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Aleksandra Pižurica2[0000−0002−9322−4999]

1 Center of Studies in Resources Engineering, Indian Institute of Technology
Bombay, India

{184314002}@iitb.ac.in, {getbiplab}@gmail.com
2 Department of Telecommunications and Information Processing, Ghent University,

Belgium
{Aleksandra.Pizurica}@ugent.be

Abstract. We address the problem of cross-domain classification of hy-
perspectral image (HSI) pairs under the notion of unsupervised domain
adaptation (UDA). The UDA problem aims at classifying the test sam-
ples of a target domain by exploiting the labeled training samples from a
related but different source domain. In this respect, the use of adversarial
training driven domain classifiers is popular which seeks to learn a shared
feature space for both the domains. However, such a formalism appar-
ently fails to ensure the i) discriminativeness, and ii) non-redundancy
of the learned space. In general, the feature space learned by domain
classifier does not convey any meaningful insight regarding the data.
On the other hand, we are interested in constraining the space which
is deemed to be simultaneously discriminative and reconstructive at the
class-scale. In particular, the reconstructive constraint enables the learn-
ing of category-specific meaningful feature abstractions and UDA in such
a latent space is expected to better associate the domains. On the other
hand, we consider an orthogonality constraint to ensure non-redundancy
of the learned space. Experimental results obtained on benchmark HSI
datasets (Botswana and Pavia) confirm the efficacy of the proposal ap-
proach.

Keywords: Domain adaptation · Adversarial training · Hyperspectral
images.

1 Introduction

The current era has witnessed the acquisition of a large volume of satellite re-
mote sensing (RS) images of varied modalities, thanks to several national and
international satellite missions. Such images showcase relevance in a range of
important applications in areas including urban studies, disaster management,
national security and many more. One of the major applications in this regard



2 S. Pande et al.

concerns the analysis of i) images of a given area on ground but acquired at dif-
ferent time instants, and ii) images of different geographical areas but composed
of similar land-cover types. Usually, it is non-trivial to generate training sam-
ples for all the images and hence it is a common practice to re-use the training
samples obtained from images with similar characteristics to new images for car-
rying out the supervised learning tasks. To this end, the paradigm of inductive
transfer learning, in particular domain adaptation, is extremely popular.

By definition, the unsupervised domain adaptation (UDA) techniques typi-
cally consider two related yet diverse data domains: a source domain S equipped
with ample amount of training samples, and a target domain T where the test
samples are accumulated. Since the data distributions are different for the two
domains: P (S) 6= P (T ), the classifier trained on S fails to generalize for T fol-
lowing the probably approximately correct (PAC) assumptions of the statistical
learning theory [18] [17].

Traditional UDA techniques can broadly be classified into categories based
on: i) classifier adaptation, and ii) domain invariant feature space learning. In
particular, a common feature space is learned where the notion of domain di-
vergence is minimized or a transformation matrix is modelled to project the
samples of (source) target domain to the other counterpart [4], [13]. Some of the
popular ad-hoc methods in this category include transfer component analysis
(TCA) [15], subspace alignment (SA) [6], geodesic flow kernel (GFK) [9] based
manifold alignment etc. Likewise, UDA approaches based on the idea of maxi-
mum mean discrepancy (MMD) [20] learn the domain invariant space in a kernel
induced Hilbert space. Recently, the idea of adversarial training has become ex-
tremely popular in UDA. Specifically, such approaches are based on a min-max
type game between two modules: a feature generator (G) and a discriminator
(D). While D tries to distinguish samples coming from S and T , G is trained to
make the target features indistinguishable from S [11]. The RevGrad algorithm
is of particular interest in this respect as it introduces a gradient reversal layer
for maximizing the gradient of the D loss [7]. This, in turn, directs G to learn
a domain-confused feature space, thus reducing the domain gap substantially.
Adversarial residual transform networks (ARTN) [3] is another notable approach
that uses adversarial learning in UDA. Besides, the use of generative adversarial
networks (GAN) have been pre-dominant in the recent past for varied cross-
domain inference tasks: image style transfer, cross-modal image generation, to
name a few. Some of the GAN based endeavors in this regard are: DAN [8],
Cycle-GAN [5] and ADDA [19].

