R

S2

i1

i2

ψ1

ϕ1

ψ2

ϕ2

λ

If it exists, the object T is unique up to isomorphism and is denoted S1∗U S2. The
tuple [S1, S2, U, i1, i2] is called an amalgam in the category: in all cases of interest
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in this paper, the monomorphisms i1, i2 will be embeddings. We will often use
[S1, S2, U] and think of U as contained in S1 and S2.

Inverse semigroups. An inverse semigroup is a semigroup S such that for
each s ∈ S there exists a unique element s−1 ∈ S such that ss−1s = s and
s−1ss−1 = s−1. Every inverse semigroup S is evidently (von Neumann) regular;
i.e., for each s ∈ S there exists t ∈ S such that s = sts. Inverse semigroups
can be characterized as those regular semigroups whose idempotents commute
[21, Theorem 1.1.3]. Inverse semigroups may also be viewed as an equationally
defined class of semigroups with an involution s ֏ s−1 so that ss−1s = s and
ss−1tt−1 = tt−1ss−1 for all s and t [32, Theorem VIII.1.1].

We denote the set of idempotents of an inverse semigroup S by E(S), or E, if S
is clear: E(S) is a commutative idempotent semigroup, (i.e., a semilattice) relative
to the product in S. There is a natural partial order on an inverse semigroup S
defined by a ≤ b (for a,b ∈ S) if and only if there exists e ∈ E(S) such that
a = eb. The smallest congruence σ on S for which S/σ is a group is generated
by collapsing this partial order. Note that if S has a zero, then S/σ ≅ {0}.

An inverse subsemigroup T of an inverse semigroup S is called a full sub-
semigroup of S if it contains all of the idempotents of S (i.e., E(T) = E(S)). An
amalgam [S1, S2, U] of inverse semigroups is called a full amalgam if U is a full
inverse subsemigroup of S1 and S2.

It is a non-trivial fact that the category of inverse semigroups has the strong
amalgamation property: if [S1, S2, U, i1, i2] is an amalgam of inverse semigroups,
then in the notation of the definition above, the morphisms ψi are monomor-
phisms (embeddings) and ψ1(S1) ∩ ψ2(S2) equals the image of U [17]. This
property fails in general in the category of semigroups [8, p. 139].

In [16], the authors use Bass-Serre theory to describe the structure of the max-
imal subgroups of S1 ∗U S2 in the case where [S1, S2, U, i1, i2] is a full amalgam.
We will use these results in Sections 3 and 5.

An inverse semigroup S may or may not have an identity element 1 or a zero
element 0. If S has an identity, we refer to it as an inverse monoid. If S does
not have a zero, we may adjoin one, obtaining the inverse semigroup with zero
S0 = S ∪ {0} with the obvious multiplication making 0 the zero element.

A representation of an inverse semigroup S is a homomorphism of semigroups
ρ : S → B(H ), the bounded operators on a Hilbert space H , such that ρ sends
the inverse operation of the semigroup to the adjoint operation of B(H ). Each
T ∈ ρ(S) satisfies TT∗T = T and T∗TT∗ = T∗, and so T is a partial isome-
try in B(H ). In fact, every inverse semigroup can be faithfully represented as a
semigroup of partial isometries on some Hilbert space [12].

C∗-algebras. One can define C∗(S) so that it has the universal property that
each representation of S lifts to a unique representation of C∗(S). Precisely, there
is a monomorphism i : S → C∗(S) so that, for each representation ρ : S → B(H ),
there is a unique representation ρ̃ : C∗(S) → B(H ) with ρ̃ ◦ i = ρ. It follows
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from the uniqueness that if two representations of C∗(S) agree on S, then they
are equal. For details, see [12, Section 1]. Of course, for a finite inverse semigroup
S, C∗(S) is the complex inverse semigroup algebra, CS.

For an inverse semigroup S with a zero, 0, it is natural to restrict to rep-
resentations that send 0 to the zero operator. If we modify the universal prop-
erty of C∗(S) to consider only such representations, then we obtain the con-
tracted C∗-algebra, C∗0 (S). This can be identified with the quotient of C∗(S)
by the ideal generated by 0, which is a copy of the complex numbers. That is,
C∗(S) ≅ C∗0 (S)⊕C. We can define C0S similarly.

Let P be a semilattice of projections in a C∗-algebra A; that is, P is closed
under products. Note that P is always commutative, as two projections in A
whose product is a projection must commute. Define PI(P) to be the set of all
partial isometries X inA, i.e., elements satisfying X = XX∗X and X∗ = X∗XX∗,
such that

(1) X∗X,XX∗ ∈ P; and
(2) X∗PX ⊆ P and XPX∗ ⊆ P.

Observe that if A is unital and 1A ∈ P, then Condition (2) gives XX∗ =
X1AX∗ ∈ P and X∗X ∈ P similarly, so we can omit Condition (1) from the
definition in this case.

Proposition 1.1. If P is a semilattice of projections in a C∗-algebra A, then
PI(P) is an inverse semigroup with idempotents P. Also, if S ⊂ A is an inverse
semigroup with E(S) ⊆ P, then S ⊆ PI(P).

