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Abstract
We present a new optimal control approach to robust control of robot manipulators in the framework of State
Dependent Riccati Equation (SDRE) technique. To treat this highly nonlinear control system, we formulate it as a
nonlinear optimal regulator problem. SDRE technique was used to synthesize an optimal controller to this class of
robot control problem. We also synthesize a neural network based extra controller to achieve the robustness in the
presence of the parameter uncertainties. A typical two-link robot position control problem was studied to show the
effectiveness of SDRE approach and robust extra control design to robotic application.

1. Introduction:

Robot manipulators are familiar examples of
trajectory-controllable mechanical systems. However ,
their nonlinear dynamics present a challenging control
problem, since traditional linear control approaches do
not easily apply. Various control methods have been
developed in the literature for rigid robot motion
control. Classical PD (Proportional plus Derivative)
control was widely used in the robot position control
[1][2]. But it is only effective for the highly geared
manipulators which thereby strongly reduces the
interactive dynamic effects between links. Feedback
linearization (inverse dynamics)[3] is another
commonly used method in the control of manipulators.
Although this approach transform the nonlinear
dynamics into linear one so that linear control
techniques can be applied, it is difficult to implement
in the sense of robustness, mainly because the
coordinate transformation is a function of the system
parameters and, hence, sensitive to uncertainty. Also,
the large differences in magnitude among the
parameters, e.g. between joint stiffness and the link
inertia, may make the computation of the control ill-
conditioned and the performance of the system poor.

In this paper, the state-dependent Riccati equation
(SDRE) technique[4], which is an emerging systematic
method for solving nonlinear regulator problems, is
used to obtain an asymptotically stabilizing feedback
solution of the posed nonlinear robot control problem.
Section 2 will outline the basic idea of SDRE
technique. Section 3 will discuss a planar two-link
manipulator control problem using SDRE technique.
Because of the unknown load placed on a manipulator

*Ph.D Student, ** Professor, contact person

0-7803-6733-2/01/$10.00 © 2001 IEEE

369

and the other parameter uncertainties in the
manipulator dynamics, it is important to design a
robust control law that will guarantee the performance
of the manipulator under these uncertainties. In this
paper, we present a new neural network based extra
control design to provide the robustness for the SDRE
controller. Section 4 will illustrate the theory of the
robust extra control design and give the simulation
results in the presence of a parameter uncertainty.
Conclusion is drawn in Section 5.

2. Introduction To
Equation Method:

State Dependent Riccati Equation (SDRE) method
(Cloutier et al.,1996) is a recently emerging nonlinear
control system design methodology for direct synthesis
of nonlinear feedback controllers. By turning the
equations of motion into a linear-like structure, this
approach permits the designer to employ linear optimal
control methods such as the LQR methodology and the
H_design technique for the synthesis of nonlinear

State Dependent Riccati

control systems.
This approach assumes that the dynamic model of the
system
X=f(x)+g(xu (1
can be placed in the State Dependent Coefficient
form(SDC):
x=A(x)x+ B(x)u (¥))]
The second ingredient of the SDRE design technique

is the definition of quadratic performance index in state
dependent form:

J = %J.’m[xTQ(x)x +u” R(x)uldt 3



The state dependent weighting matrices Q(x) and
R(x) can be chosen to realize the desired performance
objective. In order to ensure local stability, the matrix
Q(x) is required to be positive semidefinite for all x
and the matrix R(x) is required to be positive definite
for all x.

Next, a state dependent algebraic Riccati equation:
AT(D)P(x)+ P(X)A(x)— P(X)B(X)R™ (x) BT (x)P(x) + Q(x) =0 (4)
is formulated and is solved for a positive definite state
dependent matrix P(x). The nonlinear state variable
feedback control law is then constructed as :
~RY(xX)BT(x)P(x)x (5
Cloutier et al.(1996) have shown that this control law is
locally stable and optimal with respect to the infinite
time performance index. Moreover, Cloutier et
al.(1996) have given the conditions that the SDRE
control laws can be globally stable and globally
optimal.

It can be observed that the crucial part of the
control law derivation is the solution of the state
dependent Riccati equation. In the general situation, it
is difficult to get the closed-form solution. However,
this equation can be numerically solved at each sample.

