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ABSTRACT 

 

NO REFERENCE IMAGE QUALITY ASSESSMENT 

 

 Ravi Shankar Ravela  

 

Thesis Chair: Mukul Shirvaikar, Ph. D. 

 

The University of Texas at Tyler                                                                                       

May 2019 

 

A no-reference image quality assessment (NR-IQA) technique can measure the visual 

distortion in an image without any reference image data. NR-IQA aims to predict the image 

quality based on the quality perceived by the Human Visual System (HVS). Image 

distortions can be caused through the acquisition, compression or transmission of digital 

images. From the several types of image distortions, JPEG and JPEG2000 compression 

distortions, addition of white noise, Gaussian blur and fast fading are the most common. 

Several approaches were proposed to tackle this problem, some were distortion specific 

and some were general purpose. Of these, Convolutional Neural Networks (CNN) based 

approaches have proven to be efficient in predicting quality of the images. Most of these 

models are trained and tested only for single distortion general purpose images, but in the 

real world the images contain more than one distortion type.  

This Work mainly focusses on using deep convolutional neural networks (DCNNs) for 

NR-IQA, identifying the different distortion types that are present in the image using 

distortion type classifiers and also, find the distortion quality of each distortion types using 

a network of DCNNs. We name this novel approach to be multiple DCNN (MDCNN). We 

fine tune the networks with different activation functions, optimizers and different tunable 

parameters in CNNs for the better accuracy. Also, we experiment on different patch sizes 
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that can affect the performance of the system. This proposed model is trained on the LIVE 

II database and its performance is tested on the CSIQ, and TID 2008 databases which are 

single distortion. These models achieved high correlation coefficients and accuracy scores 

on these databases. We further provide the visualization of the inner layers of the DCNN 

for better understanding of the image quality. 
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CHAPTER ONE 

INTRODUCTION 

 With the advent of ubiquitous mobile cameras, digital photography and powerful 

photo editing software’s on smartphones the trend of sharing images and videos through 

internet applications is increasing rapidly. With the rapid growth in smartphone ownership 

across worldwide this trend is going to continue if not increase in the upcoming years. As 

of June 2015, approximately 760 million images are uploaded to the Snapchat everyday 

[1], which is a small player compared to the Facebook, Instagram and Google Photos. The 

digital images captured by the user are subjected to several distortions. These distortions 

include artifacts during the capture, compression which might be a lossy one, transmission 

the quality can be altered due to the insufficient bandwidth requirements, in storing the 

images even the alteration of image size according to the requirement of the user device 

such as from 4K image to 720P for some smartphones. The human visual system can 

discern some of  these alterations and can judge the quality of images [2]. In order to 

provide good quality for the end user there is a need to detect the quality of the image with 

respect to the human visual system. Furthermore, this process should be automated and 

ideally applied in real time. 

1.1 Image Quality Assessment  

Picture quality models that can accurately predict human quality judgments can be used to 

greatly improve consumer satisfaction, via automatic monitoring of the qualities of 

massively distributed pictures and videos, and to perceptually benchmark picture 

processing algorithms such as compression engines, denoising algorithms, and super-

resolution systems that substantially affect viewed picture quality. It is very difficult to 

model these algorithms that are in agreement with the human visual system as the computer 

stores data only as bits and pixels and is unable to sense the larger picture. Several methods 

were proposed in the past decade to tackle this problem ranging from subjective Image 

Quality Assessment  (IQA) (use of human observers for IQA) to objective (use of 

mathematical models for IQA). 
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Objective Image Quality Assessment (IQA) is again divided into three categories Full 

Reference (FR-IQA) where the distorted image and its corresponding reference image are 

available for assessment, Reduced Reference (RR-IQA) where the partial information 

about the reference image is available, No Reference (NR-IQA) or Blind IQA where no 

reference image is available for assessment. Further, NR-IQA algorithms were divided into 

two types distortion specific algorithms, where the user has the knowledge of the specific 

distortion type(s) that are present in an image, and general-purpose algorithms where the 

user has no prior knowledge about the distortion type and has to predict the overall quality 

of the image.    

Several algorithms were proposed for NR-IQA over space, one class of these algorithms 

uses handpicked features such as edge width, color, sharpness to predict the image quality. 

Examples include S3 [3], LPC [4], JNB [5] which can predict quality of certain distortion 

types. DIIVINE [6], BLIINDS [7], BRISQUE [8] are general purpose NR-IQA algorithms. 

The accuracy of these algorithms is acceptable but are constantly outperformed by the 

Convolutional Neural Network (CNN) based approaches which employ automatic learning 

features from the raw images. These algorithms automatically select the features that are 

helpful for the detection of distortions and prediction of the quality of an image. This thesis 

mainly focuses on general-purpose NR-IQA algorithms which can detect the multiple 

distortion types present in an image and can further estimate the percentage contribution 

of each type with respect to the total distortion in the image. The novel model developed 

uses a network of DNNs and is named as multiple DNN approach (MDCNN). The detailed 

description of the above model is given in chapter 3 and chapter 4. 

1.2 Applications of Image Quality Assessment 

There are several applications of IQA algorithms in different disciplines. IQA algorithms 

are used to compare and evaluate the performance of different image processing algorithms 

and compression techniques and select the best among the possibilities. In the process of 

embedding a signature into an image for authentication. IQA is used to distinguish the 

watermarked image and restore the original image. These algorithms are also used in image 

or video acquisition system to monitor and control image quality, check for artifacts and 

guide corrections. Similarly, these algorithms are also used in multimedia streaming 
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services to provide better end user satisfaction. These algorithms can also be used in 

satellite imagery for the detection and removal of artifacts from the certain parts of high 

dynamic range images. 

1.3 Challenges in Image Quality Assessment 

There has been lot of research in recent years in the field of IQA and there has been some 

progress. There are still several issues and many new challenges still exists in this field. A 

survey of some of the challenges that are and current trends in IQA is provided by Wang 

[9].  

• It is highly desired to reduce the complexity of a IQA/VQA algorithm in order to 

compute them in real time application or even to speed up a process.  

• IQA/VQA should also consider the external factors into consideration such as 

viewing angels, viewing conditions along with the image while predicting the 

perceptual score.  

• IQA algorithms should be able to evaluate the certain portion in an image, in a HDR 

satellite image only a certain portion of an image is distorted rather than entire 

image in regular images, desired IQA should be able to detect such portions.  

• Desired IQA algorithms should be able to work across different type of images 

color and monotone images. 

•  An IQA/VQA algorithm should be able to evaluate the multiple distortion present 

in an image, as specific distortion types are caused by specific processes and find 

them is key to eliminate such distortions. 

1.4 Organization of Thesis 

This thesis is divided into six chapters. Chapter 2 gives a brief study about the previous 

work are related to the current study. Chapter 3 explains the technical terms (CNN, Max 

Pooling, Convolutional Layers, Activation Functions, Optimizers), and describes about the 

databases that are used in this experiment. Chapter 4 describes the architectures 

implemented and experimental procedures. Chapter 5 lists and analyzes the simulation and 

implementation results for the architecture using different parameters. Chapter 6 consists 

of the conclusions and future work. 
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CHAPTER TWO 

LITERATURE SURVEY 

 As discussed in Chapter 1, Image Quality Assessment has many applications and 

is very tough to achieve because of its dependency on the align with human behavior. There 

are several distortion types that could affect the quality of an image. Furthermore, it is 

possible that there is the presence of more than one distortion type in a single image and 

these distortion types tend to be additive in nature and degrade the quality of an image even 

more. Figure 2.1 shows a few distortion types that can be present in an image. In the 

following section the different types of subjective IQA algorithms are briefly covered and 

we also delve into the objective IQA algorithms. 