Proof. If X,Y ∈ PI(P), then XY is a partial isometry, as X∗X and YY∗

are in P and so commute. Clearly, (XY)∗PXY = Y∗(X∗PX)Y ⊆ P and
(XY)∗XY = Y∗(X∗X)Y is in P, as X∗X ∈ P and Y∗PY ⊆ P. We can ver-
ify that XYP(XY)∗ ⊆ P and XY(XY)∗ ∈ P similarly, so XY ∈ PI(P). If
X ∈ PI(P), so is X∗, and X∗ is an inverse for X. Finally, if X is an idempotent in
PI(P), then it is easy to check that X is a projection and hence X = XX∗ ∈ P. As
a regular semigroup whose idempotents commute, PI(P) is an inverse semigroup.

For S as above, each X ∈ S satisfies XX∗X = X, X∗XX∗ = X∗, conjugates
E(S) into itself, and has both X∗X and XX∗ in E(S). Thus S ⊆ PI(P). ❐

In particular, it follows that if Ψ : S → A is a representation of an inverse
semigroup in a C∗-algebra, then Ψ(S) ⊆ PI(Ψ(E)).

2. AMALGAMS

Before turning to our main theorem, we first point out a related result.

Theorem 2.1. Suppose S = [S1, S2, U] is an amalgam of inverse semigroups with
U a full inverse subsemigroup of both S1 and S2. Then, in the category of complex
algebras,

CS ≅ CS1 ∗CU CS2.
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Example 2.2. The conclusion of Theorem 2.1 is not true without some con-
dition on the amalgam. Let S and T be different copies of the two-element
semilattice; i.e., S = {e,0} with e2 = e and all other products equal to 0, and
T = {f ,0} is similar. Letting U = {0}, we see that the inverse semigroup amal-
gam, S ∗U T , has four elements e, f , ef , and 0 and C(S ∗U T) = C4. We also
have CS = C2, CT = C2 and CU = C. However, the existence of inverse semi-
group homomorphisms from CS and CT into a complex algebra does not force
the images of e and f to commute. Thus, in general, there is no homomorphism
from C(S ∗U T) ≅ C4 to CS ∗CU CT .

Another complicating fact is that the functor S ֏ CS from inverse semi-
groups to complex algebras behaves badly with respect to colimits. The difficulty
is that the multiplicative semigroup of CS need not be an inverse semigroup. The
construction of a complex algebra can be performed on an arbitrary semigroup,
though, and we can use this to prove the result for full amalgams.

Proof of Theorem 2.1. Consider the amalgamated free product, in the category
of semigroups, of inverse semigroups S1 and S2 over the inverse semigroup U ,
which we denote by S1 ⋆U S2. Morphisms in the category of inverse semigroups
are just semigroup morphisms [21, p. 30]. The functor that sends a semigroup M
to CM has a right adjoint given by the forgetful functor (forget everything in CM
except the multiplication). It follows that this functor preserves colimits [24, Dual
of Theorem V.5.1]. Thus the diagram (1.1) does lift to the category of complex
algebras, but from the category of semigroups, not that of inverse semigroups.
That is,

C(S1 ⋆U S2) = CS1 ∗CU CS2.

Finally, [18, Theorem 2] asserts that for U a full inverse subsemigroup of both S1

and S2, then S1 ⋆U S2 is an inverse semigroup. Thus, S1 ⋆U S2 = S1 ∗U S2, so

CS1 ∗CU CS2 = C(S1 ∗U S2),

as required. ❐

Given a full amalgam of inverse semigroups [S1, S2, U, i1, i2], the inclusions
ij : U → Sj induce inclusions Ij : C∗(U) → C∗(Sj). Thus, we have an associated
amalgam of C∗-algebras [C∗(S1), C∗(S2), C∗(U)]. We will always assume that
the inclusions of this amalgam are induced by the inverse semigroup inclusions.

Theorem 2.3. Suppose that [S1, S2, U] is a full amalgam of inverse semigroups.
Then

C∗(S1 ∗U S2) ≅ C
∗(S1)∗C∗(U) C

∗(S2),

and if U has a zero, then

C∗0 (S1 ∗U S2) ≅ C
∗
0 (S1)∗C∗0 (U) C

∗
0 (S2).
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Proof. We show that C∗(S1 ∗U S2) has the universal property of the C∗-
algebraic amalgam C∗(S1) ∗C∗(U) C∗(S2) and so is isomorphic to it. Precisely,
if ij : U → Sj , ψj : Sj → S1 ∗U S2 are the canonical injections, then we use the
lifts Ij : C∗(U)→ C∗(Sj) and Ψj : C∗(Sj) → C∗(S1 ∗U S2).

Let A be a C∗-algebra and suppose that there are ∗-homomorphisms Φj :
C∗(Sj) → A, that agree on C∗(U) (that is, Φ1 ◦ I1 = Φ2 ◦ I2). We will find an
inverse semigroup and homomorphisms from each Sj into that inverse semigroup
that induce Φj .

