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A frame deformation estimation algorithm is investigated for the purpose of real-time control and health monitoring of flexible
lightweight aerospace structures. The inverse finite element method (iFEM) for beam deformation estimation was recently
proposed by Gherlone and his collaborators. The methodology uses a least squares principle involving section strains of
Timoshenko theory for stretching, torsion, bending, and transverse shearing. The proposed methodology is based on stain-
displacement relations only, without invoking force equilibrium. Thus, the displacement fields can be reconstructed without the
knowledge of structural mode shapes, material properties, and applied loading. In this paper, the number of the locations where
the section strains are evaluated in the iFEM is discussed firstly, and the algorithm is subsequently investigated through a simple
supplied beam and an experimental aluminum wing-like frame model in the loading case of end-node force. The estimation
results from the iFEM are compared with reference displacements from optical measurement and computational analysis, and
the accuracy of the algorithm estimation is quantified by the root-mean-square error and percentage difference error.

1. Introduction

Aircraft flexible wings with embedded conformal antennas
and large frame structures that carry antennas require accu-
rate real-time deformation estimation to provide feedback
for their actuation and control systems [1-3]. Using the mea-
sured strain to reconstruct the shape of the structure is a key
technology in the accurate real-time deformation estimation,
which has been studied by many researchers.

The computation of the displacement field of the
deformed structure is commonly performed on the basis of
strain data measured in real time by a network of strain
gauges [4-6]. For example, fiber Bragg grating (FBG) sensors
have been extensively researched for deformation estimation
due to their lightness, accuracy, and easy embedment. The
strategies that reconstruct the deformed shape displacement
field of the structure with in situ strain data can be divided
into two kinds. One of the two kinds trains the mapping rela-
tion between the displacement field and the measured strain
by model learning algorithms, for example, neural network
model and fuzzy network algorithm [7, 8]. When the training

system has enough measured strains and displacement field
data of the structure, a certain relation matrix can be deter-
mined and the stable relationship between the measured
strain and the displacement field can be obtained. But the
strategy requires a large number of training data, and the
mapping relation is easy to fail when the actual loading is
beyond the range of the training cases.

The other establishes the mapping relation between the
displacement field and in situ strain data without the model
learning. In the literature [9-11], the global or piecewise con-
tinuous basis function methods were employed to fit the
surface-measured strain into the structure strain field, and
then, the structure deformation displacement was obtained
from the strain-displacement relationship. These methods
are easy to implement, but the reconstruction accuracy of
deformation estimation depends on the appropriate selection
of basis function and weight coefficients. Mode shapes have
been used as basis function in [12, 13]. The deformation dis-
placements are reconstructed from measured strains by using
the modal transformation method. However, there exist the
following disadvantages in this method. (1) The detailed
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material elasticity and inertial parameters are needed to
precisely construct mode shapes. (2) The accuracy of
deformation reconstruction is severely limited to the
modeling precision of the structure, and it is quite difficult
to precisely model the complex structure. Maincon [14]
developed a finite element-based methodology involving an
inverse interpolation formulation that employs the surface-
measured strain to determine the loads and structural
response of aerospace vehicles, while this algorithm needs
an appropriate quality function to adapt the different
loading cases and this function is constructed based on a
mass of computer simulation and experimental statistics.

Based on the Euler-Bernoulli beam equation, Jute et al.
evaluated the deflection of beam by the integration of dis-
cretely measured strains directly [15]. The algorithm applied
the classical beam equation and piecewise continuous poly-
nomials to approximate beam curvature through integration.
Derkevorkian et al. [16] compared the algorithm with the
modal transformation method and demonstrated the
additional benefits of the algorithm to achieve a robust
method for monitoring ultralightweight flying wings or
next-generation commercial airplanes. Though this one-
dimensional scheme has displayed high accuracy in predict-
ing deflection, it fails to estimate the element deformation
under multidimensional complex loads.