 

Figure 1. Different Distortion types. (a) reference image, (b) blurring, (c) JPEG compression, (d) 

JPEG2000, (e) white noise. 

2.1 Subjective Image Quality Assessment 

Subjective Image Quality assessment method uses ratings and observations from the 

human observers to assess the quality of an image. Subjective quality assessment typically 

focuses on quantifying quality as perceived by an average observer. A group of users were 

given certain test images to evaluate, all their opinion scores were collected and utilized 

for computation of the final value. It is the most accurate approach since humans are the 
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end users in most of cases [10]. There are several subjective IQA methods, summarized as 

follows: 

1. Single Stimulus Rating: Images were displayed for a short period of time and the 

users were asked to rate the quality of an image. Rating can be of form continuous 

from (0-100) or of categorical form categories ranging from good quality to poor 

quality. 

2. Pair-wise Similarity Judgement: Two images are displayed, and the user has to 

predict the quality of an image with respect to the other image in the continuous or 

categorical form. 

3. Differential Mean Opinion Scores (DMOS): DMOS rates the test images by 

calculating the difference between the quality score of the original versus the 

distorted test image and is calculated by the following equation. 

 𝐷𝑚𝑜𝑠𝑖,𝑗 =   𝑟𝑎𝑡𝑖𝑛𝑔𝑖,𝑟𝑒𝑓(𝑗) −  𝑟𝑎𝑡𝑖𝑛𝑔𝑖,𝑗 (Eq. 1) 

Where 𝑟𝑎𝑡𝑖𝑛𝑔𝑖,𝑗 is the raw score for ith subject and jth image and 𝑟𝑎𝑡𝑖𝑛𝑔𝑖,𝑟𝑒𝑓(𝑗) is the raw 

score for ith subject and reference image which corresponding to jth tested image. 

Also, there are several International standards proposed for performing subjective quality 

assessment like ITU BT 500, ITU p910 and ITUP913. Even though the Subjective 

assessment of image quality is most accurate and reliable, it is very impractical for real 

world applications due to time and resource constraints of gathering all people and 

collecting their opinion scores. Hence, it is practical to use objective IQA methods. 

2.2 Objective Image Quality Assessment. 

Objective image quality assessment uses mathematical models instead of human observers 

to predict the image quality. These models should be capable of predicting the quality of 

an image as perceived by the humans. These algorithms do not use humans, are fast and 

can be used in real time applications of image enhancement and restoration. Based on the 

availability of the image, IQA algorithms are divided into three categories, namely; Full 

Reference Image Quality Assessment (FR-IQA), Reduced Reference Image Quality 

Assessment (RR-IQA) and No Reference Image Quality Assessment (NR-IQA). NR-IQA 
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is further divided into two parts distortion specific NRIQA and distortion generic or general 

purpose NRIQA.  

 

Figure 2. Objective Image Quality Assessment Algorithms Classification [38] 

2.2.1 Full Reference Image Quality Assessment (FR-IQA): 

As defined earlier, FR-IQA algorithms use a full reference image or the original undistorted 

image and a test image to predict the quality of the test image. Several FR-IQA algorithms 

are proposed over time. One of the algorithms calculates the quality of an image in terms 

of Peak Signal to Noise ratio (PSNR)  which is a ratio of power of distortion and maximum 

possible power of a system by using Mean Square Error which is shown in the equations 

below. 

 
𝑀𝑆𝐸 =  

1

𝑊𝐻
∑ ∑ (𝐼𝑟𝑒𝑓(𝑖, 𝑗) − 𝐼test(𝑖, 𝑗))

2
𝑊

𝑗=1

𝐻

𝑖=1

 

 

(Eq. 2) 

 𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10

𝑊𝐻2

𝑀𝑆𝐸
 (Eq. 3) 
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Where H,W are the Height and Width of an image. Iref, Itest are reference and test images 

respectively. The performance of this evaluation is not up to mark due to its ignorance of 

features perceived by the human visual system (HVS). 

Another FR-IQA algorithm, SSIM (Structural Similarity Index) [11] focuses on the 

sensitivity of HVS. As HVS is highly adapted for exacting structural information from a 

scene, the work is based on the degradation of structural information. An image with high 

quality has more similar structure to the original image and a degraded image has less 

structural similarity. It is an improved version of the universal image quality index. It 

outperforms PSNR in predicting the image quality. Another FRIQA algorithm FSIM 

(Feature Similarity Index) [12] relies on the low-level features such as edge width and zero 

crossings to estimate the quality of images. 

The FR-IQA algorithms by Charrier et al [13] proposes a statistics and machine learning 

based approach. The proposed model constructs a feature vector and then classifies the 

image into five quality classes Support vector regression (SVR) is performed based on the 

quality class to estimate a final score.  The scope of FR-IQA algorithms is limited as the 

reference image not available in most of the cases. They are used in applications like digital 

watermarking and image compression where a reference image is available 

2.2.2 Reduced Reference Image Quality Assessment (RR-IQA) 

Reduced reference image quality assessment uses partial features of the reference image in 

estimating the quality of the test image. These partial features include frame information, 

edges or colors. Successful RR-IQA algorithm should satisfy the following criteria [14] : 

(a) they should provide an efficient summary of the reference image, (b) should be able to 

detect different distortion types. (c) should be in sync with human perception of image 

quality. These types of algorithms mainly find their application in communication systems 

to monitor the quality of images that are transmitted through these channels and check for 

distortion. 
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2.2.3 No Reference Image Quality Assessment (NR-IQA) 

No Reference Image Quality Assessment predicts the quality of the image without using 

any reference images. It is by far the most used and most significant because it is a 

standalone method of predicting the quality of the image without any reference images. It 

is more challenging to design these algorithms compared to FR-IQA and RR-IQA 

algorithms. These algorithms find their use in a wide variety of applications from image 

acquisition systems, image processing systems to communication systems. The main goal 

of such algorithms is to predict the quality of an image as accurately as possible it is desired 

to make the algorithm computationally less intensive to allow them work to in real time 

and to use them in low power embedded devices. As discussed in the above sections these 

algorithms are classified into two categories distortion specific and distortion-generic or 

general-purpose NR-IQA algorithms. 

Distortion Specific NR-IQA algorithms are able to function only if the distortion type is 

known to the user. One such algorithm is the Spectral and Spatial Sharpness measure (𝑠3) 

[3] it focuses on the local perceived sharpness of an image. It utilizes both spectral and 

spatial properties to produce the sharpness map to predict the blurriness or sharpness in an 

image. In order to produce the local sharpness maps this model operates on the smaller 

blocks within an image. 

Models such as just noticeable blur (JNB) [5] and cumulative probability of blur detection 

(CPBD) [15], operate by detecting the edges, followed by estimating the probability of 

detecting blur at the detected edges. They involve calculating the density function for the 

obtained probabilities. Quality score is obtained by calculating the final cumulative 

probability for the probability density functions. These models are used to measure the 

quality of blur and JPEG2000 compressed images 

There are also statistics and machine learning based distortion Specific NRIQA models. 

Pei et al [16] proposed a model for  a sharpness measure based on large scale structures. 

This model uses weighted least squares filter to extract the prominent edges and then 

probabilities of edge widths ranging from 3 to 11 pixels are calculated. These probabilities 

along with contrast threshold are fed into a Support Vector Regressor to obtain a single 
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regressor output. This kind of algorithm finds applications where there is a possibility for 

only a single type of distortion in an image. 