Let P be the image of E(U) under Φj ◦ Ij . As E(Sj) = Ij(E(U)), it follows
from Proposition 1.1 that Φj(Sj) ⊆ PI(P) for j = 1 and j = 2. Let ϕj : Sj →
PI(P) be the restriction of Φj to Sj . Thus we have the diagram (1.1) in the
category of inverse semigroups, with R = PI(P) and T = S1 ∗U S2.

By the universal property, we have a unique map λ : S1 ∗U S2 → PI(P) that
makes the diagram commute. Lifting λ gives a unique map η from C∗(S1 ∗U S2)
into C∗(PI(P)). The inclusion map from i : PI(P) → A is a representation and
so lifts to a unique map ζ : C∗(PI(P)) → A. Letting Λ = ζ ◦ η, we have a map
from C∗(S1 ∗U S2) into A.

For j = 1,2, we have Λ ◦ Ψj|Sj = ζ|Sj ◦ (λ ◦ψj) = i ◦ϕj = Φj|Sj . Since a
representation of C∗(Sj) is determined by its action on Sj , Λ ◦ Ψj = Φj . That is,
the following diagram commutes:

(2.1)

C∗(S1)

C∗(U) C∗(S1 ∗U S2) A

C∗(S2)

I1

I2

Ψ1

Φ1

Ψ2

Φ2

Λ

To see that Λ is unique, suppose that replacing Λ with µ : C∗(S1∗U S2)→A

in this diagram also makes it commute. Then µ ◦ Ψj and Λ ◦ Ψj agree on Sj ,
for j = 1,2, so µ and Λ agree on a generating set of S1 ∗U S2 and so agree
on S1 ∗U S2. But this implies µ = Λ, as required. Thus, C∗(S1 ∗U S2) has
the universal property for amalgamated free products of C∗-algebras and so is
isomorphic to C∗(S1)∗C∗(U) C∗(S2).

To obtain the result for the contracted algebras, one can either repeat the above
proof for representations that take 0 to 0, or apply the first result and quotient out
on both sides by the ideals associated to the common zero. We outline the latter



Amalgams of Inverse Semigroups and C∗-Algebras 1065

approach. Consider the following commuting square:

(2.2)

C∗0 (S1)

C∗0 (U) C∗0 (S1 ∗U S2)

C∗0 (S2)

I′1

I′2

Ψ
′
1

Ψ
′
2

Here the primed maps are the appropriate lifts of the ij andψi, as above. Adding a
copy of C to each contracted C∗-algebra and extending the primed maps by map-
ping C to C gives the commuting square in diagram (2.1). Given Φ′j : C∗0 (Sj) →
A, we can define Φj : C∗(Sj) → A⊕ C by mapping the copy of C associated to
the zero of S to the copy of C in the codomain algebra. The result above gives
a unique map Λ : C∗(S1 ∗U S2) → A⊕ C, and, identifying C∗(S1 ∗U S2) with
C∗0 (S1∗U S2)⊕C, one can then show that if Λ′ = Λ|C∗0 (S1∗US2), then the range of
Λ
′ is contained in A, and Λ′ is the unique map making the appropriate diagram

based on (2.2) commute. ❐

3. AMALGAMS OF FINITE-DIMENSIONAL C∗-ALGEBRAS

As an application, we use Theorem 2.3 to describe amalgams of finite-dimensional
C∗-algebras, i.e., direct sums of matrix algebras over C, over the diagonal matrices.
These methods easily extend to amalgams of direct sums of matrix algebras over
(discrete) group C∗-algebras.

Given a group G and a natural number n, we define the Brandt inverse semi-
group Bn(G) as the set {(i, g, j) : 1 ≤ i, j ≤ n, g ∈ G} together with 0, where we
define the product of 0 with any element to be 0 and the product of (i, g, j) and
(k,h, l) to be (i, gh, l) if j = k and 0 otherwise. If G is the trivial group, we use
Bn for Bn(G); this is called a combinatorial Brandt inverse semigroup. Notice that
Bn can be identified with the matrix units ofMn = Mn(C), together with the zero
matrix. Further, CBn = Mn⊕C, C0Bn = Mn, and C∗(Bn(G)) = Mn(C∗(G))⊕C.

Given two semigroups S and T , each with a zero 0, the 0-direct union of S
and T is S∗{0}T . If S is the 0-direct union of finitely many combinatorial Brandt
inverse semigroups Bn1 , . . . , Bnk , then C∗0 (S) = Mn1 ⊕· · ·⊕Mnk . Since all finite-
dimensional C∗-algebras are finite direct sums of matrix algebras, we can identify
all finite dimensional C∗-algebras as C∗-algebras of inverse semigroups.

Suppose that P =
⊕r
i=1Mmi and Q =

⊕s
i=1Mni , where

∑

imi =
∑

ini.
Using N for this common sum, we identify CN with a natural abelian subalgebra
of P andQ, namely the diagonal matrices. We can describe P∗CNQ by recognizing
P and Q as C∗-algebras of inverse semigroups as described above. If S is the 0-
direct union of Bm1 , . . . , Bmr , C

∗
0 (S) is P . Similarly, C∗0 (T) isQ for T the 0-direct
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union of Bn1 , . . . , Bns . Moreover, CN = C∗0 (U) for U = E(S) = E(T). Thus, by
Theorem 2.3,

P ∗CN Q = C
∗
0 (S ∗U T).