Tessler and Spangler [17] proposed the inverse finite
methodology (iFEM), which can be used to reconstruct the
displacement field of shear-deformable structures, not only
beam structure but also plate and shell structures. The main
idea is reconstructing a three-dimensional displacement field
of beam structure from the surface-measured strains accord-
ing to a least squares approach. Due to the fact that only the
displacement-strain relationship is used, the deformation
reconstruction can be accomplished by the methodology
without the prior knowledge of loads, materials, and inertial
and damping properties. To model arbitrary plate and shell
structures [18, 19], Tessler and his partners developed the
iFEM algorithm using the first-order shear deformation the-
ory and a three-node inverse shell element. FBG sensors were
applied to measure the surface strains on the slender beams,
and then, the deformed displacement was reconstructed by
using an iFEM shell model.

The beam-deformed displacement and cross-sectional
torsion were reconstructed by Gherlone et al. who employed
the inverse finite element formulation to achieve high recon-
struction accuracy of deformed displacement [20-21]. The
authors first used the Timoshenko beam theory to model
the beam kinematic accurately, then used the C° or C!
inverse frame elements and least squares formulation to
establish the relationship between the measured strain and
the arbitrary node displacement field of the beam element
with no prior knowledge of the finite element model and
loads. The reconstruction equation is nonsingular when the
boundary conditions are applied; that is, the status of one
end node of the beam element must be known. As the dis-
placement field of the beam element in iFEM is constructed
based on an isotropic straight beam structure, whose cross
section is invariable along the whole beam, the deformation
of the tapered beam cannot be estimated. Meanwhile, in view
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FIGURE 1: Beam geometry and kinematic variables.

of different load cases, the authors discussed different types
of shape functions that are used to interpolate the kine-
matic variables in the beam element; then, the number of
surface strain measurements and the deformation recon-
struction equation are confirmed. Unfortunately, the mini-
mum number of locations where the section strains are
evaluated, which is critical for obtaining a correct solution
to the algorithm, is not discussed clearly in different load
cases. If the minimum number of the locations where the
section strains are evaluated is inappropriately set, the solu-
tion will be nonunique; that is, the reconstructed displace-
ment may be incorrect.

The contribution of this paper is twofold. (i) The rela-
tionship between the loading case and the number of the sec-
tion strain locations is discussed in detail, and the following
conclusions are verified; on the one hand, the minimum
number of locations should be 2 in the loading case of end-
node forces; on the other hand, the minimum number should
be 3 under the uniform distributed loading. (ii) In order to
examine the minimum number which is 2, estimation studies
are carried on a beam structure and a wing-like three-
dimensional frame structure, in the loading case of end-
node force. Six fiber optic strain sensors are placed at two
nodes of each beam to capture in situ strain dates. To assess
the estimation error of the iFEM algorithm, the RMS and dif-
ference percent parameters are employed.

2. iFEM Algorithms for Beam Estimation

A beam deflection estimation algorithm was developed by
Gherlone and his collaborators [20]. In the algorithm, the
Timoshenko beam theory is first used to analyze the
expression of the displacement field in a straight beam
element (Figure 1).

where u,, v,, and w, are the point displacements along the x,
v, and z axes, respectively. u(x), v(x),and w(x) denote the
displacements at y =z=0; 0,(x), 0,(x), and 0,(x) are the
rotations about the three coordinate axes. The six kinematic
variables in the middle axes can be grouped in vector form
as follows:

u= {u, v, w,0,,0,, GZ}T. (2)
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The arbitrary section strains e(u) = [e,, e,, €3, &, €5, €]
can be obtained by (1).

(%) = u,(x),

€ (x) = Gy,x(x >

€3 (x) = Gz,x(x)’

1) = w,(x) + ,(3) ©
e5(x) = vy (x) = 0,(x),

€ (x) = ex,x(x)

The six kinematic variables u can be interpolated by the
right shape functions

u=N(x)u’, (4)

where N(x)andu® denote the shape function and nodal
degrees of freedom, respectively. Substituting (4) into (3)
gives arbitrary section strains in terms of the nodal degrees
of freedom as follows:

e(u) = B(x)u’, (5)

where the matrix B(x) = [B,(x), B,(x), ..., B¢(x)] contains
the derivatives of the shape functions N(x). Once the section
strains e(u) are obtained, the nodal displacement u® is
determined; then, the kinematic variables u can be acquired
by (4). However, the section strains e(u) are derived from
the kinematic variables u theoretically, rather than the strain
measurements. So, iFEM uses in situ section strains ef
computed from the measured strains to replace e(u) when
the least squares error function @(u) reaches the minimum.
()= fle(w) ~ |, & =[5 e e el (6)

In view of the effect of the axial stretching, bending,
twisting, and transverse shearing, the improved least
squares error functional @°(u) is obtained by the dot product
of the weighting coefficient vector W and the original vector

@(u) = {og}.