3. Robot Manipulator Control Problem [3]:
A
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Figure-1 An articulated two-link manipulator

Consider a planar, two-link, articulated manipulator
(Figure 9.1), whose position can be described bya 2-
vector q of joint angles, and whose actuator inputs
consist of a 2-vector T of torques applied at the
manipulator joints. The dynamics of this simple
manipulator is strongly nonlinear, and can be written in
the general form:

I(g)G+C(q.4)4+8(q) =T ©
where I(q) is the 2x2 manipulator inertia matrix
(which is symmetric positive definite),C(g,4)q 1is a
2-vector of centripetal and Coriolis torques (with
C(g,¢g)a 2x2matrix), and g(q) is the 2-vector
gravitational torques. The feedback control problem for
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such a system is to compute the required actuator
inputs to perform desired tasks (e.g., to move it to a
given final position).

The task of position control is simply to move it to
a given final position, as specified by a constant vector
g, of desired joint angles. Let’s assume the desired

joint angles as the reference, e.g. O angles. Our
objective is to drive any initial manipulator position to
zero. Now the states in dynamic (6) become the errors
between the initial joint angles and the final desired
angles. In the mean time, we want to constrain the
control effort in an acceptable range. To achieve that,
we can easily convert this robot position control
problem to an optimal regulator problem which can be
attacked using SDRE technique.

Rewrite (6) as the following form:
G=-1"(q)C(q,9)g + 17" (g)7 - g(q) )
If we choose q and 4 as the states, we can write (7) as .
the standard SDRE formulation:

x= f(x)+ g(x)u
Now consider a concrete example with the two-link
manipulator of Figure-1, whose dynamics can be

written explicitly as:
0 4] (%

|:111 In}liql]_‘_['h‘b
121 ‘72 hql
(8)

Iy,
corresponding to (6) (here we assume that the

manipulator is in the horizontal plane (e.g.
g(g)=0))
where:ln =a,+2a,cos q, +2a,sin q, (&)
l, =1, =a,+a,cos g, +a,sin q, (10)
Iy =a, (1D
h=a,sin g, —a,cos g, (12)
with
a, =1, +ml. > +1,+ml, > +ml> (13)
a, =1(+m,l“_,2 (14)
a, =m,l, cos &, (15)
a,=m,l,sind, (16)
In the simulation, we use
m,=1kg L, =1lm m,=2kg &,=30"
1, =0.12kg em* L,=05m
1,=0.25kg -m*> L, =0.6m
Using the state space variables:
x=1049,,9,,9:-9,] amn
control variables: u=[r,,7,]" (18)
the nonlinear regulator problem can be written as
1 pe
J = ?Io xTQOx + u' Rudt (19)

with respect to the state x and control u subject to the
nonlinear differential constraints:



x=A(x)x+ B(x)u

where
0 1 0 o 0 0
A, O s B B (20
A(x)= 0 3] A12 B(x)_ n 12 )
0 0 0 1 0 0
0 All A22 BZ\ BZZ
R A A -1 B, By 21)
—I'(x)C(x)={ " u:|’1 (X)=|: :|
AZ] 2 BZ] BZZ

In the simulation, we choose the weighting matrix Q
and R as:

Q=diag({20,0,20,0}, R = diag {10 °,107} (22)
The robot, initially at rest at (g, =0,9,=0), is
commanded a step to (g,, = 60°,4,, = 90°)- The

corresponding transient position errors and control
torques are plotted in Figure-2.

The simulation results illustrate that SDRE control
gives a satisfactory performance in the sense of the
settling time and the overshoot. The maximum control
effort is about 2200 N.m which can be reduced by
increase the weights on the control. Figure-3 shows the
result for R = diag {107*,10*}. Now the maximum

control efforts is about 702N -m which is much
smaller. But we can see the settling time becomes
longer.

4. Robust Design Under the Parameter
Uncertainties:

In practice, a robot manipulator is usually
controlled to move an unknown object. To control the
manipulator, some potential uncertainties must be dealt
with such as the weight of the object, the amount of
friction and values of other parameters in the
manipulator dynamics. Our goal is to design a robust
controller that can handle these uncertainties.