We apply the results of [16] to describe the maximal subgroups of this amalgam
of inverse semigroups. We need one of the standard Green’s relations for inverse
semigroups: the J-relation on a semigroup is defined by uJv if and only if u and
v generate the same principal two-sided ideal of the semigroup [21, Section 3.2].
The non-zero J-classes of the semigroups S and T correspond to the summands
of P and Q. As S and T have trivial maximal subgroups, the construction of
[16, p. 46] gives a graph of groups with trivial vertex and edge groups (that is, a
graph). This graph has r + s vertices, one for each summand of P and Q, and N
edges, one for each matrix unit in CN . Moreover, the edge associated to a non-zero
idempotent e ∈ U connects the vertices associated to the summands of P and Q
containing e.

Let W1, . . . ,Wp be the components of this graph. For each Wi, let ki be the
number of edges in Wi, and qi be the number of edges left over after removing a
spanning tree from Wi. Each Wi corresponds to a non-zero J-class in S ∗U T , and
the maximal subgroup of that J-class is the free group of rank qi, Fqi . Thus S∗UT
is the 0-direct union of Bk1(Fq1), . . . , Bkp(Fqp). For more details, see Example 3 of
[16] and the subsequent discussion in [16]. Summarizing, we have the following
result.

Theorem 3.1. If P =
⊕r
i=1Mmi andQ =

⊕s
i=1Mni , where

∑

imi =
∑

ini =
N, then

P ∗CN Q ≅

p
⊕

i=1

Mki(C
∗(Fqi)),

where p, k1, . . . , kp, q1, . . . , qp are obtained from the graph above.

For example, if P = M3 ⊕M3 ⊕M2 and Q = M2 ⊕M1 ⊕M2 ⊕M3, then the
inverse semigroups are B3 ∗{0} B3 ∗{0} B2 and B2 ∗{0} B1 ∗{0} B2 ∗{0} B3. The
resulting graph is

and so we have two components, with k1 = 3, q1 = 1, k2 = 5, and q2 = 2. Thus,
P ∗C8 Q ≅ M3(C∗(Z))⊕M5(C∗(F2)).

Of course, Theorem 3.1 immediately gives the K-theory of such amalgams,
first obtained by McClanahan in [26]. From the stability of K-groups and the
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short exact sequence on page 83 of [10], it follows that K0(Mk(C∗(Fq))) = Z and
K1(Mk(C∗(Fq))) = Zq. Hence we obtain

K0(P ∗CN Q) = Z
p, K1(P ∗CN Q) = Z

q,

where q = q1 + · · · + qp. Haataja has shown (see [15, Section 4.3]) that this
agrees with McClanahan’s procedure for the computation of the K-groups [26,
Proposition 7.1].

Of course, these methods also apply to amalgams of matrix algebras over
group C∗-algebras, as these are the C∗-algebras of inverse semigroups of the form
Bn(G), for a fixed group G. We leave the details to the interested reader.

4. SOME SPECIAL AMALGAMS

In this section, we look at the structure of special amalgams and describe the uni-
versal group of an inverse semigroup with zero, which is a suitable generalization
of the maximal group homomorphic image. This enables us, in the next section,
to describe certain special amalgams of C∗-algebras.

A special amalgam of inverse monoids is an amalgam [S, S,U] of two copies
of S over a common inverse submonoid U . More precisely, it is an amalgam
[S1, S2, U, i1, i2] together with an isomorphism θ : S1 → S2 such that i2 = θ ◦ i1.
If G is a group, then the amalgamated free product G ∗U G is referred to as a
“double” of the group G. The terminology “special amalgam” comes from univer-
sal algebra, where this concept has been well studied.

We need more of the Green’s relations: aH b if and only if aa−1 = bb−1

(i.e., aRb) and a−1a = b−1b (i.e., aLb). For a full treatment of these relations,
see, for example, [21, Section 3.2].

Lemma 4.1. Let U be a full inverse submonoid of an inverse monoid S and
consider the special amalgam [S, S,U, i1, i2] with associated isomorphism θ : S → S.
Then aH θ(a) and abH θ(a)θ(b)H aθ(b)H θ(a)b in S∗U S for all a,b ∈
S.

Proof. Since e is identified with θ(e) in S ∗U S for all idempotents e ∈ E(S),
it follows that aa−1 = θ(a)θ(a)−1 and a−1a = θ(a)−1θ(a) in S ∗U S and
hence aH θ(a) in S ∗U S. It follows that abH θ(a)θ(b) for all a,b ∈ S.
Also, abRabb−1a−1, which is identified with aθ(b)θ(b−1)a−1 in S ∗U S, so
aθ(b)Rab. Similarly, aθ(b)Lab in S ∗U S, so abH aθ(b). The proof that
abH θ(a)b is similar. ❐

A subset U of a semigroup S is called a unitary subset of S if s ∈ U whenever
either us ∈ U or su ∈ U for some u ∈ U . An inverse semigroup S is called
E-unitary if E(S) is a unitary subsemigroup of S; equivalently, if a ≥ e for some
a ∈ S, e ∈ E(S), then a ∈ E(S). The inverse semigroup S is said to be F-inverse if
each σ -class has a maximum element in the natural partial order: every F-inverse
semigroup is E-unitary. If S has a zero, these concepts can be modified to yield
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the concept of a 0-E-unitary inverse semigroup (also referred to as an E∗-inverse
semigroup)—namely, E(S) − {0} is a unitary subset—and the concept of a 0-
F-inverse semigroup (also referred to as an F∗-inverse semigroup)—namely, each
non-zero element of S is below a unique maximal element in the natural partial
order.