I¢ I¢ I¢
W= ol (), w8 (52 bt (2 ]

where wg (k=1,2,...,6) denote dimensionless weighting
coefficients whose initial values are identically set as 1; A°,
I)e, and If, and I; are, respectively, the cross-sectional area,
second moments of the area according to the y- and z-axes,
and polar moment of the area of the beam element. L is the
length of the beam element; x;(0 < x; < L) and n are, respec-
tively, the axial coordinate of the locations where the section
strains are evaluated and the number of locations, that is, the
axial coordinate of sections where section strains are distrib-
uted in, and the number of sections.

FIGURE 2: Location and coordinates of a strain gauge placed on the
beam external surface.

For a straight beam member of constant circle cross

section, the in situ section strains at x=x; e°(x;)=

(€5 (x;), €5(x;)5 -, €(x;)] T, could be derived from the mea-

sured strains of the beam surface with appropriate strain-
tensor transformations from the (6,x,7) to (xy,xy,x,)
coordinates [22].

& (x;,0, B) = €5 (x;) (c2 - vsé) +é5(x;) (cf; - vsé)ng
+é5(x;) (cf; - vsf;) coR + €} (x;)cgspca (8)
—e5(x;)cpsps + €5 (x;)cpspR,
with ¢g = cos B, 53 =sin B, ¢y = cos 6, and sy = sin 6.
In (8), v is the Poisson ratio, € (x;,6, 8) is the in situ
strains that are obtained from strain sensors. R denotes the
radius of the beam cross section (Figure 2).

Substituting (5) into (7) results in the following quadratic
form:

1
@°(u) = E(ue)Tkeue — (u)TKE + ¢ (9)
Herein, c® is a constant, and k® and f° are indicated as
follows:

6 n

e e e L
k¢ = Z wiky, ki = ZZ[B}Z(xi)Bk(xi)]’
k=1

i=1
. . (10)

L T
£ = Z wifo  fr= ;Z [Bk (xi)ei(xi)] .
k=1 i=1
Finally, the relationship between the deformation and in
situ section strains, shown in (11), can be confirmed when
the minimization of functional ¢®(u) is performed.

Ku® = f°. (11)

Once the appropriate shape functions and the problem-
dependent displacement boundary conditions (e.g., setting
the displacement of one end point to zero, which means that
one of end nodes of the beam is fixed) are given, u® can be
derived from a nonsingular system, and the vector f°
depends on the measured strain values that change during



F1GURE 3: Beam section forces and moments.

deformation. Once the nodal degrees of freedom u® are con-
firmed, the displacements and rotations of every node along
the centroid axis of the beam element are obtained by (4)
and the deformed shape of the whole beam can be recon-
structed by (1).

3. Minimum Number of the Section Strain
Location Selection

Although the displacement shape function and the number
of surface strain measurements in different loading cases
have been discussed in [20, 21], n, the number of the sections
where the section strains are distributed in, is not shown
clearly. In (11), once the problem-dependent displacement
boundary conditions are determined, the nonsingularity
of the equation will depend on the selection of n. In our
investigation, it is found that n can be determined by a
specific loading case. More specifically, the orders of the
section forces and the moments can be obtained by the
loading case, which determines the order of the section
strains. With the value of the section strain order, n is
determined immediately.

With the equilibrium equations (12), the section forces
(N, Qy, and Q,) and moments (M,, M, and M,) can be
obtained by the load concentrations g,(x), g,(x), and q,(x)
along the x, y, and z directions (Figure 3).

