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We employ the bifurcation theory of planar dynamical systems to investigate the exact travelling
wave solutions of a generalized Degasperis-Procesi equation us—tyxt +4utty+y (U — Uxy ), = SUxllpx+
Ullxxx. The implicit expression of smooth soliton solutions is given. The explicit expressions of
peaked soliton solutions and periodic cuspon solutions are also obtained. Further, we show the
relationship among the smooth soliton solutions, the peaked soliton solutions, and the periodic
cuspon solutions. The physical relevance of the found solutions and the reason why these solutions
can exist in this equation are also given.
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1. Introduction

Recently, Degasperis and Procesi [1] derived a nonlinear dispersive equation

Ut — Uyt + AUl = U Uy + Ullyry (1.1)

which is called the Degasperis-Procesi equation. Here u(t, x) represents the fluid velocity at
time t in the x direction in appropriate nondimensional units (or, equivalently the height
of the water’s free surface above a flat bottom). The nonlinear convection term uu, in
(1.1) causes the steepening of wave form, whereas the nonlinear dispersion effect term
BUrthyy + Ullyxx = ((1/2)4?) 4, in (1.1) makes the wave form spread. Equation (1.1) can be
regarded as a model for nonlinear shallow water dynamics. Degasperis et al. [2] showed that
the (1.1) is integrable by deriving a Lax pair and a bi-Hamiltonian structure for it. Yin proved
local well posedness to (1.1) with initial data uyp € H*(R), s > 3 on the line [3] and on the
circle [4]. The global existence of strong solutions and weak solutions to (1.1) is investigated
in [4-10]. The solution to Cauchy problem of (1.1) can also blow up in finite time when
the initial data satisfies certain sign condition[7-10]. Vakhnenko and Parkes [11] obtained
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periodic and solitary-wave solutions of (1.1). Matsuno [12, 13] obtained multisoliton, cusp
and loop soliton solutions of (1.1). Lundmark and Szmigielski [14] investigated multipeakon
solutions of (1.1). Lenells [15] classified all weak travelling wave solutions. The shock wave
solutions of (1.1) are investigated in [16, 17].

Yu and Tian [18] investigated the following generalized Degasperis-Procesi equation:

Up — Usext + 4UUy = Bl Uy + Ullyyx — YlUxxx, (1.2)

where y is a real constant, and the term u,,, denotes the linear dispersive effect. They
obtained peaked soliton solutions and period cuspon solutions of (1.2). Unfortunately, they
did not obtain smooth soliton solutions of (1.2).

In this paper, we are interesting in the following generalized Degasperis-Procesi
equation:

Up — Unext + 4Ly + Y (U — Usx )y = SUylyy + Ulyxy, (1.3)

where y is a real constant, the term u, denotes the dissipative effect and the term s,y x
represents the linear dispersive effect. Employing the bifurcation theory of planar dynamical
systems, we obtain the analytic expressions of smooth solitons, peaked solitons, and period
cuspons of (1.3). Our work covers and supplements the results obtained in [18].

The remainder of the paper is organized as follows. In Section 2, using the travelling
wave transformation, we transform (1.3) into the planar dynamical system (2.3) and then
discuss bifurcations of phase portraits of system (2.3). In Section 3, we obtain the implicit
expression of smooth solitons, the explicit expressions of peaked solitons and periodic cuspon
solutions. At the same time, we show that the limits of smooth solitons and periodic cusp
waves are peaked solitons. In Section 4, we discuss the physical relevance of the found
solutions and give the reason why these solutions can exist in (1.3).

2. Bifurcations of Phase Portraits of System (2.3)

We look for travelling wave solutions of (1.3) in the form of u(x,t) = ¢(x — ct) = ¢(¢), where
c is the wave speed and ¢ = x — ct. Substituting u = ¢(¢) into (1.3), we obtain

