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Spatial and molecular mapping of Pfkelch13 gene 
polymorphism in Africa in the era of emerging 
Plasmodium falciparum resistance to artemisinin: 
a systematic review
Nadine K Kayiba, Doudou M Yobi, Evariste Tshibangu-Kabamba, Vo P Tuan, Yoshio Yamaoka, Brecht Devleesschauwer, Dieudonné M Mvumbi, 
Emile Okitolonda Wemakoy, Patrick De Mol, Georges L Mvumbi, Marie-Pierre Hayette, Angel Rosas-Aguirre, Niko Speybroeck

The spread of Plasmodium falciparum isolates carrying mutations in the kelch13 (Pfkelch13) gene associated with 
artemisinin resistance (PfART-R) in southeast Asia threatens malaria control and elimination efforts. Emergence of 
PfART-R in Africa would result in a major public health problem. In this systematic review, we investigate the 
frequency and spatial distribution of Pfkelch13 mutants in Africa, including mutants linked to PfART-R in southeast 
Asia. Seven databases were searched (PubMed, Embase, Scopus, African Journal Online, African Index Medicus, 
Bioline, and Web of Science) for relevant articles about polymorphisms of the Pfkelch13 gene in Africa before 
January, 2019. Following PRISMA guidelines, 53 studies that sequenced the Pfkelch13 gene of 23 100 sample isolates 
in 41 sub-Saharan African countries were included. The Pfkelch13 sequence was highly polymorphic (292 alleles, 
including 255 in the Pfkelch13-propeller domain) but with mutations occurring at very low relative frequencies. Non-
synonymous mutations were found in only 626 isolates (2·7%) from west, central, and east Africa. According to 
WHO, nine different mutations linked to PfART-R in southeast Asia (Phe446Ile, Cys469Tyr, Met476Ile, Arg515Lys, 
Ser522Cys, Pro553Leu, Val568Gly, Pro574Leu, and Ala675Val) were detected, mainly in east Africa. Several other 
Pfkelch13 mutations, such as those structurally similar to southeast Asia PfART-R mutations, were also identified, but 
their relevance for drug resistance is still unknown. This systematic review shows that Africa, thought to not have 
established PfART-R, reported resistance-related mutants in the past 5 years. Surveillance using PfART-R molecular 
markers can provide valuable decision-making information to sustain the effectiveness of artemisinin in Africa.
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Introduction
An estimated 219 million new malaria cases and 
435 000 deaths occurred globally in 2017, with more than 
75% of these cases coming from Africa.1 In the absence 
of an effective vaccine, reducing the burden of Plasmodium 
falciparum malaria relies on the effective ness of arte
misininbased com bination therapies (ACTs).1,2 ACTs 
combine the rapid antimalarial action (but short half
life) of artemisinin or its derivatives with the slower 
action (but longer halflife) of partner drugs.3 However, 
one major challenge for malaria control and elimination 
efforts is the emergence and spread of P falciparum 
artemisinin resistance (PfARTR) from the Greater 
Mekong subregion in southeast Asia over the past 
decade.4–6

A reverse migration of PfARTR resistance towards 
Africa (by comparison with the evolutionary origin and 
spread of the parasite)7 is a troubling scenario that could 
have severe consequences on the burden of malaria 
because alternative therapies are few.8–10 As this resistance 
is not yet established in Africa, monitoring PfARTR 
on the continent is necessary from a global health 
perspective.9 Therapeutic efficacy trials are the standard 
method for assessing PfARTR; however, insufficient 
funding restricts these studies in African countries.3,11,12 
The delayed parasite clearance obtained in clinical trials 
and the invitro ringstage (trophozoite) survival assay 
are also useful for tracking the emergence of artemisinin 
resistance.5,13–15

The association of specific single nucleotide poly
morphisms (SNPs) in the P falciparum kelch 13 gene 
(Pfkelch13) with delayed parasite clearance has raised the 
potential of molecular markers for the surveillance of 
PfARTR.14,16,17 More than 100 Pfkelch13 mutations have 
been reported in Africa, but there is still little evidence 
of PfARTR mutants circulating in the continent.9,18 In 
this systematic review, we examine studies reporting 
Pfkelch13 SNPs across different African countries to 
determine the relative frequencies and spatial distri
bution of parasites carrying mutations currently con
sidered to be PfARTR markers.