For an inverse semigroup S with zero, consider pairs (G,ϕ), where G is a
group and ϕ : S → G0 is a 0-morphism—that is, ϕ−1(0) = {0} and ϕ(ab) =
ϕ(a)ϕ(b) whenever ab , 0. (We use G0 for G∪ {0} with the obvious multipli-
cation, and for a group morphism α : G → H, we use α0 for the 0-morphism from
G0 to H0 that sends 0 to 0 and agrees with α on G.) There is a largest group, the
universal group G(S) of S, with this property; that is, (G(S),ϕ) has the property
that if τ : S → H0 is a 0-morphism, then there is a group morphism β : G(S)→ H
so that β0 ◦ϕ = τ. If S0 is S with a zero adjoined, then G(S0) coincides with
S/σ , the maximal group homomorphic image of S.

Let ϕ : S → G0 be a 0-morphism from S to G0 for some group G, as in

the definition above. Following [25], consider Ŝ, the inverse semigroup given by
{(s, g) : g = ϕ(s) if s ≠ 0} ∪ {(0, g) : g ∈ G} with the obvious multiplication.

The maximal group image of Ŝ is G, with the map given by projection onto the

second element of each ordered pair. Moreover, S and Ŝ have the same semilattice

of idempotents, and S is the Rees quotient S ≅ Ŝ/I, where I is the ideal I =
{(0, g) : g ∈ G}.

Proposition 4.2. For [S, T ,U] an amalgam of inverse monoids with a common
zero in U , G(S ∗U T) = G(S)∗G(U) G(T).

The analogous result for the maximal group images, i.e., that

(4.1) (S ∗U T)/σ = (S/σ)∗U/σ (T/σ),

is well known, and the proof strategy below is a natural adaptation of the proof of
(4.1). In fact, since G(S0) = S/σ , equation (4.1) follows from Proposition 4.2.

Proof. Let A be the amalgam of [S, T ,U] in the category of inverse monoids
and let K be the amalgam of [G(S),G(T),G(U)] in the category of groups. We
need to construct the 0-morphism that is the dotted arrow in the following dia-
gram:

G(S)0 K0

S A

G(U)0 G(T)0

U T
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Observe that the front square involves inverse semigroup morphisms, the back
square has group morphisms (with zeros added) and the diagonal arrows are 0-
morphisms.

We have two 0-morphisms: α : S → K0, the composition of the maps S →
G(S)0 and G(S)0 → K0, and β : T → K0, defined similarly. We define a map
γ : A → K0 by sending 0 to 0 and sending a non-zero word s1t1s2 . . . sntn, with
si ∈ S, ti ∈ T , to

α(s1)β(t1)α(s2) . . . α(sn)β(tn).

Notice that since the zero is common to both S and T , if s1t1 . . . tn , 0, then no
subword can equal zero, and so γ(A \ {0}) ⊆ K.

To show that γ is well defined, we show that γ respects the equations that
define an inverse semigroup, as given on page 1061. It is easy to see that if v
and w are non-zero words in the elements of S and T with vw non-zero, then
γ(vw) = γ(v)γ(w). So γ respects the relations that impose associativity. Since
α and β agree on U , the image under γ of a word does not depend on how we
regard an element of U as in either S or T .

If w is a word in the non-zero elements of S and T , let w−1 be the word in
the inverse elements, written in reverse order. This is clearly an involution on such
words. It is easy to see that, for w as above, ww−1 = s1t1 . . . sntnt−1

n s
−1
n . . . s

−1
1 .

Using β(tnt−1
n ) = 1K , the identity of K, and so on, we obtain γ(ww−1) = 1K .

Thus γ respects the equations that define the inverse semigroup S ∗U T and so is
a well-defined map.

We have already observed that γ(vw) = γ(v)γ(w) for words v and w with
vw , 0, so γ is a 0-morphism. By the construction of γ, the two squares—
one involving S, A, G(S)0, and K0, and the other involving T , A, G(T)0, and
K0—each commute.

We will show that (K, γ) is the universal group for A. Suppose that ψ : A →
H0 is a 0-morphism, where H is some group. We have 0-morphisms from S to
H0, and from T to H0, given by composition of ψ with the maps in the pushout
diagram, and these maps agree on U . By the universal properties of G(S) and
G(T), we have group morphisms G(S) → H and G(T) → H that agree on G(U).
By the universal property of K, these maps give a map τ : K → H. Using the
commuting triangles and squares, τ0 ◦ γ agrees with ψ when restricted to either
S or T . Since A is the amalgam of S and T , it follows that ψ = τ0 ◦ γ.