In this paper, a neural network based extra control is
synthesized with SDRE optimal control to provide
robust characteristics in the presence of parameter
uncertainties. The robust controller is obtained by

1) Synthesizing an optimal controller (SDRE) for a
nominal system with the reference parameters.

2) Generating an extra control as the output of a
neural network whose inputs are the error in states
between the actual dynamics with parameter
uncertainties and the nominal system.

Development of equations to compute the extra control
is presented in the following section.

4.1 Problem Reformulation:
Consider a nominal nonlinear system (with optimal
control u,, obtained by SDRE techniques)
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*1a = f1(x14) + g1(x1q)x24 (23)
F2q = f2o(0g:%24) + 82 (X1d > 24 Mopy (24
where  xj, e R™ ., x,€R™, 4, eR™ and
g1€ R™", gye R, o7} exists.
with unmodeled input uncertainties:

x = i)+ g1(x)x2 25

Xy =[x, x,)+ g (x,x, (I + A(x,,x, Nu,,
+d, (x,,x,)+d,

(26)
where 4,, and d, (x,,x,) are uncertainties with d,,
bounded and |4, l<d,ns Alx,x,) is bounded and
"A(xl,xz)"s l-¢, with O<eg, <I.
In order to deal with the uncertainty and make the
perturbed system behave like Eqs. (23)-(24), extra-
control (&, ) is added to Eq. (26):
Xy = fr(x,x0) + 8, (e, X )+ A(xy, x,))(u,,

tu,)+d,(x,,x,)+d, ‘

(0]
This extra control is mainly composed of an online
tuned neural network (NN) which will be discussed
later. The main property of neural network concerned
for control and estimation purposes is the function
approximation. Let f(x) be a smooth function from
R" — R™. It can be shown that for some sufficient
large number of neurons, there exist weights (W ) and
activation function ( @(x) ) such that

fx)=wlpm+ex)
E(x) the

approximation error. In fact, for some positive
numberg, , one can find a neural network such that

(28)

where is neural network functional

e ol < e, - For good approximations, ¢(x) should
be a basis such as gaussian, log sigmoid and so on.
4.2 Extra Control design:

The goal is to find an extra control that can handle the
uncertainties. To be specific, make x; and x, bounded
around the desired trajectories. Here an online tuned
neural network is used for this purpose.

In Eq. (25), x,, is subtracted on both sides:

€)= fi(xp)+ g (x))xy — Xy

= fit g0, =%, + 8,0 —x, —a, + g/ (V,/9¢)
— 88 (OV,/0e) + g X

where e; = x; —x;, and V; is a Lyapunov function and

(29)

a, is a stablizing control for

é = filx))+ g (xDu—xy, (30)



For expression simplicity, x; is omitted in the

expression of f; and g; in Eq. (29).

Vi, = (0V,/01) + @V, /9e)" (f, + 8,0, = %,,) + (Y, /0e)) 8,2
—(0Vi/9e)" 8,8," (3V;/0e)) + (3V;/0e)) g%,

< -¥y(ef) + Az— AAT + Axy,
1 1 1
<-nle) - Al -1 - GlAl-fab - S 1Af

2 2
e+l
(€)Y
Where A = (3V, /9¢;)" g, »
Z=Xy —X9q — Oy +ng (aVI/ael) and
@V, /o) + (avl/ael)r(fl +g,a, - X,)S ‘Vs(lelb
. From Eq. (31), if z is bounded, so are V| and e;.
Consider the derivative of z
i=y ~yy = +(g] (OV;/08)), =3~y =0y +Gx1, Y1)
32)
where
G(xp,x0)=(gF (dV,/de,)), =d (gl (3V,/dey))/dt
Insert Eq. (27) into Eq. (32) to get
2=f,+8,T+8)u,, +u)+dy +dy—%,, -0, +G
(33)
By choosing
u, =—g5 (K,e;+f) (34)
where e, =x, —x,,; and f is the output of a NN with
X1,Xy,X1q4,X4, € and e, as inputs. The part of
-K,e, is a stablizing part that helps the initial
convergence.