Methods
Search strategy and selection criteria
Our systematic review follows the preferred reporting 
items for systematic reviews and metaanalyses (PRISMA) 
guidelines.19,20 Seven electronic medical data bases (Pub
Med, Embase, Scopus, African Journal Online, African 
Index Medicus, Bioline, and Web of Science) were 
searched for peerreviewed articles published before 
January, 2019, that have the relevant population, inter
vention, comparator, outcomes, and study design (PICOS) 
framework (appendix p 2).

A predetermined search strategy used French and 
English versions of keyword terms of the Medical 
Subject Headings 2018 database and free terms, such 
as (“malaria” OR “falciparum” OR “paludisme”) AND 
(“marqueur moléculaire” OR “molecular marker” OR See Online for appendix

http://crossmark.crossref.org/dialog/?doi=10.1016/S1473-3099(20)30493-X&domain=pdf
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“kelch13” OR “Pfkelch13” OR “K13” OR “PfK13”) AND 
(“Africa” OR “Afrique” OR each name of the 54 African 
countries) as detailed in appendix p 3). No filters or 
limitations (ie, language) ensured a large inclusion of 
informative reports. Individual searches on the internet 
allowed for the inclusion of references iden tified in primary 
reports. Inaccessible fulltext articles were requested from 
corresponding authors. Although previous review papers 
were not included in the final analysis, they were sources 
for additional reports. Studies with data from an unknown 
sampling site or country, systematic reviews, modelling 
reports, reports based only on genetically modified isolates, 
conference pre sentations, abstracts with insufficient infor
mation, and letters or corre spondence to editors were 
excluded.

Selection of studies, quality assessment, and data 
management
A structured data collection process addressed any 
possibility of uncertainty or missing data. Two masked 
teams (NKK, DYM, and ARA; ETK, VPT, and YY) worked 
independently at each stage of the process (literature 
search, relevance assessment, classification report and 
validation, and data extraction) before crosschecking and 
merging related outcomes. Extracted study variables 
included general information (authors, title of study, year 
of publication, geographical location of the study), study 
characteristics (study design, sampling period, collection 
time during the survey, participant characteristics, setting, 
sample size, and analytical methods), and SNP infor
mation (loci sequenced, alleles found, number of isolates 
sequenced at specific loci, and number of isolates with 
individual alleles). The NewcastleOttawa scale assessed 
three quality criteria in selected studies: the representa
tiveness of samples (maximum one star), the sample size 
(maximum one star), and the study outcome (maximum 
three stars).21 Regarding the outcome, the accurate 
definition of the genotype (given the reference), and the 
correct nomenclature of mutations following standard 
recommendations in molecular diagnostics22,23 awarded 
quality stars to articles. Only moderate (two to three stars) 
and high (four to five stars) quality studies were included 
in our systematic review.

Definitions
PfARTR is defined by a delayed parasite clearance re
presenting partial resistance that affects only ringstage 
parasites.17 PfARTR mutations are SNPs in the 
Pfkelch13propeller domain associated with PfARTR in 
vitro or in vivo. Our systematic review uses the most 
updated list of 31 PfARTR molecular markers released by 
WHO in August, 2018,17 to classify PfARTR mutations 
into three categories. First, validated molecular markers 
significantly associated with both slow parasite clearance 
and reduced drug invitro sensitivity: Phe446Ile, Asn458Tyr, 
Met476Ile, Tyr493His, Arg539Thr, Ile543Thr, Pro553Leu, 
Arg561His, and Cys580Tyr. Second, candidate molecular 