As the UDA problem is frequently encountered in RS, the aforementioned
ad-hoc techniques have already been explored in the RS domain [18]. A recent ex-
ample [1] proposes a hierarchical subspace learning strategy which considers the
semantic similarity among the land-cover classes at multiple levels and learns a
series of domain-invariant subspaces. The use of a shared dictionary between the
domains is also a popular practise for HSI pairs [21]. As far as the deep learning
techniques are concerned, the use of GAN or domain independent convolution
networks are also explored in this regard [2].
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In this work, we specifically focus on the domain classifier (DC) based adver-
sarial approach towards UDA. Precisely, the DC based UDA approaches simul-
taneously train the domain classifier and a source specific classifier using the fea-
ture generator-discriminator framework. While the domain classifier is entrusted
with the task of making the domains overlapping, the source classifier helps in
avoiding any trivial mapping. However, we find the following shortcomings of the
standard DC based approaches: i) the learned space does not encourage discrim-
inativeness. In particular, the notion of intra-class compactness is not explicitly
taken into account, which may result in overlapping of samples belonging to
fine-grained categories. ii) the learned space is ideally unbounded and does not
convey any meaningful interpretation and may be redundant in nature.

In order to resolve both the aforementioned issues, we propose an advanced
autoencoder based approach as an extension to the typical DC based UDA. In
addition to jointly training the binary domain classifier and the source-specific
multi-class classifier, we specifically add two other constraints on the learned
latent space for the source specific samples. The first one is the reconstructive
constraint that is directed to reconstruct one sample from another sample from
S both sharing the same class label. This essentially captures the classwise ab-
stract attributes better than a typical autoencoder setup. Further, this loss helps
in concentrating the samples from S at the category level. The other one is the
orthogonality constraint to ensure that the non-redundancy of the encoded fea-
tures in the source domain. Optimization of all four loss measures together is
experimentally found to better correspond S and T . The main contributions of
this paper are:

– We introduce a class-level sample reconstruction loss for the samples in S in a
typical DC based UDA framework. This makes the learned space constrained
and bounded.

– We enforce an orthogonality constraint over the source domain to keep the
encoded features in the source domain non-redundant.

– Extensive experiments are conducted on the Botswana and Pavia HSI datasets
where improved classification performance on T can be observed.

The subsequent sections of the paper discuss the methodology followed by
the experiments conducted and concluding remarks.

2 Methodology

In this section, we detail the UDA problem followed by our proposed solution.
Preliminaries: Let XS = {(xs

i , y
s
i )}NS

i=1 ∈ XS ⊗ YS be the source domain
training samples with xs

i ∈ Rd and ysi ∈ {1, 2, . . . , C}, respectively. Likewise,
let XT = {(xt

j}
NT
j=1 ∈ XT be the target domain samples obtained from the same

categories as of XS . However, PS(XS) 6= PT (XT ). Under this setup, the UDA
problem aims at learning fS : XS → YS which is guaranteed to generalize well
for XT .
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In order to learn an effective fS , we propose an end-to-end encoder-decoder
based neural network architecture comprising of the following components: i)
a feature encoder fE , ii) a domain classifier fD, iii) a source specific classifier
fS , and iv) a reconstructive class-specific decoder fDE . Note that the feature
encoder is typically implemented in terms of the fully-connected (fc) layers with
non-linearity. For notational convenience, we denote the encoded feature repre-
sentation corresponding to an input x by fE(x).

We elaborate the proposed training and inference stages in the following. A
depiction of our model can be found in Fig. 1.