Insert Eq. (34) into Eq. (33) to get

=g, (I +0g; K 2+ f, +8,(I+Dy, by (5,3, )+dyy + G0~ +

U +Dg K (A ~05)~g,( +Ng;'f
: (35)
Assume there exists ideal weights, such that

L+gU+ D, +dyy (%, %) + 8, +A)82_1KZ(AT -a,)

+ AN | + o5 ozl + G, — i, = W lnen) + £(x,, x,)
(36)

with |e(x;, x,)| <&y and Wi, <w, - Where I, is

Frobenius norm and "A"2F =1r(ATA). One of its

properties is (AT B) < “A"F"B"F . For vectors, Frobenius

norm is the same as 2-norm.
By choosing a proper weight-update rule of NN, the
u, in Eq. (34) can make z bounded. Then ¢, and e,

are bounded. It is called practical stability. The
problem is how to find such a weight-update rule. We

pick the structure of the neural network for u, with

three layers. The 7 in (35) can be written as a general
form:
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f=W,0,W,"0,W," p)) €y

The weighting functions in each layer are updated
according to the following rules:

Wl =—y1p[WlTp+Bleez]T (38)
vi;z = _72[W27¢’1 + B,K zeZJT 39
W} = _73¢~2e27 - 74W3 . (40)

where B, and B , are two constant coefficient

matrices. Yir Va2 Vao and y, are learning rate;

(ﬁl = ¢1(W1TP) and @2 =¢2(W2T¢1)

Here we omit the proof just for brevity of the paper.

4.3. ROBUSTNESS RESULTS:

To illustrate the effectiveness of robust neural extra
controller, we assume the mass of unknown load on the
second link is the uncertainty parameter, e.g. m,. In

the design of neural network, we adopt three layers and
N(12-5-5-2) structure with 12 inputs and 2 outputs. The

inputs include 4 reference states x, =[q,,4,,9,,4,1,
driven by SDRE controller, 4
x.=[q,,49,,9,,9,], with  parameter
driven by SDRE controller without extra control and 4
errors between X, and X_.. The tangent sigmoid

real states

uncertainties

function was chosen as the activation function in each
layer. From the equations (34), (37)-(40) we can note
that this extra controller design does not need
complicated training process of the neural network.
The update of the weights follows a fixed dynamic
equation. These formulations are based on the
Lyapunov function analysis and guarantee the stability
of the neural network. This is a big advantage of this
design. The parameters we need to adjust are mainly
K, which helps the initial convergence, y, -y, which

can be tuned to adjust the learning rates, and B, B,

which combined with g can adjust the gain

magnitude of the extra control. Here we have to
mention that SDRE controller as such possess the
robustness to some extent. Extra control plays a bigger
role when there exist large unknown load variations.
Figure-4 demonstrates SDRE robustness under 50%

load uncertainty. We assume the normal value of m,
is 2 as before. ® (1) stands for the responses under the

parameter uncertainty; ® () stands for the reference

response. We can see SDRE still performs well in
terms of the error between the reference and
uncertainty system. Figure-5 compares the states and
control response with and without extra control under



150% load uncertainty (not only mass but moment of
inertia). Note that this type of variations would occur in
practice if the same robot is used to handle variable
loads. In the plots, and e(e) stands for the response
after adding the extra control. Note the total control T
is the sum of SDRE control 7(¢) and extra control

t(e). The dashed line

trajectory obtained from the normal parameters. The
initial  position is the same as  before,

(‘l,n =60".q,, = 90°)-

represents the reference

The simulation results illustrate that the extra
controls drive the state trajectory very closely to the
reference trajectory in terms of both the overshoot and
the settling time. They become very effective in the
presence of large mass uncertainty. Also we can find

Reference:

from the control plots that the extra control efforts are
not so big which is acceptable for implementation.

5. Conclusions:

In this paper, SDRE technique was applied to the
robot manipulator control problem. This class of
nonlinear control system can be easily formulated in
terms of a nonlinear optimal control problem and
SDRE approach provides a systematic way to deal with
it. When parameter uncertainties is considered, a neural
network based extra control was designed to provide
the robustness characteristics. A simple two-link
manipulator control example was studied and the
simulation results demonstrate the effectiveness of the
SDRE technique and the robust extra control design.
The combination of these two new techniques presents
a great potential in the robot control application.
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