Suppose that σ : K → H is another 0-morphism satisfying σ 0 ◦ γ = ψ =

τ0 ◦ γ. Since σ and τ agree on γ(A) in K0, they agree on the images of S and
T under γ composed with the natural inclusions. By the universal properties of
G(S) and G(T), σ and τ agree on the images of G(S) and G(T) in K. But these
images determine maps on K, and so σ = τ. ❐

The following fact was proved by Bennett.

Proposition 4.3 ([3, Corollary 9]). Let U be a full unitary inverse submonoid
of the inverse monoid S. Then S ∗U S is E-unitary if and only if S is E-unitary.
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Ifϕ : S → G(S)0 above also satisfiesϕ−1(1G) = E(S)−{0S}, then we say that
S is strongly E∗-unitary. Strongly E∗-unitary inverse semigroups are precisely Rees
quotients of E-unitary inverse semigroups; see Section 3 of [25]. Such semigroups
are E∗-unitary, but there are E∗-unitary inverse semigroups that are not strongly
E∗-unitary [6, p. 22]. We refer the reader to Lawson’s book [21] and his paper
[23] for more information about these concepts and the important role that they
play in the theory of inverse semigroups.

We use Bennett’s result to establish the following fact about special amalgams
of strongly E∗-unitary inverse semigroups.

Lemma 4.4. Let S be a strongly E∗-unitary inverse semigroup with semilattice
E = E(S). Then S ∗E S is strongly E∗-unitary.

Proof. With Ŝ as above, it follows that Ŝ is an E-unitary cover of S (i.e., it is
E-unitary, and the natural map that sends (s, g) to s if s ≠ 0 and (0, g) to 0 is an

idempotent-separating map from Ŝ onto S). From Proposition 4.3, it follows that

Ŝ ∗E Ŝ is E-unitary.
Let θ : S → S be the isomorphism in the construction of the special amalgam

S ∗E S. Every non-zero element of S ∗E S may be expressed (not uniquely) in
the form s1θ(t1)s2θ(t2) . . . snθ(tn) for some non-zero elements si, ti ∈ S. From
Lemma 4.1 it follows that s1θ(t1)s2θ(t2) . . . snθ(tn) ≠ 0 in S ∗E S if and only if
s1t1s2t2 . . . sntn ≠ 0 in S. Also, any sequence of elementary transitions that trans-
forms a non-zero element s1t1 . . . sntn to an equivalent element s′1t

′
1 . . . s

′
mt

′
m in

S∗E S may be replaced by an obvious sequence that transforms the corresponding

elements in Ŝ ∗E Ŝ. We use J for the set of elements in Ŝ ∗E Ŝ of the form

(4.2) (s1,ϕ(s1))(θ(t1),ϕ(θ(t1))) . . . (sn,ϕ(sn))(θ(tn),ϕ(θ(tn))),

where s1t1 . . . sntn = 0 in S. Clearly J is an ideal of Ŝ∗E Ŝ. Consider the map that

projects an element (4.2) of Ŝ ∗E Ŝ onto its first component s1θ(t1) . . . snθ(tn)

if it is not in J and to 0 if it is in J. By the observations above, this sends Ŝ ∗E Ŝ

onto S ∗E S, and S ∗E S ≅ (Ŝ ∗E Ŝ)/J. Since Ŝ ∗E Ŝ is E-unitary, it follows that
S ∗E S is strongly E∗-unitary [25]. ❐

5. EXAMPLES

We now use our main result, Theorem 2.3, and the results of the previous section
to describe the special amalgams of various C∗-algebras.

The Toeplitz C∗-algebra. The Toeplitz C∗-algebra, which we denote by
T , is the C∗-subalgebra of B(ℓ2) generated by the unilateral shift S; see, for
example, [11, Section V.1]. It can be identified with C∗-algebra of the bicyclic
monoid B, that is, the inverse monoid generated by an element a subject to the
relation aa−1 = 1, with the semigroup homomorphism B → T determined by
a ֏ S. The semilattice of idempotents E = E(B) is a chain order-isomorphic to
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the negative integers under the usual ordering. For each element t = a−iaj ∈ B,
there are only finitely many elements of s ∈ B such that t ≤ s. From [21, Theorem
5.4.4] it is easy to see that the non-trivial unitary full inverse submonoids of B are
E(B) and submonoids of the form B(n) = {1} ∪ {a−iaj : i+ j ≡ 0 mod n} for
n ≥ 2. The submonoid E(B) has infinitely many D-classes, while the submonoid
B(n) has n D-classes.

We write D for C∗(E), the subalgebra generated by the diagonal matrices in
C∗(B). It is isomorphic to the algebra of convergent sequences of complex num-
bers. Further, C∗(B(n)) can be described in several ways. Perhaps the simplest is
the C∗-subalgebra of T generated by Sn and the n− 1 minimal projections onto
the first n− 1 basis vectors in ℓ2.

If E ⊂ T is a C∗-subalgebra of T = C∗(B) generated by a full submonoid U
of B, then by Theorem 2.3,

T ∗E T = C∗(B ∗U B).