markers significantly associated with slow parasite 
clearance: Pro441Leu, Gly449Ala, Cys469Phe, Ala481Val, 
Pro527His, Asn537Ile, Gly538Val, Val568Gly, Pro574Leu, 
Phe673Ile, and Ala675Val. Finally, molecular markers 
suspected to be associated with slow parasite clearance 
without reaching statistical significance because of the low 
number of mutants: Asp452Glu, Cys469Tyr, Lys479Ile, 
Arg515Lys, Ser522Cys, Asn537Asp, Arg575Lys, Met579Ile, 
Asp584Val, Pro667Thr, and His719Asn.

Mutations similar to molecular markers of PfARTR 
are also highlighted in this Review because they are 
structurally close to the WHO PfARTR mutations, 
although their clinical relevance is not yet established.

Data summary measures and synthesis
Since studies reporting Pfkelch13 SNPs had different 
designs and used mainly convenience sampling, their 
data were not suitable for combining in a metaanalytic 
approach. Sequencing processes provided variable 
lengths of genetic sequences resulting in diverse ranges 
of loci analysed for allele discovery in studies. A narrative 
synthesis was done to systematically organise the infor
mation. SNPs in the Pfkelch13 sequence were defined on 
the basis of the reference wildtype Pfkelch13 sequence 
PF3D7_1343700, available in the UNIPROT protein 
database. Relative frequencies of each allele were 
summarised using the median values and interquartile 
ranges. Proportions of mutants with at least one 
nonsynonymous change in the Pfkelch13 gene within 
each geographical site were calculated. Data from 
individual reports and locations were georeferenced and 
locusreferenced before being uploaded on maps to 
display spatial and molecular patterns using the ggplot2,24 
ggmap,25 and rgdal26 packages in R (version 3.5.3).27 The 
risk of bias was minimised by excluding studies on 
malaria cases exported outside Africa and repeated 
communications on the same isolates.

Results
A list of 3756 records reporting individual SNPs in the 
Pfkelch13 gene were identified through database searching, 
including four records found manually. After removal of 
2236 duplicated reports, we screened 1520 records of 
which 1467 were considered ineligible according to 
the PICOS approach (figure 1). 53 studies remained after 
exclusion, with P falciparum sample isolates successfully 
sequenced for Pfkelch13 in 41 African countries;9,18,28–77 
baseline characteristics of these studies are detailed 
(appendix pp 4, 7). Analytical methods used in studies 
were nested PCR with subsequent Sanger sequencing 
(49 studies), nextgeneration sequen cing of targeted 
ampli cons (two studies), nextgeneration sequencing 
of whole P falciparum genomes with a genomewide 
association study (one study), and mapping reads to 
targeted references (one study). Different proto cols were 
used in the exploration of SNPs in the Pfkelch13 gene, with 
sequence lengths ranging from 445 to 2438 base pairs. 

For the UNIPROT protein 
database see https://www.

uniprot.org/uniprot/Q8IDQ2

https://www.uniprot.org/uniprot/Q8IDQ2
https://www.uniprot.org/uniprot/Q8IDQ2
https://www.uniprot.org/uniprot/Q8IDQ2
https://www.uniprot.org/uniprot/Q8IDQ2
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44 studies identified both Pfkelch13 wildtype and mutant 
isolates, and nine found only wildtype isolates.

A total of 24 652 P falciparum isolates were analysed in 
the selected studies, yielding 23 100 isolates successfully 
sequenced at loci in the Pfkelch13 gene. The majority of 
isolates (22 474 isolates [97·3%]) carried a Pfkelch13 gene 
with either a wildtype sequence or a sequence displaying 
only synonymous mutations. The remaining 626 isolates 
(2·7%) had nonsynonymous mutations, 604 (2·6%) of 
which were classified as missense substitutions in the 
amino acid sequence. Other nonsynonymous mutations 
included 15 insertions (0·06%), four deletions (0·02%), 
and three nonsense substitutions (0·01%) (appendix p 8).