General purpose NR-IQA algorithms can predict the quality of an image irrespective of 

the distortion type. Several algorithms were proposed, and these algorithms can be broadly 

classified into two categories. (a) Natural Scene statistic based approaches (NSS): the 

main idea is to measure the statistical changes that are present in the images that are 

affected due to the presence of distortions in the image. These algorithms largely depend 

on handcrafted features that capture the relevant information to identify the distortion 

levels and predict the quality of an image. (b) feature learning based approach: which 

instead of using handpicked features will learn features directly from the images and are 

derived during the training process of the algorithms. Examples of (a) include, BLIINDS 

II [7] by saad et al which operates in the Discrete Cosine Transformation (DCT) domain, 

these DCT coefficients are affected by the type and amount of distortion present in an 

image. In DIIVINE [6] the features are extracted by decomposing the image in the wavelet 

domain. 

BRISQUE [8], by Mittal et al is based on spatial natural scene statistics. This model 

computes locally normalized luminance and uses its parameters as features. These features 

are fed to a regressor to get the final output as a quality score. As this model operates in 

the spatial domain rather than wavelet or DCT domain it substantially decreases the 

computational cost. Apart from BRISQUE, the other algorithms are very slow 

computationally but the performance is decent. 

Second type of these algorithms tend to be more efficient the NSS based approaches 

because of their ability to extract the features from the raw images. One of such algorithms 

is CORNIA [17], which uses unsupervised learning to extract the codewords from raw 

pixel images. It then uses these codewords to learn features for predicting the quality of 

images. This algorithm has better performance than all the NSS based approaches stated 

above. 
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Kang et al [18] proposed a CNN based approach. Their model performs local contrast 

normalization on the images and cuts the images into non-overlapping patches. The 

training and quality prediction are done on these patches instead of the complete image. 

By this method they were able to predict the quality of certain portions of each image. Due 

to CNN’s powerful learning capabilities the were able to achieve high accuracy scores. 

Bosse et al [19] proposed a NR-IQA model based on Deep Convolutional Neural 

Networks (DNN). They used un-preprocessed image patches, instead of local contrast 

normalized or global contrast normalized images as input to the network to predict the 

quality of an image. They implemented the weighted patch aggregation method to improve 

the accuracy by reducing the effect of patches with minimal changes like blue sky. Hou et 

al [20] proposed a model based on a discriminative deep belief network (DBN). This 

model first classifies the images into 5 categories and further quality pooling converts 

these categories into a numerical score. Training is done using unsupervised greedy layer 

models.  

All the above general-Purpose NR-IQA algorithms that were proposed were able to detect 

the quality of images with multiple distortions but were not able to quantify the amount of 

distortion of each type that is present in an image. Fan et al [21] proposed a model with a 

network of CNNs, each specialized in predicting the quality of each distortion type and a 

distortion type classifier to predict the amount of each distortion type present in an image.  
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CHAPTER THREE 

TECHNICAL BACKGROUND 

The main goal of this chapter is to explain the different components in Convolution Neural 

Networks, operation of CNN and compare different types of popular Deep Learning (CNN) 

architectures and their relative advantages. We will analyze which architecture is suitable 

for our NR-IQA problem. We also discuss different data preprocessing algorithms that are 

used in this thesis. Furthermore, a brief overview is provided for different types of datasets 

that are present to evaluate NR-IQA models. Finally, we propose our architecture to tackle 

the NR-IQA problem. 

Deep learning is a branch of machine learning that is specializes in automatically 

determining the useful features from input data such as images, it can be used to train 

systems that recognize set of objects in images, group of pixels or other complex patterns 

like IQA. The main idea behind the deep learning is to replace the handpicked feature 

extractors, which are difficult to design and are inefficient for complex processes like NR-

IQA. Deep learning architectures include multiple stacked layers of neural networks which 

increases the depth of the network. This architecture helps in learning the high-level 

features and specific patterns which cannot be perceived by handpicked features. 

Convolutional Neural Networks are one of such deep learning models and the detailed 

description of CNN is provided below. 

3.1 Convolutional Neural Networks (CNN) 

Convolutional neural networks are deep, fully-connected feedforward neural networks that 

are used primarily to classify images, cluster them by similarity, and perform object 

recognition within scenes. They are inspired by the biology of neurons and visual system 

structure in animals. A CNN uses a system much like a multilayer perceptron that has been 

designed for reduced processing requirements. The layers of a CNN consist of an input 

layer, an output layer and a hidden layer that includes multiple convolutional layers, 

pooling layers, fully connected layers and normalization layers [22]. There are two key 

features of a CNN: Local connectivity is a concept of connectivity of neurons to a subset 
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of pixels in an input image, and parameter sharing is sharing of weights by all neurons in 

a particular feature map. These two characters helps CNN perform supervised learning. 

 

Figure 3. Typical architecture of a convolutional neural network [22]. 

As Shown in Figure 3, CNN architecture consists of several components such as 

convolutional layers, pooling layers, fully connected layers, input feeds and activation 

functions. The following sections describes further detail. 

3.1.1 Convolutional layer 

Convolutional layers are the building blocks of a CNN, and consist of a set of learnable 

kernels, which have a small receptive field and are extended through the full depth of input 

volume. Each filter takes the input of its height and width finds the convolution through 

the dot product operation between the input image and kernel values, producing a 2D 

feature map for that filter. Outputs from all filters from these kernels from one layer forms 

the output of convolution layer. Height, width and depth are the parameters we can control 

in these layers. For a convolutional layer with total C number of filters, the output of its 𝑖𝑡ℎ 

filter, denoted by 𝑦𝑖
𝑙, is computed by the following. 

 𝑦𝑖
𝑙 = 𝑠 (∑ 𝑓𝑖,𝑗

𝑙

𝐶𝑙−1

𝑗=1

𝑦𝑖
𝑙−1 + 𝑏𝑙) (Eq. 4) 
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Where 𝑏𝑙 is the bias vector, 𝑓𝑖,𝑗
𝑙  is the ith kernel of the convolution layer l that is connected 

to the jth feature map of layer l-1, and s is the activation function.  

3.1.2 Fully Connected layer 

This layer’s functionality is same as a multilayer perceptron. The first fully connected (FC) 

layer is generally connected to all activations from its previous layers. These layers do not 

support parameter sharing. The function of a FC layer is to learn weight (W) and bias (b) 

vectors from the previous layer and forward it to next layer until the output layer.  The 

output of FC layer is determined by the equation. 

 𝑦𝑙 = 𝑠(𝑦𝑙−1. 𝑊𝑙 +  𝑏𝑙) (Eq. 5) 

Where 𝑏𝑙 is the bias vector, 𝑊𝑙 is the weight vector, 𝑦𝑙 is the current layer and 𝑦𝑙−1 is the 

layer before it, s is the activation function. 

3.1.3 Pooling layers 

Pooling is a form of nonlinear down sampling its main function is to reduce the 

dimensionality of the convolutional layers, reduce the number of calculations and avoid 

overfitting. There are several ways to do pooling, max pooling is by far the most used one 

and min-max, average pooling are the other notable algorithms. Max Pooling selects the 

top two values from each patch in the convolutional kernel and forwards it to the next layer. 

3.1.4 Activation functions 

Activations functions or transfer functions are the ones which supervises the transition 

between the two layers of a CNN. These activation functions introduce the non-linearity 

aspect in the implemented model. There are several activation functions and we describe a 

few of them that are used in this project. 

1. Tanh is a nonlinear activation function equivalent to the function hyperbolic tangent. 

The output range is between [-1,1]. It is one of the traditional activation functions. 

Saturation is one of its main disadvantages. It is slow in operation compared to other 

activation functions. It is calculated using the formula. 
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 tanh(𝑥) =  
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
 (Eq. 6) 

2. ReLU Rectified Linear Unit [23] is also known as the ramp function and analogous to 

half-wave rectification because thresholds the activation at zero. Due to its simple 

mathematical operations, it is highly preferred over other conventional activation 

functions. It is calculated using the formula 

 𝑅𝑒𝑙𝑢(𝑥) = max(0, 𝑥) (Eq. 7) 

3. Sigmoid is also one of the traditional activation functions. It is generally used in the 

last or output layers of CNN. The range of sigmoid is between [0,1]. It is defined as a 

bounded , differentiable, real function that is defined for all real input values and has a 

non-negative derivative at each point. It is calculated by the equation given below. 