To describe this C∗-algebra, we study the inverse semigroup structure of B ∗U B.
By Proposition 4.3, B ∗U B is E-unitary. For each full inverse submonoid U of
B, the semigroup B ∗U B is a Reilly semigroup of the form B(G,α), where G is
the maximal subgroup of B ∗U B containing 1 and α is some endomorphism of
G. The endomorphism α is injective since B ∗U B is E-unitary. From the results
of [16], G is F∞, the free group of infinite rank, if U = E(B), and is Fn−1, the
free group of rank n − 1, if U = B(n). To see this, note that the graph has two
vertices (as each copy of B has one D-class) and either infinitely many edges (if
U = E) or n edges (if U = B(n)); adapting the discussion before Theorem 3.1 to
this context gives F∞ or Fn−1, respectively.

See [32, Section II.6] for details of structure of B(G,α). Briefly, elements of
B ∗U B may be identified with triples (i, g, j), where i, j are positive integers and
g ∈ G, with multiplication

(i, g, j)(k,h, l) =

{

(i+ k− j,αk−j(g)h, l) if k ≥ j,

(i, gαj−k(h), l+ j − k) if j ≥ k.

An element (i, g, j) of B ∗U B can only be less than or equal to elements of the
form (i − k,h, j − k), where h ∈ G and k ∈ N satisfy i − k, j − k ≥ 0 and
αk(h) = g. Since α is injective, there is at most one such h. Thus each element
of B∗U B has only finitely many elements above it in the natural partial order since
it is an E-unitary inverse semigroup. We note that B ∗U B is F-inverse; that is,
each element has a unique maximal element above it in the natural partial order.
To see this, suppose that (i, g, j) ≤ (i − k,h, j − k), (i − l, h′, j − l), where
l < k. Then αk(h) = αl(h′). By the injectivity of α, αk−l(h) = h′ and so
(i− l, h′, j − l) ≤ (i− k,h, j − k). It follows that B ∗U B is F-inverse.

By results of Khoshkam and Skandalis [20] (cf. [35]), C∗(B ∗U B) is strongly
Moria equivalent to C∗(E) ×µ H, a crossed product of the abelian C∗-algebra
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C∗(E) by H, the maximal group homomorphic image of B ∗U B. By Proposition
4.2 (or, more precisely, by equation (4.1)), if U = E(B), then G(E(B)) = {0} and
H = Z∗{0} Z = F2, while if U = B(n), then G(B(n)) is Z, which we can identify
as nZ inside Z ≅ G(B), and so H = Z∗nZ Z = 〈a,b | an = bn〉. In each case, H
is also a semidirect product of G by Z, from [28].

To describe the action µ of H on C∗(E), we start with the Munn representa-
tion; that is, s ∈ S maps the set {e ∈ E : e ≤ s∗s} onto the set {e ∈ E : e ≤ ss∗},
via e ֏ ses∗.

If Ê is the spectrum of C∗(E), then C(Ê), the continuous functions on Ê, is
isomorphic to C∗(E). Moreover, Ê can be identified with the multiplicative linear
functionals on E with the relative weak-∗ topology. There is a dual action of S

on Ê, where s ∈ S maps {x ∈ Ê : x(s∗s) = 1} onto {x ∈ Ê : x(ss∗) = 1} via
x ֏ s.x, where s.x(e) = x(s∗es) for all e ∈ E.

This lifts to an action, also called µ, of S/σ on Ê, given by g.x = s.x for
any s ∈ S with σ(s) = g and x(s∗s) = 1. To see that this is well defined, note
that if f ∈ E and x(f) = 1, then s.x = (sf ).x. By [21, Lemma 1.4.12], for
s, t ∈ S with σ(s) = σ(t), f = s∗st∗t satisfies sf = tf , and so s.x = (sf ).x =
(tf ).x = t.x.

We summarize this discussion in the following theorem.

Theorem 5.1. If D is the diagonal matrices in T and E = C∗(B(n)), then
T ∗D T and T ∗E T are strongly Morita equivalent to, respectively,

A×µ F2, A×µ 〈a,b | a
n = bn〉,

where µ is the action described above and A is the algebra of convergent sequences of
complex numbers.

Toeplitz graph C∗-algebras. Inverse semigroups associated to graphs have
been defined independently several times: [1], [22, Section 8.1], and [30]. We
think of a (directed) graph Γ as having a set of vertices, Γ 0, a set of edges, Γ 1, and
range and source functions, r , s : Γ 1 → Γ

0, where the edge e goes from s(e) to
r(e). Define I(Γ), the inverse semigroup associated to Γ , as the inverse semigroup
generated by Γ 0∪ Γ 1 with a zero z ∉ Γ 0∪ Γ 1, subject to certain relations. Here, we
use ∗ for the inverse operation. If we extend the source and range maps of Γ 1 to
{e∗ : e ∈ Γ 1} by s(e∗) = r(e) and r(e∗) = s(e) and to Γ 0 by s(v) = r(v) = v,
then these relations can be conveniently summarized as

(1) s(e)e = er(s) = e for all e ∈ Γ 1 ∪ {e∗ : e ∈ Γ 1};
(2) ab = z if a,b ∈ Γ 0 ∪ Γ 1 ∪ {e∗ : e ∈ Γ 1} with r(a) , s(b), and
(3) a∗b = z if a,b ∈ Γ 1 and a , b;
(4) b∗b = r(b) if b ∈ Γ 1.