Nx + qx(x) = 0’

Qy,x + qy (X) = 0’

Qz,x + qz (x) = O’
Mx,x =0, (12)

M, -Q,=0,

_ Qy =0

The relationship between section forces and moments
and the section strains e; (i=1,2,...,6) can be interpreted
as the following constitutive equations:

N=Ae,
Mx = ]xeG’
Qy = Gyes, (13)
M, =Dje,,
Qz = Gze4’

M, =D,e;.
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where A, = EA is the axial rigidity; G, = k;GA and G, = k2GA
are the shear rigidities, with kj and k denoting the shear cor-
rection factors; and J, = GI, and D, = EI, and D, = EI, are,
respectively, the torsional rigidity and the bending rigidi-
ties. For the uniform section beam element, parameters
mentioned above are constant. Then, the order of the sec-
tion strains e; will be identical to that of the section forces
and moments.

Substituting (13) into (12) gives the relationship between
the section strains and the loads as follows:

N _Ja
'TA, A,

_My_de jf -q,(x))dxdx
K D_y_ b, D,
e_%znydx J J(=q,(x))dxdx
"D, D, D, 19
Q. _ J-ax)d
4_GZ z ’
L _Q_ [(-q,)dx
TG, G, )

M 0d.
e6:]—x:j]x:c1.

In most cases, the load in the x direction is zero, that is,
q,(x) = 0; then,

_ J(=q,(x))dx _ | 0dx
A A

X X

e =c,. (15)

The section strains e, and e, are constant in (14) and
(15), and the order of the residual section strains, e,, e;, e,,
and es, will be discussed as the following two loading cases.

Consider a beam element loaded by the end-node forces,
q,(x) and q,(x) are zero along the x-axis. Then, e,, e;, e,
and e; are determined by (14).

jj —q,(x))dxdx fdexdx Cax+by,
D, D,
x))dxdx 0dxd
e = 1] 4,) -1 xx=azx+bz,
D, D, (16)
16
. :f( q,(x))dx dex_a
! G, G, 7
—-q,(x 0d
ot Jode
G, G,
where a,,a,,a;,a,, b;,andb, are unknown constant
parameters.

As in (15), the highest order of the section strains e(u) is
linear (e,, e;), which means that the distribution of the bend-
ing moments is a skew line, that the corresponding errors in
(7) can be obtained from the shaded area between two skew
lines, and that each line can be confirmed by two different
nodes, that is, two section strains in different sections
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FIGURE 4: Distribution and error of section strains in different orders. ° is a section strain in e computed from surface strain measurements

by (8). e is a section strain in e(u) deduced by (3).

(Figure 4(a)). Thus, n =2 for e, and e; in (7). Meanwhile, the
other section strains, e, e,, €5, and e, are constant, which
means that their distributions are lines parallel to the x-axis,
that the associative errors in (7) can be obtained from the
shaded area between two parallel lines, and that every line
can be confirmed by one node, that is, one section strain
(Figure 4(b)). Thus, the number of the sections where section
strains are distributed is # = 1. Finally, the number of the sec-
tions, n, is 2 in (7) and (10) in the loading case of end-node
force and moments.

Another case is the beam element loaded by uniformly
distributed forces, qy(x) and g,(x) are constant along the
x-axis, and the order of the section strains e,, e;, e, and
es can be deduced as follows.

Assumption: g, (x) =d, q,(x) = d,.

Then,
B jj -q,(x))dxdx fj ,)dxdx  —d, b drrd,
Dy D), 2Dy
jf -q,(x))dxdx ff dxdx  —d, e grrd,
D, DZ 2D,
—q,(x))dx —-d,))dx —dyx
€4=‘f( G(Z)) :f( Gi) = Gj +d7)
—-q,(x))dx —d,)dx -
o T [dyds e
G, G, G,

(17)

Herein, d; (i=1,...,8) are unknown constant parame-
ters. The highest order of the section strains e(u) is quadratic
(e,, €5), and then, the distribution of the bending moments is
a parabola. The corresponding errors in (7) can be obtained
from the shaded area between two parabolas which are con-
firmed by three different nodes (Figure 4(c)), that is, three
section strains in three different sections. Thus, n =3 for e,
and e; in (7). Meanwhile, e, and e; are linear, where the dis-
tribution is a skew line, and e, and ey are constant. Similar
to the loading case of end-node force, the corresponding
numbers of sections are 1 and 2, respectively. Finally, the
number of the sections, #, is 3 in (7) and (10) in the loading
case of uniformly distributed forces.