All the 41 African countries with information about 
Pfkelch13 polymorphisms were in subSaharan Africa 
(appendix p 9). Pfkelch13 nonsynonymous mutations 
were absent in 11 countries: Botswana, Burundi, Guinea
Bissau, Liberia, Mauritania, Sierra Leone, Somalia, South 
Africa, South Sudan, Sudan, and Zimbabwe. Sequence 
haplotypes were heterogeneous in the other 30 countries, 
with surveys detecting indistinct wildtype Pfkelch13 
and Pfkelch13 nonsynonymous muta tions (at least a 
single isolate carrying a nonsynonymous mutation). 
High (>50%) and intermediate (40–50%) relative pro
portions of isolates with nonsynonymous Pfkelch13 
mutations were reported in west Africa (Senegal and 
Nigeria) and east Africa (Kenya and Uganda; figure 2).

The majority of Pfkelch13 polymorphic loci (149 of 
182 [81·9%]) were detected in the propeller domain 
sequence (ie, downstream of codon position 440), with 
255 allelic variations (213 nonsynonymous alleles) among 
a total of 292 alleles found in Pfkelch13 sequencing studies 
(figure 3). Lys189Thr was the most frequently reported 
nonsynonymous allele in Pfkelch13 gene sequencing 
studies and Ala578Ser was the most frequently reported 
nonsynonymous allele in partial sequencing studies of 
the Pfkelch13propeller domain. Lys189Thr was observed 
in 145 mutants with relative frequencies in surveys 
ranging from 0·8% to 50% (median 32·8%), whereas 
Ala578Ser was reported in 98 mutants at relative 
frequencies in surveys from 0·2% to 7·1% (median 1·4%). 
Lys189Thr and Ala578Ser spanned over several countries 
at variable relative frequencies and there were no 
distinctive geographical patterns in their distribution 
(appendix p 10). Relative fre quencies of nonsynonymous 
mutations in the Pfkelch13propeller domain in surveyed 
sites ranged from 0·08% to 10·3% (appendix p 8).

Only 35 (0·15%) of the total 23 100 sequenced isolates 
recorded in this systematic review had alleles classified 
as candidate PfARTR markers by WHO: Cys469Tyr 
(Uganda),29,45 Arg515Lys (Zambia),9 Ser522Cys (Togo, 
Central African Republic, Gabon, DR Congo, Uganda, and 
Kenya),9,42,62,78 Val568Gly (Kenya),36 Pro574Leu (Rwanda),69 
and Ala675Val (Uganda and Rwanda).29,45,69 Moreover, 
WHOvalidated PfARTR markers were found in at least 
one isolate in four countries: Phe446Ile (Mali),65 Met476Ile 
(Tanzania),47 and Pro553Leu (Kenya and Malawi; figure 4).77

16 alleles similar to WHO PfARTR markers were also 
found in 18 isolates (0·08% to 5·41% per sampling site) in 
seven countries: Gly449Asp and Gly449Ser (similar to 
Gly449Ala) in Mali,65,77 Cys469Trp (similar to Cys469Tyr) in 
Kenya,42 Met476Lys (similar to Met476Ile) in DR Congo,62 
Ser522Met and Ser522Arg (similar to Ser522Cys) in 
Togo, Uganda, and Kenya,36,64,78 Arg539Ile and Arg539Lys 
(similar to Arg539Thr) in Senegal and Kenya,36,70 Pro553Ile 
(similar to Pro553Leu) in Senegal,70 Arg561Cys (similar 
to ArgR561His) in Mali and DR Congo,9,77 Arg575Gly 
(similar to Arg575Lys) in Mali,65 Asp584Glu, Asp584Asn, 
and Asp584Tyr (similar to Asp584Val) in Comoros, Mali, 
and Kenya;36,44,65 and Pro667Arg and Pro667Ser (similar to 
Pro667Thr) in Kenya36 (appendix p 11). There has been an 
increasing trend in reports of PfARTR molecular markers 