 𝑆(𝑥) =  
1

1 + 𝑒−𝑥
 (Eq. 8) 

 

Figure 4. graph of activation functions (a) sigmoid (b) tanh (c) ReLU 

4. SoftMax or normalized exponential function takes an input vector of K real numbers 

and normalizes it into a probability distribution consisting of K probabilities. It is 

generally used as the last layer in multiclass classification problem. It is calculated by 

the following equation. 

𝜎(𝒛)𝑗 =  
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

    𝑓𝑜𝑟 𝑗 = 1, … . , 𝐾 𝑎𝑛𝑑 𝒛 = (𝑧𝟏, … , 𝑧𝒌) ∈ ℝ𝐾 

 

(Eq. 9) 
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Apart from these, there are several activation functions such as Linear (which directly 

sends the output instead of amplifying it). binary crossentropy and categorical crossentropy 

which are again useful for classifying the data. 

3.2 Training of Convolutional Neural Networks 

There are several components that can influence the training of convolutional neural 

networks which include optimizers, reducing overfitting, data preprocessing methods. 

Different algorithms that are used in this project are explained below. 

3.2.1 Optimizers. 

Optimization algorithms in neural network helps to minimize an error function 𝑬(𝒙), which 

is dependent on learnable features by changing the values of Weights (W) and Bias (b) 

values of a neural network by the process of backpropagation. this project two main 

optimizers are used, namely Stochastic gradient descent and Adam. 

Stochastic Gradient Descent (SGD): is an iterative method for minimizing an objective 

function. It changes the weights of the network for every single training iteration resulting 

in noisy gradient to escape local minima convergence. Noisy gradient could also make 

network weights difficult to converge. SGD updates the parameters 𝜃 of the objective 𝐽(𝜃) 

by the following equation. 𝛼 is the learning rate. 

 𝜃 =  𝜃 −  𝛼∇𝜃𝐸[𝐽(𝜃)] (Eq. 10) 

Adam [24]: Adam or Adaptive momentum estimation, computes individual adaptive 

learning rates for different parameters from the previous estimates of their gradients. It is 

computationally efficient and requires less memory. It can be calculated from the equations 

given below. 

 

𝑚𝑡 =  𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑑𝑝𝑡−1 

 
(Eq. 11) 

 𝑣𝑡 =  𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑑𝑝𝑡−1
2  (Eq. 12) 
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 𝑚𝑡̂ =  
𝑚𝑡

(1 − 𝛽1
𝑡)

 (Eq. 13) 

 𝑣𝑡̂ =  
𝑣𝑡

(1 − 𝛽2
𝑡)

 (Eq. 14) 

 𝑝𝑡 =  𝑝𝑡−1 −  
𝜀 ∗ 𝑚𝑡̂

(√𝑣𝑡 ̂ + 𝜀)
 (Eq. 15) 

𝑚𝑡, 𝑣𝑡 are the estimates of first and second momentum gradient descent. 𝑚𝑡̂, 𝑣𝑡̂ are bias 

corrected second moments. 𝜀 is a small constant to avoid division by zero. There are several 

other optimizers like Adagrad, RMSprop Adadelta their performance is subpar compared 

to Adam optimizer. 

3.2.2 Controlling Overfitting 

Overfitting is a condition where the network learns all the features too closely to a 

particular dataset including the noise present in that dataset. This results in excellent 

training accuracy scores, but the model fails to perform with inputs other than the trained 

inputs. This situation is not at all desirable. In order to reduce overfitting several methods 

are available. In this project dropout regularization is used, dropout regularization is a 

technique where the features learned by some randomly selected neurons are left out. This 

means the selected neurons are not activated in the forward and backward passes during 

certain epoch of the training process. All the other overfitting regularization methods are 

left to default while using python libraries. 

3.3 Data Preprocessing 

The performance of CNN directly depends on the data that is used for training. Uniformity 

of all inputs is the key, to make feature extraction process effective. It is advisable to 

preprocess the input data before training. In this project we experimented with three 

different types of data preprocessing techniques that are proven to be effective in the 

literature. 

1. Global Contrast Normalization (GCN): this algorithm is proven to be an effective 

way of data preprocessing for object recognition tasks. In this algorithm all the pixels 

in an image are normalized to zero mean and unit standard deviation for each channel 
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(RGB) of the input image. Assuming the intensity of pixel at position (𝑖, 𝑗) is 𝐼(𝑖, 𝑗), its 

normalized intensity value 𝐼(𝑖, 𝑗) can be calculated as. 

 𝐼(𝑖, 𝑗) =  
𝐼(𝑖, 𝑗) − µ(𝑧)

𝜎(𝑖, 𝑗) + 𝐶
 (Eq. 16) 

 𝜇(𝑧) =
1

𝑃 ∗ 𝑄
 ∑ ∑ 𝐼(𝑖, 𝑗)

𝑄

𝑞=1

𝑃

𝑝=1

 (Eq. 17) 

 𝜎(𝑖, 𝑗) = √
1

𝑃 ∗ 𝑄
∑ ∑(𝐼(𝑖, 𝑗) − 𝜇(𝑧))

2

𝑄

𝑞=1

𝑃

𝑝=1

 (Eq. 18) 

where P, Q, z are the dimensions of the image 𝜇(𝑧) is the mean and 𝜎(𝑖, 𝑗) is the standard 

deviation. 

2. Local Contrast Normalization (LCN): It is the most used and proven to method of 

data preprocessing for NR-IQA tasks. In this algorithm, the local patch data is 

normalized to zero mean and unit standard deviation for each channel of the input 

image. It was previously used in NR-IQA algorithms such as BRISQUE [8], IQA-CNN 

[18], IQA-MCNN [21]. Assuming the intensity of pixel at position (𝑖, 𝑗) is 𝐼(𝑖, 𝑗), its 

normalized intensity value 𝐼(𝑖, 𝑗) can be calculated as. 

 𝐼(𝑖, 𝑗) =  
𝐼(𝑖, 𝑗) − µ(𝑖, 𝑗)

𝜎(𝑖, 𝑗) + 𝐶
 (Eq. 19) 

 𝜇(𝑖, 𝑗) =  ∑ ∑ 𝐼(𝑖 + 𝑝, 𝑗 + 𝑞)

𝑞=𝑄

𝑞=−𝑄

𝑝=𝑃

𝑝=−𝑝

 (Eq. 20) 

 𝜎(𝑖, 𝑗) = √ ∑ ∑ (𝐼(𝑖 + 𝑝, 𝑗 + 𝑞) − 𝜇(𝑖, 𝑗))
2

𝑞=𝑄

𝑞=−𝑄

𝑝=𝑃

𝑝=−𝑃

 (Eq. 21) 

where P, Q are the height and width of the image patch, 𝜇(𝑖, 𝑗) is the mean and 𝜎(𝑖, 𝑗) is 

the standard deviation of the image patch where the LCN is performed. 
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3. RGBtoGray: It is a simple yet effective way in improving the accuracy. This method 

converts the 3D RGB images to 2D grayscale images. using the equation given below. 

 𝑔𝑟𝑎𝑦 = 0.29 ∗ 𝑅 + 0.59 ∗ 𝐺 + 0.11 ∗ 𝐵 (Eq. 22) 

 

Figure 5. Image after different preprocessing algorithms (a)original image (b)gray scale conversion 

(c)global contrast normalization (d)local contrast normalization 

3.4 Image Quality Assessment Databases 

In this project we use three major databases that are most commonly used to evaluate IQA 

algorithms, these databases provide us with the reference images, their induced distortions 

and the DMOS scores which were evaluated across a wide variety of observers from 

different countries these databases are summarized below. 