& A
(b) Identification
points of NDI

(a) Clamped-free beam

and loading

(c) Frame structure and loading

FIGURE 5: Loading case and the distributions of NDI identification
points.

4. Verification

A simple cantilevered solid beam and a three-dimensional
frame structure were subjected to the end-node static loads
to assess the iFEM potential for the flexible wing deformation
estimation. The beam and frame structures were made of
6061-T6 aluminum alloy. The Young’s modulus is
E=73000 Mpa, the Poisson ratio is v=0.3, and its density
is p=2712.63kg/m>. The frame was composed of three solid
beams and middle plates; the span of each beam L =640 mm
and the radius R = 10 mm (see Figure 5). For the solid circular
cross section, the shear correction factors are k; =k>=0.887

[21]. In our verification, every whole solid beam is regarded
as one beam element. Accordingly, the principle axis of frame
structure is divided into three elements.

The experimentally measured surface strains are
obtained by fiber optic strain sensors. Displacement mea-
surements are captured by 3D optical measurement instruc-
tion (NDI, Optotrak Certus), which determines the position
of the identification point by using three CCD cameras to
capture the infrared lights emitted by position sensors
(Figure 6). The instruction is also used to assess the iFEM-
recovered deflections, where the accuracy of the NDI is
0.1 mm. A position sensor was placed as close as possible to
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FIGURE 6: Static test setup. The single beam (A), frame structure (B), and NDI Optotrak Certus (C).
TasBLE 1: Optical fiber sensor location in one element.
e (.0.p) e (x,0.p) & (x.0.8) i (x,0.p) & (x,0.p) e (x,0.p)
(L/2,-27/3,0) (L/2,0,0) (L/2,27/3,0) (4L/5,-27/3,0) (4L/5,0, /4) (4L/5,27/3,0)

TaBLE 2: Loading case for the clamped-free beam. Max deflections are captured from NDI.

Case 1 Case 2 Case 3 Case 4 Case 5
Loads 5N 15N 37N 41N 68 N
Max deflection in Y —0.79 mm —2.5mm —6.11 mm —6.82 mm —10.96 mm
RMSinY 0.05 mm 0.16 mm 0.32 mm 0.33 mm 0.42 mm
%Diff(v) in Y 6% 6.4% 5.2% 4.8% 3.8%

the beam root to verify the effectiveness of the clamping
arrangement. The force is achieved by placing several weights
on a pothook.

For the frame structure, each beam is regarded as an
element and the optical fiber sensor location scheme used
for each element is identical. For the end-node static
loads, the displacement field of the whole beam element
is interpolated by C° continuous shape function and the
number of required strain sensors is 6 (see [21]). As the
radius of the beam element is small (R =10 mm) and the grid
length of every fiber grating sensor is 10 mm, it is difficult
to stick the six strain gauges on one section; six fiber optic
strain gauges are placed on two different sections along
the beam (Table 1).

The accuracy of the reconstitution is assessed by root-
mean-square (RMS) and percentage difference (%Diff).

RMS=\Z/
i

%Diff(r) = 100

(TiFEM(xi) _ TNDI(xi))z,

RMS
max|TNPl(x;)[ |

where 7= (v, w) is the deformation displacement along the
y- or z-axis and m is the number of deflection shape
displacement measurement identification points of NDI
(Figure 5(b)A) in the structure. For the beam, m=6
(Figure 5(a)), and for the frame, m =14 (Figure 5(c)).
The superscript “IFEM” refers to the reconstitution by
iFEM while “NDI” refers to the experimental measure from
3D optical measurement instruction; x; is the ith location
along the axis where the displacement u is measured.

NgH

Il
—_

(18)

*

v(y) (mm)

x/L

—<— NDI measured
—e— IFEM computed

FiGure 7: Comparison of iFEM reconstruction for a beam to NDI
measurement in Y.