Figure 1: Flowchart of the article selection process
Pfkelch13=Plasmodium falciparum kelch13. SNP=single-nucleotide polymorphisms. 
*PubMed (n=738), Scopus (n=101), Embase (n=754), African Index Medicus 
Database (n=1207), African Journals Online (n=10), Web of Science (n=926), 
Bioline (n=16).
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Figure 2: Geographical maps 
displaying proportions of 

isolates carrying Pfkelch13 
with non-synonymous 

changes in Africa
Pie charts displayed on these 

maps represent the 
proportions of isolates 
with only synonymous 

changes in the Pfkelch13 gene, 
or with at least one 

non-synonymous change. 
Overall, isolates with 

non-synonymous changes 
were observed in sampling 

sites located within 
30 of 41 surveyed countries in 
east, west, and central Africa. 

Moderate-to-high 
proportions of isolates with 

non-synonymous changes in 
the Pfkelch13 sequence were 

found in east and west Africa. 
(A) Map showing surveys with 

only synonymous changes 
or wild-type isolates. 

(B) Map showing surveys 
with very low (>0% to <5%) 
proportions of isolates with 
non-synonymous Pfkelch13 

changes. (C) Low (5% to <10%) 
proportions of isolates 
with non-synonymous 

Pfkelch13 changes. 
(D) Moderate (10% to 20%) 
proportions of isolates with 

non-synonymous 
Pfkelch13 changes. 

(E) Low-intermediate 
(>20% to <40%) 

proportions of isolates 
with non-synonymous 

Pfkelch13 changes. 
(F) Intermediate-high 

(40 to <80%) proportions of 
isolates with non-synonymous 

Pfkelch13 changes.
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and mutations similar to PfARTR markers in Africa since 
the first year of reporting in 2014 (figure 5).

Discussion
This paper is the first comprehensive and systematic 
review specifically focusing on polymorphisms of the 
Pfkelch13 gene in Africa. Pfkelch13 has exclusively been 
explored in subSaharan African countries, showing a 
highly polymorphic structure with most allelic variations 
located in the propeller domain. Despite low relative 
frequencies of nonsynonymous mutations in this do
main across the continent, we identified mutant alleles 
reported to be associated with diminished artemisinin 
responsiveness in southeast Asia and several alleles 
structurally similar to resistance mutations.

The large allelic variation in the Pfkelch13propeller 
domain (despite being located in a conserved region of the 
P falciparum genome) is likely to reflect the adaptation of 
parasites to selective pressures in Africa (eg, the use 
of antimalarial drugs).64,79 Therefore, this information 
should raise concerns among health policy makers to 
prevent the use of poorquality (ie, counterfeit or sub
standard) artemisininbased thera  pies and artemisinin 
mono therapies in Africa.79,80 Subtherapeutic antimalarial 
drug concentrations would provide ideal conditions 
for selecting Pfkelch13propeller mutants, among which 
PfARTR mutants could emerge.18,81 This hypothesis is 
supported by the generation of Pfkelch13propeller muta
tions in isolates with an African genetic background that 
under went invitro experimental arte misinin selective 
pressure, and the subsequent appearance of the PfARTR 
pheno type.14,82

Unlike the high frequency of nonsynonymous muta
tions in southeast Asia (with proportions ranging 
from intermediate to fixation levels among sequenced 
parasites),9 Pfkelch13 nonsynonymous mutations in 
Africa occur at very low relative frequencies, despite 
presenting high allelic variation. The delayed introduction 

Figure 3: Molecular map of alleles in the 
Pfkelch13-propeller domain of African isolates

This figure shows allelic variations of amino acid residues within blades (1–6) of 
the Pfkelch13-propeller domain (after position 440) based on the 

Plasmodium falciparum 3D7 reference sequence. Of the 280 loci in this sequence, 
150 were polymorphic with synonymous and non-synonymous alleles. 