_C(PI + C(PII/ + 4({)([)/ _ 3(Pl(pll _ (P(PII/ + Y(P/ _ Y(P/II — 0 (2.1)
By integrating (2.1) once we have
¢'(p-cry)=g-(c-1g+2~(¢)’, (22)

where g is the integral constant.
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Let y = ¢, then we get the following planar dynamical system:

dy
&Y
. (2.3)
dy g—(c-1)p+2¢9°-y
dg p-c+y !
with a first integral
Hpy) = (@-c+1 (v’ -¢*-g) =h, (24)

where h is a constant.
Note that (2.3) has a singular line ¢ = ¢ — y. To avoid the line temporarily we make
transformation d¢ = (¢ — ¢ + y)d¢. Under this transformation, (2.3) becomes

dy
X" (p-c+7)y,

(2.5)
4y =g-(c-y)p+2¢" -y~
dg

System (2.3) and system (2.5) have the same first integral as (2.4). Consequently,
system (2.5) has the same topological phase portraits as system (2.3) except for the straight
line ¢ = ¢ — y. Obviously, ¢ = ¢ — y is an invariant straight-line solution for system (2.5).

For a fixed h, (2.4) determines a set of invariant curves of system (2.5). As h is
varied, (2.4) determines different families of orbits of system (2.5) having different dynamical
behaviors. Let M(¢p.,y.) be the coefficient matrix of the linearized system of (2.5) at the
equilibrium point (¢, y.), then

Ye Pe—CctY
M esrYe) = ’ 2.6
(9erve) <4(PE_C+Y oy > (2.6)

and at this equilibrium point, we have

J(9e,ye) = det M(ge, ve) = —2y% — (pe — c+Y) (4pe —c +7),
p(@e Ye) = trace(M(pe, ye)) = ~Ye:

(2.7)

By the qualitative theory of differential equations (see [19]), for an equilibrium point of a
planar dynamical system, if J < 0, then this equilibrium point is a saddle point; it is a center
point if J > 0 and p = 0; if ] = 0 and the Poincaré index of the equilibrium point is 0, then it is
a cusp.



4 Mathematical Problems in Engineering

By using the first integral value and properties of equilibrium points, we obtain the
bifurcation curves as follows:

N2
gi(c) = (e SY) ,

(2.8)
$(c) =—(c-p)~

Obviously, the two curves have no intersection point and g,(c) < 0 < g1(c) for arbitrary
constants c#y.

Using bifurcation method of vector fields (e.g., [19]), we have the following result
which describes the locations and properties of the singular points of system (2.5).

Theorem 2.1. For a given constant wave speed ¢ #0, let

c—yx\/(c-y)*-8g

95 = 1 for ¢ < g1(c), (2.9)

y§ =+\/(c— y)2 +g for g> (o). (2.10)

When c =,
(1) if g < 0, then system (2.5) has two equilibrium points (—/—g/2,0) and (\/—g/2,0),
which are saddle points;
(2) if g =0, then system (2.5) has only one equilibrium point (0,0), which is a cusp;
(3) if g > 0, then system (2.5) has two equilibrium points (0,—./g) and (0, \/g), which are
saddle points.
When c #y,

(1) if g§ < g(c), then system (2.5) has two equilibrium points (¢;,0) and (¢{,0). They are
saddle points:

(i) ifc >y, then gy <-1/2(c—y) <1/4(c—y) <c—-y <y,
(ii) ifc <y, then gy, <c—y <1/4(c-y) <-1/2(c—y) <@g,

(2) if g = g(c), then system (2.5) has three equilibrium points (¢, 0), (¢;,0), and (c —y,0).
(c—v,0) is a cusp:

(i) ifc >y, then oy = —(1/2)(c—y) < (1/4)(c—y) <c—7 = ;. (¢,,0) is a saddle
point, while (¢, 0) is a degenerate center point,

(ii) ifc <y, then oy = c—y <1/4(c—y) < -1/2(c —y) = ¢{. (¢,,0) is a degenerate
center point, while (¢, 0) is a saddle point;
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Figure 1: The phase portraits of system (2.5)(c = y). (a) g <0; (b) g=0; (c) g>0.

(3) if g2(c) < g < g1(c), then system (2.5) has four equilibrium points (¢,,0), (¢§,0), (c -
Y, Yy), and (c =y, y;5). (c =, y,) and (c -y, yy) are two saddle points:

(i) ifc >y, then ¢y <1/4(c—y) <¢; < c—Y. (¢,,0) is a saddle point, while (¢, 0) is
a center point,

(i) ifc <y, thenc—y < ¢, <1/4(c—y) < ;. (¢,,0) is a center point, while (¢g,0) is
a saddle point.