(1) LIVE Image Quality database [25]: This database is developed by LIVE lab at 

University of Texas at Austin. It contains of 29 reference images of different sizes and 

779 distorted images with 5 distortion types namely: JPEG compression, JPEG2000 
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compression, Gaussian blur, white noise and fast fading. All the images are distorted 

with only single distortion type. DMOS values ranges from 0-100, with higher values 

being the most degraded image. DMOS ratings were determined with 15 human 

subjects. 

(2) CSIQ database [26]: This database is developed by Computational Perception and 

Image Quality lab at Oklahoma State University. It contains a total of 30 reference 

images. All images are of same size and 866 distorted images with six distortion types 

namely: JPEG compression, JPEG2000 compression, white noise, pink noise, Gaussian 

blur and contrast stretching. Each distortion type has five distortion levels. All the 

images are distorted with single distortion type. DMOS values ranges from 0.0-1.0, 

higher the value lesser the degradation of the image. DMOS ratings were determined 

with 25 human subjects. 

(3) TID2008 database [27]: this database was created by Signal Processing Laboratory at 

Tampere University of Technology. This database has 25 reference images and all 

images are of the same size, there are 1700 distorted images with 17 distortion types. 

Each distortion type has five distortion levels. DMOS values ranges from 0.0-9.0 with 

highest being the least degraded image.  DMOS ratings were determined with 838 

human subjects. 
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CHAPTER FOUR 

METHODS AND EXPERIMENTAL PROCEDURES 

 

 In the previous chapter we studied the key components and operation of CNN. In 

this chapter we analyze a few successful CNN architectures. These architectures along with 

the discussed pre-processing techniques proved successful in solving problems such as 

image classification and object detection. We build a few models based on the described 

architectures to tackle the problem of NRIQA. 

4.1 CNN Architectures 

4.1.1 Shallow CNN architecture 

There are several shallow CNN architectures proposed over time such as LeNet [28]. Some 

of the architectures that proved successful for the problem of NR-IQA were IQA CNN [18] 

and IQA CNN++ [20]. These architectures generally have one or two convolution layers 

with a small number of convolutional filters of size ranging around 50-100. These are 

computationally less intensive with around 60,000 tunable parameters. While the accuracy 

of these networks is descent, feature extraction capabilities of these networks are limited 

due to the lack of depth in the layers.  
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Figure 6. Architecture for IQA CNN [18] 

4.1.2 VGG-16 

VGG stands for Visual Geometric Group, it was developed by Simonyan and Zisserman 

[29]. It consists of 16 convolution layers with two fully connected layers. All the layers are 

stacked over each other increasing the depth of the CNN. This model only uses 3 × 3 

convolutional kernels with lots of filters. This is the most preferred model for extracting 

the features from the images. Because of its huge number of 138 million tunable parameters 

training and computing it is often a tedious task. With increasing depth it creates vanishing 

and exploding gradient issues which are also not recommended. Bosse et al [19] used an 

architecture similar to VGG net for NR-IQA and achieved high correlation scores. 

 

Figure 7. VGG-16 network architecture. 

4.1.3 RESNET 

RESNET stands for Residual Neural Network [30]. Unlike the other Deep Neural networks 

all the layers are not sequential. These are built on micro-architecture modules which are 

also called as network in networks. Each of these blocks consists of a set of convolutional, 

pooling layers and normalization. The core idea is to identify the shortcut connections that 

skip modules, connect few of these micro block modules. Using this technique, they were 

able to reduce the complexity of the network even with the increase in depth and reduce 

the number of tunable parameters. This also solved the vanishing and exploding gradient 
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problems. Computation and training of RESNETs is also not tedious compared to VGG net.  

Hongyu et al [31] used architecture like RESNET for NR-IQA. 

 

Figure 8. RESNET architecture. 

4.2 Proposed Architecture 

With all the problems stated in section 1.4, the proposed model should have to solve the 

following problems that are present in NR-IQA: 

1. It is important for the NR-IQA algorithm to be general purpose and able to predict the 

quality of images with multiple distortions in it. 

2. It is important for the NR-IQA algorithm to be able to find the distortion levels in 

certain parts of an image, as the distortions in an image are not uniform, and in HDR 

images the chances of distortion in a specific part of an image is highly likely. 

3. It is important to identify the number of distortion types in an image and their 

probability in the total distortion level of an image. 

The ideal model should at least solve the above quoted problems to be a successful general-

purpose NR-IQA algorithm. Based on the successful architectures in the literature survey 

we found that the performance of the model is optimum if we know the distortion types 
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that are present in an image and the percentage of each distortion type. Furthermore, it is 

desired that every distortion type should have a novel expert IQA network for more 

accurate results rather than a single combined expert IQA for all distortion types. It is 

important to evaluate the image for all the distortion types to predict more distortion aware 

features. For this propose a distortion type classifier is designed. Then finally it is ideal to 

fuse all the probabilities together to get the single regressor output for evaluation purposes. 

This model is similar to the one that is proposed by the Fan et al [21]. The real differences 

between their approach and our model is the use of deep convolutional neural networks 

and RESNETs for the evaluation of the images and specialized expert IQA’s for the image 

quality assessment mainly to improve the performance of the model. 

  

Figure 9. Proposed MCNN model by Fan et al [21] 

Our proposed model architecture consists of three major components Distortion type 

classifier (DTC) to classify the distortion types and the number of distortion types along 

with their percentages present in the image, a network of Expert IQA’s one for each 

distortion type, to predict the image quality for that particular distortion type and finally a 

fusion algorithm to combine all the outputs from the networks to make it a single which is 

relatable to the DMOS score or human evaluation score. The fusion algorithm proposed is 

based on weighted average pooling, as inspired from the literature [21]. Such a design is 

proposed since the distortion noise tends to be additive. It is represented as 
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𝐸(𝑞)  =  ∑ 𝑞𝑖. 𝑝(𝑞𝑖)

𝑞𝑖∈𝑄

 
(Eq. 23) 

where 𝑞𝑖 is the distortion level predicted by the expert IQA and the 𝑝(𝑞𝑖) is the probability 

of that distortion type predicted by the distortion type classifier. 

 

Based on this architecture three such models were built to evaluate the performance of the 

system. Each model has same architecture shown in the figure 9 but has CNN architectures: 

shallow network, deep neural network and residual network.  

 

The shallow model is based on IQA CNN [18] architecture. Each of the expert IQAs and 

DTC. Each of shallow nets networks consists of a conv7-50, maxpool, FC512, FC256, and 

output(FC-1) layers.  All the layers except output layer are activated by the ReLU 

activation function. As mentioned above distortion type classifier contains n outputs one 

for each distortion type and is activated by the SoftMax activation function. Expert IQA 

contains one regressor output and the final layer for this network is activated by the sigmoid 

activation function.  

 

Figure 10. Shallow CNN architecture flow diagram for DTC and Expert IQA   

The deep neural network model architecture is based on the VGG-16 [29] architecture for 

each of the expert IQAs and DTC. Each VGG-16 network is used consists of a a conv3-

32, conv3-32, maxpool, conv3-64, conv3-64, maxpool, conv3-128, conv3-128, maxpool, 

conv3-256, conv3-256, maxpool, conv3-512, conv3-512, maxpool, FC512 and output(FC-

1) layers.  The layer depth is reduced from 16 to 12 in order to reduce the complexity for 

faster realtime processing. All the layers the except output layer are activated by the ReLU 

activation function. As mentioned above, distortion type classifier contains n outputs one 
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for each distortion type and is activated by the SoftMax activation function. Expert IQA 

contains one regressor output and the final layer for this network is activated by the 

Sigmoid activation function. Zero padding is added before all convolutional layers to avoid 

shrinking of the image pixels as we use image patch as 32 × 32 pixel size. 