Loci reported with either a wild-type residue or synonymous mutations are 
shaded in yellow. Colours in cells identify whether the non-synonymous 

mutation is classified as PfART-R marker (red), a mutation mimicking a known 
PfART-R (dark blue), and a non-PfART-R marker (light blue). Single-letter 

abbreviations for the amino acid residues are as follows: A=alanine, C=cysteine, 
D=aspartic acid, E=glutamic acid, F=phenylalanine, G=glycine, H=histidine, 
I=isoleucine, K=lysine, L=leucine, M=methionine, N=aspargine, P=proline, 

Q=glutamine, R=arginine, S=serine, T=threonine, V=valine, W=tryptophan, and 
Y=tyrosine. In mutants, reference amino acids at specified locations were 

substituted with other amino acids—eg, M476I indicates that methionine at 
codon position 476 was replaced by isoleucine. The asterisk (*) shows a 

substitution of a reference amino acid residue by a stop-codon within the 
mutant (nonsense mutation). The underscore (_) shows deletion of a 

reference amino acid residue at a given codon-position within the 
mutant (deletion). PfART-R=Plasmodium falciparum artemisinin resistance. 
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of arte misinin in Africa between 2000 and 2005, asso
ciated with a shorter time of drug pressure by comparison 
with the early use of artemisinin in southeast Asia since 
the 1970s, could explain why there is a scarcity of isolates 
with nonsynonymous mutations in Africa.83 Moreover, 

multicountry studies done in Africa, southeast Asia, and 
South America had suggested that nonsynonymous 
Pfkelch13 mutations reported in African countries could 
be due to local adaptation rather than to importation 
from Asia, because alleles were mostly Africaspecific 

Figure 4: Maps displaying sampling sites that recorded isolates carrying WHO PfART-R markers in Africa
Points plotted on these maps represent isolates carrying mutations associated with PfART-R in southeast Asia according to the WHO 2018 list of PfART-R 
markers.17 The point size is proportional to the number of isolates that were identified at each sampling location whenever it is known. Mutations with an 
unknown number of isolates are shown as crossed-out circles. (A) Map showing surveys that detected PfART-R markers validated by WHO in at least one isolate in 
four countries, including F446I in Mali, M476I in Tanzania, and P553L in Kenya and Malawi. (B–D) Maps showing surveys that recorded WHO candidate PfART-R 
markers including C469Y in Uganda, R515K in Zambia, S522C in Togo, Central African Republic, Gabon, DRC, Uganda, and Kenya, V568G in Kenya, P574L in Rwanda, 
and A675V in Uganda and Rwanda. Single-letter abbreviations for the amino acid residues are as follows: A=alanine, C=cysteine, F=phenylalanine, G=glycine, 
I=isoleucine, K=lysine, L=leucine, M=methionine, P=proline, S=serine, V=valine; and Y=tyrosine. Mutations show that reference amino acids at specified locations 
were substituted with other amino acids; for example, M476I indicates that a methionine at codon-position 476 was replaced by an isoleucine. 
PfART-R=Plasmodium falciparum artemisinin resistance.
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and structurally different from those observed in 
southeast Asia .9,18,77

The WHO list of African Pfkelch13 alleles included nine 
nonsynonymous mutations of the total 31 molecular 
markers of PfARTR based on studies done mainly in 
southeast Asia.17 Six of these mutations, namely 
Phe446Ile, Met476Ile, Pro553Leu, Val568Gly, Pro574Leu, 
and Ala675Val, were reported to be strongly associated 
with delayed parasite clearance in vivo.14,18,84,85 However, 
only Phe446Ile, Met476Ile, and Pro533Leu have shown a 
decreased response to artemisinin in vitro; they are being 
considered as validated artemisinin resistance markers by 
WHO.14,16,17,86 Ala675Val, although not listed as a validated 
marker, has shown an altered response to artemisinin in 
vitro in one clinical isolate from Uganda.45 Phe446Ile was 
only found in west Africa (Mali), where as Ala675Val, 
Met476Ile, Pro553Leu, Pro574Leu, and Val568Gly were 
reported in the Great Lakes region in east Africa (Kenya, 
Uganda, Malawi, Zambia, Tanzania, and Rwanda). The 
other three mutations identified in African isolates 
(Ser522Cys, Cys469Tyr, and Arg515Lys) could also be 
related to causing slow parasite clearance by artemisinin; 
however, according to the WHO, there is no significant 