Define a path in Γ to be either a vertex, v, or a finite sequence of edges α =

e1e2 . . . en with r(ei) = s(ei+1), 1 ≤ i < n. For such a path α, we use α∗ for
e∗ne

∗
n−1 . . . e

∗
1 . Extending s and r to paths by s(α) = s(e1) and r(α) = r(en),
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there is a natural composition of paths: the product of α and β is αβ if r(α) =
s(β) and is z otherwise.

Relations (1) and (2) show that any word in Γ 0 ∪ Γ 1 must be a path and any
word in Γ 0 ∪ {e∗ : e ∈ Γ 1} is p∗, where p is a path. Using relation (3), it follows
that each non-zero element of I(Γ) has the form pq∗, where p and q are paths
with r(p) = r(q); further, the product of pq∗ and rs∗ is non-zero exactly when
either q = rt for a path t or r = qt for a path t. The product is either (pt)s∗

or p(st)∗, respectively. The idempotents of I(Γ) are the elements of the form
pp∗ for p a path. The natural order in I(Γ) is given by pq∗ ≤ rs∗ exactly when
p = rt and q = st for a path t.

It is worth observing that if Γ is a vertex with a single edge, then I(Γ) is the
bicyclic monoid adjoin a (removable) zero, while if Γ is a vertex with n edges,
then I(Γ) is the polycyclic monoid—that is, the monoid generated by n elements
a1, a2, . . . , an subject to the relations aia

−1
i = 1, aia

−1
j = 0 for i ≠ j. These

monoids were introduced by Nivat and Perrot [29] in the context of formal lan-
guage theory; they were rediscovered by Renault [33] and are often referred to as
Cuntz semigroups in the operator algebra literature.

Each graph inverse semigroup is F∗-inverse and strongly E∗-unitary with
universal group the free group on the edges of Γ , FΓ 1 [23]. As I(Γ) is strongly
E∗-unitary, [27] shows C∗0 (I(Γ)) can be described as a partial crossed product of
C∗0 (E(I(Γ))) by FΓ 1 .

This associated contracted C∗-algebra is not the C∗-algebra of the graph, but
rather the Toeplitz C∗-algebra of the graph, as defined in [14]. (Of course, the
C∗-algebra of the graph is a proper quotient of C∗0 (I(Γ)).) To see this, first let
π : I(Γ) → C∗0 (I(Γ)) be the canonical injection of I(Γ) in its C∗-algebra and de-
fine, for v ∈ Γ 0, Pv = π(v) and, for e ∈ Γ 1, Se = π(e). Then the relations above
imply that ({Pv : v ∈ Γ 0}, {Se : e ∈ Γ 1}) form a Toeplitz-Cuntz-Krieger Γ -family
and moreover, Pv , 0 for each v and, if s−1(v) is finite, Pv >

∑

s(e)=v Ses
∗
e .

Thus, by [14, Corollary 4.2], C∗0 (I(G)) = C∗({Pv , Se}) is the Toeplitz C∗-
algebra of Γ .

The C∗-subalgebra of C∗0 (I(Γ)) generated by the idempotents, call it D, is
isomorphic to C0(X), the continuous functions vanishing at infinity on a suitable
locally compact, totally disconnected, Hausdorff space X. The simplest way to
describe X is as the space of all finite or infinite paths on Γ , with the following
topology. A finite path α is closed and open if s−1(r(α)) is finite and otherwise
has a neighborhood basis, Dα,F , indexed by finite subsets F ⊂ s−1(r(α)). Each
Dα,F consists of paths αβ, where β is a finite or infinite path with s(β) = r(α)
and the first edge of β is not in F . An infinite path α has a neighborhood base
indexed by natural numbers n, Dα,n consisting of paths β whose first n edges
agree with α and whose other edges can be any edges consistent with β being a
path.

Invoking Theorem 2.3,

C∗0 (I(Γ))∗D C
∗
0 (I(Γ)) ≅ C

∗
0 (I(Γ)∗E I(Γ)).
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By Lemma 4.4, I(Γ) ∗E I(Γ) is strongly E∗-unitary, and by Proposition 4.2, its
universal group is FΓ 1 ∗ FΓ 1 . Applying Milan’s Theorem [27, Theorem 3.3.3]
again, we have the following result.

Theorem 5.2. Let Γ be a directed graph. If D is the diagonal subalgebra of
C∗(I(Γ)), then

C∗0 (I(Γ))∗D C
∗
0 (I(Γ)) ≅ D×µ H,

where H = FΓ 1 ∗ FΓ 1 and µ is the partial action of H on D lifted from the Munn
representation.

In particular, this result applies to the bicyclic monoid, so we have two de-
scriptions of the amalgam of the Toeplitz algebra with itself, either as a crossed
product (up to strong Morita equivalence) or as a partial crossed product (up to
∗-isomorphism). The theorem also applies to the Cuntz-Toeplitz algebra, when
Γ is a vertex with n loops, describing the amalgam of this algebra with itself as a
partial crossed product by F2n, the free group of rank 2n.
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