 

Figure 11. shortened VGG network for IQA 

Residual network model is based on a 15-layer residual network architecture with 2 

residual blocks [30] for each of the expert IQA and DTC. Each network consists of a conv3-

16, batch normalization (BN), L1-conv3-16, L1-BN, L1-conv3-16, L1-BN2, res (merge), 

conv3-32, BN, L2-conv3-32, L2-BN, L2-conv3-32, L2-BN, res2 (merge), FC-256, FC-128, 

and output layers. All the layers except the output layer are activated by the ReLU 

activation function. As mentioned above, distortion type classifier contains n outputs one 

for each distortion type and is activated by the SoftMax activation function. Expert IQA 

contains one regressor output and the final layer for this network is activated by the 
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Sigmoid activation function. Zero padding is added before all convolutional layers to avoid 

shrinking of the image pixels as use image patch of 32 × 32 pixel size. 
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Figure 12. Architecture of a residual block in RESNET  for IQA. 

4.3 Evaluation process 

We implement correlation coefficients as a method of measurement to measure the 

prediction statistics and compare their performance with the DMOS values or the reference 

scores.  Two types of such coefficients namely Pearson linear correlation coefficient 

(PLCC) and Spearman rank order correlation coefficients (SROCC). 

Pearson linear correlation coefficient (PLCC): is a measure of the linear correlation 

between two variables X and Y. Its range is between -1 and 1 where -1 shows the negative 

correlation, 0 shows no correlation at all and 1 shows the positive correlation. It is 

calculated by the equation given below. 

 𝜌𝑋, 𝑌 =  
𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 (Eq. 24) 

where 𝜎𝑋 and 𝜎𝑌 are the standard deviations of X and Y respectively. 𝜇𝑋 is the mean of X 

and 𝜇𝑌 is the mean of Y and E is the expectation.  

 Spearman’s rank order correlation coefficients (SROCC): is a nonparametric measure of 

rank correlation. It accesses how well the relationship between two variables can be 

described as a monotonic function. Its range is between -1 and 1 where -1 shows the 

negative correlation, 0 shows no correlation at all and 1 shows the positive correlation. It 

is computed by the equation given below. 

 𝑟𝛿 =  𝜌𝑟𝑔𝑥,𝑟𝑔𝑦 =  
𝑐𝑜𝑣(𝑟𝑔𝑋, 𝑟𝑔𝑌)

𝜎𝑟𝑔𝑥
𝜎𝑟𝑔𝑌

 (Eq. 25) 

where   𝜌 denotes the PLCC, but applied to the rank variables,  𝑐𝑜𝑣(𝑟𝑔𝑋, 𝑟𝑔𝑌) is the 

covariance of the rank variables, and 𝜎𝑟𝑔𝑥
𝜎𝑟𝑔𝑌

  are the standard deviations of the rank 

variables. 

The networks that are developed above needs to be fine-tuned with all the tunable 

parameters like number of layers in a network, use of different activation functions, use of 

different preprocessing methods, different optimizers and other initialization techniques, 
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that can improve the accuracy of the system and reduce the overfitting. this process will be 

covered in the next chapter . 



  

29 
 

CHAPTER FIVE 

DESIGN IMPLEMENTATION AND RESULTS 

 In this chapter, we implement the three models described in the previous chapter with 

different parameters to evaluate and optimize their performance.  

5.1 Evaluation with different parameters 

The evaluation process follows the standard protocol of splitting 60% of total available 

images with all their distortion types and levels as the training data, 20% of the available 

images as the validation data and remaining 20% of the images as the test data. Only the 

LIVE II database is used for the fine-tuning process and cross database validation is done 

on the fine-tuned network architecture when comparing our model with other state-of-the-

art-models. 

5.1.1 Image Preprocessing 

Different preprocessing techniques were tested on the three distortion type classifiers. 

Three expert IQAs were randomly chosen from each of the three architectures to check the 

performance of the different models with different preprocessing methods. Table 1 shows 

the normalized accuracy scores for the test image patches that were tested using different 

preprocessing techniques (tested for 20 epochs and standard architecture).  

Table 1: DTC evaluation using different preprocessing methods. 

Accuracy 

score 

No preprocessing Gray Scale GCN LCN 

Shallow net 0.2783 0.3183 0.8029 0.9487 

Deep net 0.9418 0.9465 0.9471 0.9657 

RESNET 0.8702 0.9102 0.8826 0.9460 

 

Table 1 shows the evaluation of the Distortion type classifiers with 4 different 

preprocessing algorithms. Local contrast normalization shows better results in all three 

networks. Also, it can be summarized that shallow CNNs are not able to perceive high level 

features if the proper preprocessing applied, due to the lack of depth. In case of the deep 

net and RESNET the models can learn the features even without the proper preprocessing 
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algorithms. Since distortion type classification is a simple task compared to the distortion 

quality prediction, preprocessing algorithms still needed to be applied. 

Table 2. PLCC evaluation of expert IQA’s using different preprocessing methods. 

 

Table 3. SROCC evaluation of expert IQA’s using different preprocessing methods. 

 

Table 2 and Table 3 show the PLCC and SROCC coefficients to measure the quality of the 

Expert IQA. This test of preprocessing algorithms is done on Gaussian blur expert IQA. 

Training and testing were done on the LIVE II database. Even for the regression problem 

for one distortion type, the LCN algorithm outperformed all other preprocessing steps. 

LCN is chosen as the preprocessing algorithm for the rest of the experiments. 

5.1.2 Image patch size 

Tests were conducted with different patch sizes. We start with a patch size of 32 × 32 and 

increasing the sizes to  64 × 64,  96 × 96 and 128 × 128 respectively. 

Table 4. PLCC Evaluation of impact of patch size on performance of models. 

 

PLCC No 

Preprocessing 

Gray scale GCN LCN 

Shallow net 0.8657 0.9080 0.9306 0.9628 

Deep net 0.9085 0.9432 0.9476 0.9832 

RESNET 0.9057 0.9335 0.9445 0.9739 

SROCC No 

Preprocessing 

Gray scale GCN LCN 

Shallow net 0.8169 0.8769 0.9238 0.9576 

Deep net 0.9069 0.9392 0.9369 0.9800 

RESNET 0.90 0.9376 0.9361 0.9646 

PLCC 32 64 96 128 

Shallow net 0.9788 0.9789 0.9646 0.9212 

Deep net 0.9717 0.9758 0.9728 0.9642 

RESNET 0.9793 0.9757 0.9723 0.9759 
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Table 5. SROCC Evaluation of impact of patch size on performance of models. 

 

Table 4 and Table 5 show the PLCC and SROCC evaluation of the JPEG expert IQA, 

trained and tested on JPEG compression from LIVE II database. It is seen that the optimum 

patch size is 32 × 32 and the accuracy decreases with the increase in patch size. Also, with 

increase in the patch size requires a lot of memory resources to process the input which is 

not recommended from a computational and real time application point of view. The patch 

size of 32 × 32 is chosen for all upcoming experimentation 

5.1.3 Optimizers and learning rate regularization. 

We experimented with different activation functions at different learning rates and 

dropouts. First, we try the system with SGD optimizer and then with the Adam optimizer. 

Table 6. PLCC Evaluation of different optimizers with different parameters.  

 

In Table 6, 𝐿𝑟 represents learning rate, 𝐷𝑐𝑦 represents decay of learning rate, mntm 

represents momentum and 𝑏1 and 𝑏2 are the internal parameters of the Adam optimizer. 