evidence for this association because of the low number of 
these mutants in surveys.17 The Ser522Cys mutation 
that was found in several African countries (Mali, 
Gabon, Central African Republic, Togo, DR Congo, and 
Kenya),9,42,69,78 had been correlated with delayed parasite 
clearance in one (from southeast Asia) of the three unique 
mutant isolates that have been assessed in vivo (one 
isolate being from DR Congo).18,87 Similarly, two Cys469Tyr 
mutants have been linked to causing low parasite 
clearance and day 3 positive parasitaemia after treatment 
with artemisinin in southeast Asia.87,88 However,  in our 
systematic review, the unique African isolate with this 
mutation (from Uganda) assessed in vitro did not show a 
reduced response to artemisinin.45 Unlike Ser522Cys and 
Cys469Tyr, the data accumulated for the Arg515Lys 
mutation deserves to be taken into account in future lists 
of PfARTR markers as more than ten mutants from 
southeast Asia have been consistently associated with 
delayed parasite clearance.85,87,89

Nine nonsynonymous mutations that are classified by the 
WHO as either validated, candidate, or suspected artemisinin 
resistance markers, and 245 other Pfkelch13propeller 
mutations were registered during the writing of this 

Figure 5: Evolution in the reporting of PfART-R molecular markers during 2014–18
Graph shows the discovery of different PfART-R markers (shaded in red) and mutations similar to PfART-R markers (shaded in dark blue), over the time in Africa. 
The years 2014–18 indicate the publication year of the articles reporting mutants. Single-letter abbreviations for the amino acid residues are as follows: A=alanine, 
C=cysteine, D=aspartic acid, E=glutamic acid, F=phenylalanine, G=glycine, I=isoleucine, K=lysine, L=leucine, M=methionine, N=aspargine, P=proline, R=arginine, 
S=serine, T=threonine, V=valine, W=tryptophan, and Y=tyrosine. In mutant alleles, reference amino acids at specified locations were substituted with other amino 
acids; for example, M476I shows that methionine at codon-position 476 was replaced by isoleucine. PfART-R=Plasmodium falciparum artemisinin resistance.
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syste matic review. Most of them have never been 
experimentally explored because they did not fulfil 
the criteria for further functional exploration (eg, high 
frequency of new alleles with nonsynonymous mutation, 
evidence of allele dissemination, or pre liminary association 
with clinical resistance).9 16 amino acid substitutions 
among the unexplored mutations found in this review are 
structurally close to the WHO PfARTR mutations—ie, 
Gly449Asp, Gly449Ser, Cys469Trp, Met476Lys, Ser522Met, 
Ser522Arg, Arg539Ile, Arg539Lys, Prp553Ile, Arg561Cys, 
Arg575Gly, Asp584Glu, Asp584Asn, Asp584Tyr, Thr677Arg, 
and Thr677Ser. For instance, Gly449Asp and Gly449Ser 
observed in Mali65 are able to resemble the PfARTR 
mutation Gly449Ala. They occur on a locus known to be 
accessible to glycine (Gly449) and establish a network of 
hydrogen bonds for the Pfkelch13 protein function.90 These 
two African alleles could be structurally unfavourable to the 
structure of the Pfkelch13 propeller domain, resulting in 
potential markers for PfARTR.90 Molecular modelling can 
thus provide more information about the phenotypic 
effect of unexplored mutations on the Pfkelch13 protein 
structure;9,90 however, conventional research (in vitro or in 
vivo studies using either transgenic or clinical parasites) is 
always required to confirm their functional importance. 
Until the functional effect of these mutations that are 
similar to PfARTR markers is clarified, we suggest that 
they are included in any molecular surveillance of PfARTR 
in Africa when possible.