At first, five different vertical force cases (Table 2)
were applied at the free end of the beam (Figure 5(a)).
Figure 7 shows the comparison between iFEM recon-
struction and NDI measurement along the beam axis in
force direction, for the loading case 68N. Symbol x/L
indicates the location of identification point along the
beam surface. Zero means identification point at the
clamped end node, and 1 means identification point at the
free end node. v(y) indicates the corresponding displacement
in force direction.
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TaBLE 3: Loading case for the frame structure. Max deflections are captured from NDIL
Case 1 Case 2 Case 3 Case 4 Case 5
Loads 18N 23N 35N 455N 68N
Max deflection in Y 16.31 mm 20.5mm 31.2mm 41.3mm 62.8 mm
RMSinY 0.22 mm 0.49 mm 2.0 mm 3.3 mm 6.8 mm
%Diff(v) in Y 1.3% 2.4% 6.4% 8.1% 10.9%
Max deflection in Z 2.53 mm 3.23mm 5.1 mm 6.5 mm 10.2 mm
RMS in Z 0.32 mm 0.41 mm 0.73 mm 0.75 mm 1.1 mm
%Diff(w) in Z 12.6% 12.8% 14.6% 11.5% 10.8%
AN AN
Nodal solution Nodal solution
Step=1 Step=1
Sub=1 Sub=1
Time =1 Time =1
USUM (AVG) USUM (AVG)
RSYS=0 RSYS=0
DMX = 0.037019 DMX = 0.045279
SMX =0.037019 SMX = 0.045279
Y
Y
Load
Z Z
Displacement Max displacement = 37 mm Unit: mm Displacement Max displacement = 37 mm Unit: mm
— — —_— —

41 82 123 16,5 206 24.7 288 329 37

(a) Contour plot of iFEM reconstruction

5 101 151 20.1 252 30.2 352 402 453

(b) Contour plot of NDI measurement

F1GURE 8: Comparison of iFEM reconstruction for a frame to NDI measurement.

For the frame structure, five different vertical force cases
(Table 3) were applied at the free end of the frame
(Figure 5(c)). The two deformation contour plots of the
frame are plotted by high-fidelity direct FE analysis (ANSYS
12.0), which shows the comparison between iFEM recon-
struction and NDI measurement along the beam axis in force
direction, for the loading case 45.5N (Figure 8). The defor-
mation unit in the two figures is meter.

It is seen from the preceding results that the iFEM
methodology shows a good potential as a reliable estimation
technique. The estimation results gained from the iFEM
algorithm have a better approximation to the NDI measure-
ment results. For the beam test, the accuracy of the reconsti-
tution assessed by percentage difference does not exceed
6.4% and the error brings down with the loading increase.
For the frame test in the loading case of 18 N, the percentage
difference is 1.3%, but the difference grows up with the load-
ing increase; especially from the loading case 23N to 35N,
the difference increases 4%. The cause for this phenomenon
is that the gripper of the frame structure is not very stable,
which leads to the fact that the gap spacing between the
frame and its carrier grows up with the loading increase that
has a great influence on the boundary conditions.

5. Conclusion

This study investigates the application potential of the iFEM
algorithm for the flexible wing and other frame structures.
This method employs the in situ strain measurements and
proper displacement shape function to estimate the deforma-
tion shape of the beam and frame structure, without the need
to know the applied loads and material properties and to use
modal shapes. When the boundary conditions of the recon-
struction equation and the shape function are determined,
the deformation shape will be accurately estimated in a non-
singular system. Although the boundary conditions are
known in hypothesis, the number of location where the sec-
tion strains are evaluated is not shown clearly; thereby, the
singularity of the equation will be influenced.

This paper discusses the minimum number of location
where the section strains are evaluated with the loading case,
using equilibrium equations in detail, and verifies the result
that for the loading case of end-node force, the number is
2. The results of the static loads in the beam and the frame
model show that the iFEM algorithm has a good potential
for the flexible frame structure estimation; especially for a
simply supported beam, the accuracy of the estimation by



iFEM is around 6%, and for the frame structure in small load
(18N), the accuracy reaches up to 1.3%, while as the gripper
of the frame is not firm enough, the estimation accuracy
brings down with the loading increase. So, the next work is
to explore the technology that reduces the influence of the
gap spacing of the frame gripper on accuracy of the frame
deformation estimation.
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