2.1 Training

Given the encoded feature representations, the proposed loss measure is com-
posed of the losses from the following components in the decoder:

Source classifier fS : The mapping, fS is a multiclass softmax classifier
trained solely on XS . We express the corresponding loss in terms of the cross-
entropy that is defined as the log-likelihood between the training data and the
model distribution [10]. Specifically, we deploy an empirical categorical cross-
entropy based loss,

LS = −E(xs
i
,ys

i
)∈XS

[ysi log fS(fE(xs
i ))] (1)

where ED denotes the empirical expectation over domain D.
The class-specific source reconstruction fDE : Note that fS ensures

better inter-class separation of the source domain samples in the learned space.
However, it does not consider the notion of intra-class compactness which is
essential for demarcating highly overlapping categories. In addition, we simulta-
neously require the learned space to be meaningful and to capture the inherent
class-level abstract features of both S and T .

To this end, let us define two data matrices XS ∈ RNS×d and X̂S ∈ RNS×d

from XS in such a way that the ith row of both the matrices refers to a pair
of distinct data points obtained from a given category. Under this setup, fDE

aims to reconstruct X̂ in the decoder branch given fE(XS). We formulate the
corresponding loss as:

LR =

NS∑
i=1

‖X̃S − X̂S‖2F (2)

Note that X̃S denotes the projected fE(XS) onto the decoder. Since we
perform cross-sample reconstruction in this encoder decoder branch (fE and
fDE), fE essentially captures abstract class-level features of XS . Besides, LR

further ensures within-class compactness. As a whole, the joint minimization of
LS and LR ensures that fE essentially learns a space which is simultaneously
discriminative and meaningful.

Domain classifier fD: The role of fD is to project the samples from S and
T onto the shared space modelled by 4fE . Let us assign the domain label 0 to
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all the source samples Xs
i and label 1 to all the target samples Xt

i . We define

XD = [XS , XT ] and YD = [ŶS , ŶT ] where ŶS = 0 is an all zero vector of size NS

and ŶT = 1 of size NT . Given that, fD maximizes a typical binary cross-entropy
based classification error through a min-max game between fE and fD in such a
way that the learned space becomes highly domain invariant. Formally we define
the loss measure for fD as:

LD = −E(xD
k
,yD

k
)∈(XD,YD)[y

D
k log fD(fE(xD

k ))] (3)

Orthogonality constraint: An additional orthogonality constraint over the
source domain is added to the total loss to ensure the non-redundancy of the
encoded features. The constraint is given as:

fE(XS)T fE(XS) = I (4)

However, equation (4) imposes a hard constraint over the optimization prob-
lem, so instead of incorporating it in the total loss, we minimize a softer version
given as:

LO = fE(XS)T fE(XS)− I (5)

where I denotes identity matrix.

Fig. 1. Schematic flow of the proposed UDA model.

2.2 Optimization and inference

Based on the equations (1), (2), (3) and (5), the overall loss function L can be
represented as a two stage optimization process:
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Stage 1:
L1 = min

fS ,fE
λ1LS + λ2LR + λ3LO (6)

Stage 2:
L = min

fS ,fE
max
fD
L1 − λ4LD + λ5R (7)

where λs denote the weights of the individual terms and R defines a regu-
larizer on the learnable parameters. In our experiments, the values of λ1, λ2, λ3
and λ4 are all set to 1. We follow the standard alternate stochastic mini-batch
gradient descent approach to optimize L. We find that the order of optimization
of the individual terms does not matter in this case.

During testing, the target samples are assigned labels through fS(fE(XT )).

3 Experiments

3.1 Datasets

Two benchmark hyperspectral datasets have been considered to validate the
efficacy of our approach.

The first dataset is the Botswana hyper-spectral imagery (Fig.2)[14]. The
satellite imagery was acquired by NASA EO-1 satellite in the period 2001-2004
using the Hyperion sensor with the spatial resolution of 30 m spanning over 7.7
km strip. The imagery consists of 242 bands that covering the spectral range of
400-2500 nm. However in the current study, a preprocessed version of the dataset
is used that comprises 10 bands obtained following a feature selection strategy.