It is important to mention that African parasites might 
have their own genetic background preference to select 
PfARTR that would differ from parasites in southeast 
Asia.8,91 The discovery of Pfcoronin in 2018 as a second 
PfARTR gene suggests that nonPfkelch13 types of 
resistance could independently emerge in natural settings 
in Africa.92–94 Pfcoronin mutants associated with PfARTR 
were selected among parasites of Senegalese origin, using 
the same invitro selection experiment that had related 
Pfkelch13 mutations to reduced artemisinin susceptibility 
in Tanzanian parasites.14,90,92 Although the Pfcoronin muta
tions are not yet detected in clinical isolates, their structural 
similarity with Pfkelch13 provides insights into the 
molecular mechanisms of artemisinin resistance.93–95 
Tracking the emergence of Pfkelch13 mutant parasites in 
Africa is very important, but further research is needed to 
identify other possible PfARTR genes.91

Our systematic review has several limitations. First, no 
information is available from nonendemic malaria 
areas—eg, the Maghreb countries (eg, Algeria, Libya, 
Morocco, Egypt, Western Sahara, and Tunisia)—that 
have a lot of migration from subSaharan Africa, where 
the PfARTR threat might also exist. Future surveys 
should fill in the gaps of the existing map. Second, the 
heterogeneity in survey designs, sampling methods 
(eg, convenience samples), and analytical approaches 
in individual studies (eg, different lengths of analysed 
Pfkelch13 sequences, different sampling time in surveys) 
did not allow pooling of reports for a standard 

metaanalysis. Third, primary information (eg, the 
precise collection time) was very variable or not available 
in some surveys, hindering the possibility of analysing 
temporal trends. Instead, we assessed the temporal trend 
of reporting PfARTR mutations. Fourth, the inaccuracy 
in the number of isolates carrying alleles in some 
reviewed studies and mutations reported with unknown 
origin that were excluded from the review could have led 
to an underestimation of allele frequencies (eg, Pro553Leu 
in Malawi77 or Phe446Ile in Mali65). For these studies, the 
frequency of sites with these mutations was reported 
without assigning allele frequencies. Finally, our review 
did not include studies reporting migrating patients who 
returned to their home countries from Africa with 
isolates carrying Pfkelch13 mutations. For instance, three 
PfARTR markers (Cys580Tyr, Met579Ile, and Arg539Thr) 
found in isolates of patients returning to Asia from 
Africa were excluded from this Review.96,97 These 
mutations that favour PfARTR were probably acquired 
outside Africa as no autochthonous patients had 
these mutations, despite published reports extensively 
discussing that acquisition in Africa cannot be ruled out.

Despite the limitations above, we believe that our 
systematic review provides a valuable baseline reference 
for building and strengthening surveillance activities in 
African countries to prevent the emergence and later 
spread of PfARTR. The message in this paper is not a 
lack of confidence in ACTs, which are still very effective in 
Africa, but it is more a call for vigilance and increased 
surveillance efforts against possible PfARTR emergence 
locally. Therefore, proactive surveillance using PfARTR 
molecular markers and timely consolidation and inter
pretation of surveillance findings can contribute to 
decision making to further sustain the effectiveness of 
artemisinin in Africa. Any possible introduction by 
known PfARTR alleles, temporal increase in the fre
quency of autochthonous alleles, and expansion of non
synonymous mutations similar to PfARTR markers 
should be targeted by surveillance efforts. Enhanced 
research efforts (ie, more funding and field exploration) 
are required to uncover the functional importance of 
other Pfkelch13propeller mutations and to identify other 
possible PfARTR genes like Pfcoronin.
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