The table shows the importance of learning rates and optimizers in the training of a neural 

network. The experiment shows that the Optimizer Adam with (learning rate =0.001, decay 

=1e-6, n1=0.9,b2=0.999) are the better optimization parameters for this problem. All the 

experiments performed here after this will use these parameters in the models. 

SROCC 32 64 96 128 

Shallow net 0.9444 0.9359 0.8879 0.8779 

Deep net 0.9041 0.8944 0.9400 0.8948 

RESNET 0.9186 0.9158 0.8984 0.8951 

PLCC description Shallow net Deep net RESNET 

SGD Lr= 0.01, Dcy= 1e-6, mntm= 0.9 Nan Nan Nan 

Adam Lr=0.001, dcy=0, b1=0.9, b2=0.999 0.9788 0.9703 0.9709 

Adam Lr=0.01, dcy=1e-6, b1=0.9, b2=0.999 0.9763 Nan 0.9773 

Adam Lr=0.1, dcy=1e-4, b1=0.9,b2=0.999 0.6689 -0.6200 Nan 

Adam Lr=0.001,dcy=1e-4,b1=0.9, b2=0.999 0.9780 0.9680 0.9741 
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5.1.4 Activation functions. 

In this section all the experiments are performed using LCN preprocessing technique, 

images with the patch size of 32 × 32, optimizer Adam with above mentioned parameters. 

We experimented with two different activation functions in the convolutional and hidden 

layers, namely: ReLU and tanh. We also experimented with two different activation 

functions in the output layer of the expert IQA, namely: sigmoid and linear. In order to use 

the sigmoid all the label values are scaled between 0.00 and 1.00. 

Table 7. PLCC Evaluation of different optimizers with different parameters. 

 

Table 8. SROCC Evaluation of different optimizers with different parameters. 

 

 

Table 7 and Table 8 shows the performance of the models with different combinations of 

activation functions. Correct combination of activation functions can increase the 

performance of the system. From the above tables we  can see the use of  two exponential 

activation (tanh and sigmoid) or the two linear activation functions (ReLU and linear) 

together yields to the better performance for the system rather than using them otherwise 

(ReLU + sigmoid) or the (tanh + linear). All these experiments are for the expert IQA’s. 

For distortion type classifier ReLU is used for all hidden layers and SoftMax for the output 

layer which shows the highest accuracy for the classification problems. 

PLCC Shallow net Deep net RESNET 

ReLU with Linear 0.9780 0.9717 0.9793 

ReLU with Sigmoid 0.9747 0.8942 Nan 

Tanh with sigmoid 0.9756 0.9808 0.9788 

Tanh with linear Nan 0.9736 0.9708 

SROCC Shallow net Deep net RESNET 

ReLU with Linear 0.9472 0.9041 0.9186 

ReLU with Sigmoid 0.9004 0.8567 Nan 

Tanh with sigmoid 0.8892 0.9198 0.9178 

Tanh with linear Nan 0.9226 0.9331 
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5.2 Comparison with other State of the art models 

Based on the previous observations, the three models were built with these chosen 

parameters. Each network (Distortion type classifier and expert IQAs) are trained on the 

LIVE II database and tested on the LIVE II, CSIQ, TIB2008 databases. All these results 

will be compared with other state of the art models from the literature described in 

Chapter2. 

 Table 9. PLCC comparison of different state of the art models trained and tested on LIVE II database 

 

Table 10. SROCC comparison of different state of the art models trained and tested on LIVE II databases 

  

PLCC JPEG JPEG2000 GBLUR AWGN ALL 

PSNR 0.9463 0.9542 0.9932 0.9211 0.9292 

SSIM 0.9849 0.9805 0.967 0.9428 0.9647 

BLINDS II 0.9426 0.9386 0.8994 0.9635 0.930 

BRISQUE 0.9734 0.9229 0.9506 0.9851 0.942 

Kang’s CNN 0.981 0.953 0.953 0.984 0.953 

Fan’s CNN 0.9570 0.9643 0.9459 0.9869 0.9572 

Shallow net 0.9549 0.9122 0.9580 0.9825 0.9227 

Deep net 0.9428 0.9504 0.9613 0.9888 0.9555 

RESNET 0.9459 0.9197 0.9472 0.9815 0.8808 

SROCC JPEG JPEG2000 GBLUR AWGN ALL 

PSNR 0.9463 0.9542 0.9932 0.9211 0.9020 

SSIM 0.9849 0.9805 0.967 0.9428 0.9582 

BLINDS II 0.9426 0.9386 0.8994 0.9635 0.931 

BRISQUE 0.9734 0.9229 0.9506 0.9851 0.942 

Kang’s CNN 0.981 0.953 0.953 0.984 0.951 

Fan’s CNN 0.9570 0.9643 0.9459 0.9869 0.9531 

Shallow net 0.9384 0.9397 0.9515 0.9869 0.9264 

Deep net 0.8541 0.9622 0.9469 0.9870 0.9535 

RESNET 0.9094 0.9534 0.9415 0.9900 0.8783 
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Table 9 and table 10 shows the PLCC and SROCC comparison of different state of the art 

models with the proposed three networks, it is shown that deep neural networks and 

residual networks with multiple expert IQA’s will have the better performance compared 

to the single DNN’s or single RESNETs or even with the shallow networks with multiple 

expert IQA’s multiple convolutional neural networks. Also, in this case the performance 

of deep neural networks is slightly better than the RESNET, but it should be noted that the 

number of convolutional kernels for each layer (breadth of the CNN) is very high for the 

DNN compared with the RESNET. 

5.2.1 Cross Dataset Evaluation. 

In this Section the models that are trained with the LIVE II database are tested with the 

CSIQ and TID 2008 databases to check the independence of the model and its real-world 

performance. The four common distortion types across the 4 databases namely JPEG, 

JPEG2000, White Noise and Gaussian Blurring were selected for testing. 

 

Table 11. PLCC comparison of different models on CSIQ database 

 

Table 12. PLCC comparison of different models on TID 2008 database 

 

PLCC JPEG JPEG2000 GBLUR AWGN ALL 

PSNR 0.8907 0.9468 0.9252 0.9532 0.9218 

SSIM 0.9786 0.9694 0.9496 0.8983 0.9269 

Kang’s CNN 0.9330 0.8106 0.9105 0.7613 0.8110 

Fan’s CNN 0.9654 0.9151 0.8882 0.8590 0.8935 

Shallow net 0.9656 0.8982 0.9626 0.9304 0.9071 

Deep net 0.9600 0.9223 0.9722 0.9690 0.9147 

RESNET 0.9423 0.8900 0.9321 0.9126 0.8824 

PLCC JPEG JPEG2000 GBLUR AWGN ALL 

Shallow net 0.6204 0.7809 0.8107 0.8350 0.6490 

Deep net 0.7630 0.7299 0.8795 0.9150 0.8218 

RESNET 0.7785 0.7338 0.8406 0.9099 0.6797 
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 Table 13. SROCC comparison of different models on CSIQ database 

 

Table 14. SROCC comparison of different models tested on TID2008 

 

Table 11 and Table 13 are the CSIQ database evaluation comparison and Table 12 and 14 

are the TID2008 evaluation comparison between different models. From these results it is 

evident that the deep models can do better than shallow models, performance of RESNETs 

even with less convolutional filters is on par with the deep model with a slight reduction in 

accuracy but the with a lot lesser computational requirement. The accuracy of the shallow 

net is good for the LIVE II database, but it does not have a par performance on CSIQ and 

TID2008 databases. It can be observed that all models perform well and showed near 

accurate results on the LIVE II database. The deep nets struggle with JPEG and JPEG2000 

distortions due to overfitting and due to perceiving the over compressed images as blur and 

noise distortions.  