Fourteen classes that correspond to land cover features on the ground are
identified for the dataset. Many of the classes are fine-grained in nature with
partially overlapping spectral signatures, causing the adaptation task extremely
difficult (Fig. 3). The source dataset (SD), consisting of 2621 pixels and target
dataset (TD), containing 1252 pixels are created from spatially disjoint regions
within the study area, leading to subtle differences in S and T , respectively.

The second dataset consists of two hyperspectral imageries, one over the
Pavia City Center and the other over the University of Pavia (Fig. 3)[16]. The
imageries captured from Reflective Optics Spectrographic Image System (RO-
SIS). The Pavia City Center image consists of 1096 rows, 492 colums and 102
bands while the University of Pavia image consists of 610 rows, 340 columns and
103 bands. Seven common classes are identified in both the images out of which
few share similar spctral properties thus making their classification challenging.
We use Pavia University as the source dataset while Pavia City Center as the
target dataset. Since Pavia City Center image consists of 102 bands, the same
number of bands are used for Pavia University image as well where the last band
is dropped.
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Fig. 2. Botswana Dataset with (a) colour composite of first three bands and (b) ground
truth.

3.2 Protocols

The entire network is constructed in terms of fully-connected neural network
layers. In particular, fE has two hidden layers with the dimensions of the final
latent layer being 50. On the other hand, a single layer neural network is used
for both the source-centric classifier and the domain classifier with the required
number of output nodes. Relu(·) non-linearity is used for all the layers. The
weights for the loss terms are fixed through cross-validation and Adam optimizer
[12] is considered with an initial learning rate of 0.001.

We report the classification accuracy at T and compare the performance with
the following approaches from the literature: TCA, SA, GFK, and RevGrad for
Botswana dataset. However, for Pavia dataset, only GFK and RevGrad have
been used for comparison since the accuracies obtained from other classifiers
were quite insignificant. Note all the considered techniques aim to perform UDA
in a latent space and RevGrad acts like the benchmark: it implicitly showcases
the advantage of the proposed reconstructive loss term LR. In addition, we
also carried out ablation study on our proposed method on Pavia dataset by
eliminating reconstruction loss and orthogonality constraint one at a time.

3.3 Discussion

Tables 1 and 2 depict the quantitative performance evaluation and comparison
to other approaches for Botswana and Pavia datasets respectively. The highest
accuracy by a classifier for a given class is represented in bold.

For Botswana dataset, it can be inferred that the proposed approach outper-
forms the others with an overall classification accuracy of 74.5%. The RevGrad
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Fig. 3. Pavia Datatset (a) colour composite and (b) the ground truth for the image of
Pavia City Center(c) colour composite and (d) the ground truth for the image of the
University of Pavia.

Table 1. Performance evaluation on the Botswana dataset (in %).

Land-cover classes Pixel
Counts
for SD

Pixel
Counts
for TD

TCA
[15]

SA [6] GFK [9] RevGrad
[7]

Proposed
Method

Water (1) 213 57 60.0 46.0 43.0 75.0 61.0
Hippo grass (2) 83 81 100.0 100.0 75.0 97.0 92.0
Floodplain grasses 1 (3) 199 75 56.0 59.0 69.0 67.0 74.0
Floodplain grasses 2 (4) 169 91 75.0 80.0 88.0 79.0 76.0
Reeds (5) 219 88 78.0 83.0 81.0 67.0 75.0
Riparian (6) 221 109 58.0 72.0 84.0 65.0 70.0
Firescar 2 (7) 215 83 98.0 100.0 100.0 97.0 100.0
Island interior (8) 166 77 62.0 48.0 60.0 66.0 81.0
Acacia woodlands (9) 253 67 27.0 40.0 44.0 47.0 50.0
Acacia shrublands (10) 202 89 40.0 50.0 62.0 48.0 71.0
Acacia grasslands (11) 243 174 79.0 92.0 92.0 73.0 74.0
Short mopane (12) 154 85 89.0 93.0 91.0 73.0 79.0
Mixed mopane (13) 203 128 48.0 61.0 65.0 77.0 73.0
Exposed soil (14) 81 48 85.0 100.0 100.0 79.0 77.0