Specially, when g = 0,

(i) if ¢ > y, then the three saddle points (¢;,0), (c =y, y,), and (c - y,y;) form a triangular
orbit which encloses the center point ((pg ,0),

(ii) if c <y, then the three saddle points (¢;,0), (c =y, Yy,), and (c -y, y;) form a triangular
orbit which encloses the center point (¢, 0);

(4) if g = g1(c), then system (2.5) has three equilibrium points ((c —y)/4,0), (c-v,y,), and
(c=1,y5)- ((c=7)/4,0) is a degenerate center point, while (c -y, y,) and (c -y, yy) are
two saddle points;

(5) if g > g1(c), then system (2.5) has two equilibrium points (c~vy, y,) and (c~Yy, y;), which
are saddle points.

Corresponding to the case ¢ = y and the case c #y, we show the phase portraits of
system (2.5) in Figures 1 and 2, respectively.

3. Solitons, Peakons, and Periodic Cusp Wave Solutions

Theorem 3.1. Given arbitrary constant ¢ £y, let ¢ = x — ct, then
(1) when 0 < g < gi(c),
(i) if ¢ > vy, then (1.3) has the following smooth hump-like soliton solutions:

r(p1) = Pr(p)e™ for g5 < <gf, (3.1)
(ii) if ¢ <y, then (1.3) has the following smooth valley-like soliton solutions:

Pa(9) = Pa(p7)e ™ for g7 <o < g, (3.2)
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Figure 2: The phase portraits of system (2.5) (c#y). (a) § < g(c),¢c > v; (b) g < g(c),c <7y; (c) g =
&(¢),c >y, (d)g = ga(c),c < y;(e) gc) <& <0,c>y;(f) g2(c) <g<0c<y;(g) g=0,c>y;(h
§=0c<y)0<g<g)c>y(0<g<gqe)ec<y k& g=gl)c>y)g=gl)c<y

(m)g > gi(c),c>y;, (n)g > gi(c),c<y.

(2) when g =0, (1.3) has the following peaked soliton solutions:

¢=(c-y)e, (3.3)
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(3) when g»(c) < g <0,
(i) if ¢ > vy, then (1.3) has the following periodic cusp wave solutions:

u(x,t) = @s(x—ct-2nT) for 2n-1)T <x—-ct<(2n+1)T, (3.4)

(ii) if ¢ <y, then (1.3) has the following periodic cusp wave solutions:

u(x,t) =@4(x—ct=2nT) for 2n-1)T <x—-ct < (2n+1)T, (3.5)

where

(2 g 29+ 1) (o )"

ﬂl((P) = a7
(2\/5 (PZ + ll(p + lz + bl(p + l3>
<2\/<p2 +m1(p+m2+2(p+m1>(<p—(p3)“2
P2 (9) =

(2\/5 %+ myp + my + b + m3>a2

e rye-y)-8g
- > ,

1

Lo 3(C—Y)2—48+5(‘;‘ Y)m,

- (c—r)2—4g+3(62— Y)m,

ml:_3(c—r)—\/2m,

_ 3(c -y ~4g-5(c—1)\/(c-1*-8g
. ,

_ (c-1?—4g-3(c—1)\/(c-1)-8g
5 :

_(e-1)*-8g+3(c-y)y(c-y) -8g
4 7

my

ms3

a
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e (=1’ -8g-3(c-1)\/(c-1)*-8g
_ - ,

b =~(c-7) - \(c-1) 83,
b2=—(C—Y)+m
oo emye-pi-sg
(e~ 17 -85 +3(e 1)l 17 -8
O G 05t (e
2\/(c—r)2—8g—3(c-r)m

(P3(§) = l+e_|§| +1 el fO?’ ﬁ <pz3<c—y,
pi@) =¥ LM foreyspis—yE

L _emrEyle-pirg

+ = 2 7
T = '1n<\/§+ @) —1n(2L)|.
vt = 2= e -sgr 1= 177 (- ie- -,

(3.6)

g and ¢ are as in (2.9).