5.3 Correlation Scatter Plots  

In this section the scatter plots of test images from all the three datasets are shown. These 

test images were randomly selected twenty percent of images with all their distortion types 

and distortion levels from all the datasets. As all models are trained on LIVE II database, 

it expected to have better results on LIVE II databases. Robustness of the models depend 

SROCC JPEG JPEG2000 GBLUR AWGN ALL 

PSNR 0.8879 0.9363 0.9291 0.9361 0.9218 

SSIM 0.9543 0.9605 0.9608 0.8974 0.9325 

Kang’s CNN 0.9114 0.7953 0.8759 0.7534 0.7909 

Fan’s CNN 0.9309 0.8925 0.8167 0.8538 0.8766 

Shallow net 0.9350 0.9042 0.9223 0.9678 0.8851 

Deep net 0.8727 0.9381 0.9506 0.9715 0.8962 

RESNET 0.9194 0.8812 0.9096 0.9375 0.8692 

SROCC JPEG JPEG2000 GBLUR AWGN ALL 

Shallow net 0.6438 0.7891 0.8790 0.8151 0.6054 

Deep net 0.7904 0.7547 0.8691 0.9139 0.8020 

RESNET 0.8191 0.7351 0.8255 0.9205 0.6206 
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on how they perform on the other two databases. In all the scatter plots the X- axis 

represents the DMOS values and Y-axis represents predicted values. 

5.3.1 Shallow nets. 

 

Figure 13. Scatter plot of LIVE II test images for shallow nets. 
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Figure 14. Scatter plot of CSIQ test images for shallow nets. 

 

Figure 15. Scatter plot of TID2008 test images for shallow nets.  

5.3.2 Deep nets. 

 

Figure 16. Scatter plot of LIVE II test images for deep nets. 
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Figure 17. Scatter plot of CSIQ test images for deep nets. 

 

Figure 18. Scatter plot of TID 2008 test images for deep nets.  

5.3.3 RESNETs. 
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Figure 19. Scatter plot of LIVE II test images for RESNETs.  

 

Figure 20. Scatter plot of CSIQ test images for RESNETs.  

 

Figure 21. Scatter plot of TID 2008 test images for RESNETs.  

5.4 Visualization of Convolutional Kernels 

Convolutional kernels are a major part of the convolutional neural networks. All the 

features that are learned are stored in those kernels. They are responsible for the prediction 

and most of the performance accuracy depends on them. It is difficult to understand and 

assess their internal working because of their huge numbers and their deep architectures.  

Lately, visualization techniques have been developed, and with these techniques we can 

plot the work of convolutional kernels on the image patches. This gives us insights into the 

working of the CNN kernels the features that are learnt and also the features that are 

transferred to further layers in a deep network. 
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In this section we analyze the first convolutional layer in each Expert IQA and DTC 

networks for all the 3 models to examine how the learning of features occurs in the layers. 

From Figures 22, 23 and 24, we can see that the features learned by the kernels of JPEG 

compression expert IQA are in the shape of blocks, Features learned by the  JPEG2000 are 

more rounded and of spread shapes,  Blur expert IQA are looking for more spread out edges 

in the image and AWGN expert IQA are activated by the more isolated points in an image. 

Also, the Distortion type classifier has learned a mixture of every feature.  
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5.4.1 Shallow nets. 

 

Figure 22. Visualization of first 32 filters of first convolutional layer in (a)Distortion type classifier,     

(b)JPEG expert IQA, (c)JPEG2000 expert IQA (d)Gaussian blur expert IQA (e)WGN expert IQA for shallow 

nets 
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5.4.2 Deep nets 

 

Figure 23. Visualization of first 32 filters of first convolutional layer in (a)Distortion type classifier, (b)JPEG 

expert IQA, (c)JPEG2000 expert IQA (d)gaussian blur expert IQA (e)AWGN expert IQA for deep nets. 
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5.4.3 RESNETs 

 

Figure 24. Visualization of first 32 filters of first convolutional layer in (a)Distortion type classifier,(b) JPEG 

expert IQA, (c)JPEG2000 expert IQA (d)gaussian blur expert IQA (e)AWGN expert IQA for RESNETs. 
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5.5 Conclusion 

This concludes all the experimentation and  results section in this project. In summary, a 

novel model for NR-IQA was proposed, with multiple expert IQAs to analyze the different 

distortion types present in an image and predict the quality of an image with respect to 

human visual system. These models were able to outperform most of the existing 

techniques with different distortions and mixtures. Each of the expert IQAs is associated 

with one distortion type, enabling it to learn completely all of its features. Training is a 

supervised learning process and different parameters were fine-tuned to improve the 

performance of the system. All the training is done on the LIVE II database and cross 

database evaluation is done on the CSIQ and TID 2008 databases. Results were tabulated 

and finally to get insights into the CNN learning, convolutional kernels were visualized. 
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CHAPTER SIX 

DISCUSSION AND CONCLUSION 

In this study we have demonstrated the use of multiple neural networks for the problem of 

NR-IQA. Our approach not only improved the accuracy of the system but also able to 

detect the multiple distortion present in an image. The major contributions of this thesis to 

the research in image quality assessment is:  

• Development of a distortion type classifier that can classify and predict the 

probabilities of different distortion types in an image. 

• Use of deep neural networks such as VGG-16 and RESNET for the problem of NR-

IQA and improvement of the networks for better accuracy. 

• Use of multiple expert IQAs for image quality assessment. With each one 

specialized in assessing a specific distortion type.  

• Visualization of the convolutional kernels for the better insights into the functioning 

of convolutional neural networks.   

Though this thesis is successful in improving the accuracy of NR-IQA, there are lot of 

unexplored areas such as increasing the number of convolution kernels in a network, 

adding more residual layers in RESNETs (this project experimented with only two residual 

layers). The use of higher dimensional convolutional filters 5 × 5 or above can also be 

explored (we have only 3 × 3 convolutional filters for deep networks). Further, the 

performance of model can be evaluated on multiple distortion databases such as LIVE MD 

[32], TID2013 [33], CID 2013 [34] databases. 

 

For future work, in order to further improve the performance, the distortion type classifier 

should be enhanced since system accuracy depends on it. It is recommended to explore 

other deep neural network architectures such as GoogleNet [35], generative adversarial 

networks (GANs) [36] for this problem. Visualizing different layers other than 

convolutional layers such as activation layers for better insights can be done. In addition 

this algorithm can be expanded to video quality assessment.
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APPENDIX 

All the experiments in this project are performed in python programming language the 

following software libraries were used: 

1. openCV2: is a python library that works mainly with the images. In this project it 

is used mainly in executing the image preprocessing applications such as Local 

Contrast Normalization, GCN and Gray scale conversion. 

2. TensorFlow: is a python deep learning library provides great support for coding 

deep learning algorithms. It is efficient evaluating and optimizing multi-

dimensional arrays. Keras wrapper is used over the TensorFlow in this project. 

3. Matplotlib: is a python visualization library. In this project we used it to plot 

scatterplots and visualize the convolutional kernels of the networks. 

4. cuDNN: is the NVIDIA library provides an optimized version of some 

mathematical operations like convolution. 

Hardware specifications for the computer used in this project is divided into two parts we 

used an Intel i7 2.40 GHz CPU and NVIDIA GTX1070 + NVIDIA TITAN GPUs for the 

initial stages in this project and Intel i7-3.20 GHz CPU and Nvidia GTX 1080 GPU. With 

GPU we were able to speedup the training process by many folds. 

Python codes developed in this project were made available to the public for evaluation in 

the following weblink https://github.com/alien2rv/NR-IQA  
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