Overall Accuracy (OA) - - 61.0 65.0 70.0 69.0 74.5

technique on the other hand, produces an overall performance of 69%, thus im-
plying that an overall domain alignment (without class) is not suitable for this
dataset. The proposed method produces significant improvement in identifying
island interior (OA = 81%), acacia woodlands (OA = 50%) and acacia shrub-
lands (OA = 71%). These classes are difficult to handle having similar spectral
properties with other classes and the ad-hoc approaches considered for compar-
ison mostly failed to identify them. For other classes, the results are comparable
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Fig. 4. (a): Two dimensional t-SNE of source and target datasets before adaptation,
(b): Two dimensional t-SNE of source and target domains after adaptation.

Table 2. Performance evaluation on the Pavia dataset (in %).

Land-cover classes Pixel
Counts
for SD

Pixel
Counts
for TD

GFK [9] RevGrad
[7]

Proposed
Method

Asphalt (1) 6631 7585 50.0 64.0 86.0
Meadows (2) 18649 2905 47.0 61.5 92.0
Trees (3) 3064 6508 92.0 94.0 84.0
Baresoil (4) 5029 6549 97.0 72.5 53.0
Bricks (5) 3682 2140 62.0 67.0 58.0
Bitumen (6) 1330 7287 41.0 51.0 57.0
Shadows (7) 947 2165 97.0 83.5 95.0

Overall Accuracy (OA) - - 66.0 70.5 74.0

to the other techniques. Fig.4 shows the 2-D t-SNE comparing the source and
target features (before training) with projected source and target features ob-
tained after training.

The similar trend is observed for Pavia dataset as well where our method sur-
passes the other classifiers with an overall accuracy of 74.0%, while the bench-
mark RevGrad classifier gives an overall accuracy of 70.5%. This affirms the
inefficieny of domain alignment (without class) on the Pavia dataset as well. In
addition, there is a significant improvement in classification of asphalt (OA =
86%) and meadows (OA = 92%) classes. The spectral signature of meadows class
overlaps with that of that of trees (since both are a subset of vegetation), but
our classifier performs well in identifying meadows much better than the other
classifiers. For other classes, the classification accuracies are more or less similar
to those from other classifiers.

From the ablation study on Pavia dataset it was observed that an overall ac-
curacy of 65% was obtained when the classifier was trained without orthogonality
constraint while training without reconstruction loss gave an overall accuracy of
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Fig. 5. Bar chart for ablation study comparing effects of exclusion of different losses
on the classes of Pavia dataset.

71%. Fig. 5 compares the classwise accuracies for Pavia dataset against different
losses considered in our ablation study. The results show that there is significant
improvement in the identification of shadows (OA = 95%) and asphalt (OA =
86%) when all the losses are taken into account.

4 Conclusions

We propose a cross-domain classification algorithm for HSI based on adversarial
learning. Our model incorporates an additional class-level cross-sample recon-
struction loss for the samples in S within the standard DC framework in order
to make the learned space meaningful and classwise compact and an additional
orthogonality constraint over the source domain to avoid any redundancy within
the encoded features. Several experiments are conducted on the Botswana and
Pavia datasets to assess the efficacy of the proposed technique. The results clearly
establish the superiority of our approach with respect to a number of existing
ad-hoc and neural networks based methods. Currently, our method only relies on
the spectral information. We plan to introduce the spatial aspect for improved
semantic segmentation of the scene by distilling the advantages of convolution
networks within the model.
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