Before proving this theorem, we take a set of data and employ Maple to display the
graphs of smooth solion, peaked soliton and periodic cuspon solutions of (1.3), see Figures 3,
4,5,6and 7.

Proof. Usually, a solion solution of (1.3) corresponds to a homoclinic orbit of system (2.5),
and a periodic travelling wave solution of (1.3) corresponds to a periodic orbit of system
(2.5). The graphs of homoclinic orbit, periodic orbit of system (2.5), and their limit curves are
shown in Figure 8.

(1) When 0 < g < gi1(c),c > y, system (2.5) has a homoclinic orbit (see Figure 8(a)).
This homoclinic orbit can be expressed as

i("’_ P\ +he+h

L

for ¢, < < ¢;. (3.7)

Substituting (3.7) into the first equation of system (2.3) and integrating along this homoclinic
orbit, we obtain (3.1).
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Figure 3: Smooth hump-like soliton solutions of (1.3)(c =2,y = 1). (a) g = 0.12; (b) g = 0.1; (c) g = 0.075;
(d) g=0.05.
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Figure 4: Smooth valley-like soliton solutions of (1.3) (¢ =1, y = 2). (a) g = 0.12; (b) g = 0.1; (c) g = 0.075;
(d) g=0.05.

When 0 < g < g1(c), ¢ <y, we can obtain (3.2) in similar way.

(2) When g =0, ¢ > y, system (2.5) has a homoclinic orbit that consists of the following
three line segments (see Figure 8(c)):

y==x¢p fory; <¢ <o, (3.8)

p=c-y for —\/(c-y)?+g<sy<\(c-y’+g (3.9)
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Figure 6: Period cuspon solutions of (1.3) (c =2,y = 1). (a) g = -04; (b) g = -0.1; (c) g = -0.01; (d)
g =—0.0000001.

Substituting (3.8) into the first equation of system (2.3) and integrating along this orbit, we
obtain (3.3).

When g =0, ¢ < y, we can also obtain (3.3).

(3) When g(c) < g <0,c >y, system (2.5) has a periodic orbit (see Figure 8(e)). This
periodic orbit can be expressed as

y=+\/9*+g for/-g<p<c-y, (3.10)
p=c-y for —\/(c-y)?+g<sy<\(c-y’+g (3.11)
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(d)

Figure 7: Period cuspon solutions of (1.3) (c = 1,y = 2). (a) g =-04; (b) g = -0.1; (c) g = —0.01; (d)
g =-0.0000001.

Substituting (3.10) into the first equation of system (2.3) and integrating along this periodic
orbit, we obtain (3.4).
When g (c) < g <0,c <y, we can obtain (3.5). O

Remark 3.2. From the above discussion, we can see that when g <0, g — 0, the period of the
periodic cusp wave solution becomes bigger and bigger, and the periodic cuspon solutions
(3.4) and (3.5) tend to the peaked soliton solutions (3.3). When g > 0,¢ — 0, the smooth
hump-like soliton solutions (3.1) and the smooth valley-like soliton solutions (3.2) lose their
smoothness and tend to the peaked soliton solutions (3.3).

4. Discussion

In this paper, we obtain the solitons, peakons, and periodic cuspons of a generalized
Degasperis-Procesi equation (1.3). These solitons denote the nonlinear localized waves on the
shallow water’s free surface that retain their individuality under interaction and eventually
travel with their original shapes and speeds. The balance between the nonlinear steepening
and dispersion effect under (1.3) gives rise to these solitons.

The peakon travels with speed equal to its peak amplitude. This solution is
nonanalytic, having a jump in derivative at its peak. Peakons are true solitons that interact
via elastic collisions under (1.3). We claim that the existence of a singular straight line for
the planar dynamical system (2.3) is the original reason why the travelling waves lose their
smoothness.

Also, the periodic cuspon solution is nonanalytic, having a jump in derivative at its
each cusp.
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Figure 8: The orbits of system (2.5) connecting with the saddle points. (a) 0 < g < g1(c),c>y; (b) 0 < g <
g1(c),c<y;(c)g=0,c>y;(d) g=0,c<y; (e) g20c) <g<0,c>y; (f) 2(c) <g<0,c<y.
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