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From an analysis of the work of Crocco and others, 
semi-ol.Tiricd formulae are derived for the skin friction on a 
flat plate at zero incidence with a laminar boundary layer. 
These formulae are 
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for the general case of heat transfer, and 
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Lien there is no heat transfer. 

The problems of heat transfer, dissipation and the 
CLect of radiation are discussed in the light of these formulae. 
The second formula is then utilised in the development of an 
apprxdslate method for solving the momentum equation of the 
boundary layer on a cylinder without heat transfer. 	The method 
indicates with increase of Mach number a marked forward movement 
of separation from a flat plate in the presence of a constant 
adverse velocity gradient. 
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distance measured along surface 

distance measured normal to surface 

velocity component; in x direction 

velocity component in y direction 

standard length (e.g. length of plate) 

Mach number 

temperature (absolute) 

mechanical equivalent of heat 

enthalpy ( = Jcj, for a perfect gas with constant 

specific heats) 

specific heat at constant pressure 

specific heat at constant volume 

c /c r v 

viscous stress 

coefficient of viscosity 

V 

k 	coefficient of heat conduction 

Prandtl number = tkcp  /k 

defined by tA.0CP4A'l  

Suffix 1 refers to quantities measured at outer edge of boundary 
layer, suffix w to quantities measured at the wall, suffix o to 
sane standard condition, e.g. main stream at leading edge of plate, 
suffix i refers to incompressible flow. 
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u1 x/v 1 

u1L/Y  1 

I/I1  

u/u1  
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rate of transfer of heat from surface of unit breadth 
and length L to gas 

local rate of transfer per unit area 

total frictional force on surface of unit breadth 
and length L 

rate of dissipation of mechanical energy by viscosity 
on a plate of unit breadth and length L 

Boltzmann's radiation constant 

momentum thickness 	
,c)c) 

 u (
1 

displacement thickness 

y 
tkody 
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1. INTRODUCTION 

The general analysis of the flow in the laminar boundary 
layer at high speeds is of formidable complexity. This complexity 
derives from the variation of viscosity, heat conductivity and 
density with temperature and the consequent inter-dependence of the 
equations of motion and energy. The simplest problem, viz uniform 
flow past a flat plate at,zero incidence, has naturally attracted 
most attention, nevertheless results for particular cases have only 
been evaluated after long and laborious calculations. We are 
indebted for a store of such results to the work of Busemann 1, 

Karman and Tsien2, Hantzsche and Wendt 3, Emmons and Brainerd 4, 
Cope and Hartree 5, and Crocco 6. 	The work of the latter is 
particularly important since in addition to results for particular 
cases, it reveals results of a general character. The more general 
problem of the boundary layer on a cylinder is still in large 
measure unsolved, valuable pioneer work on lines analogous to 
Howarth's series solution for incompressible flow 7  has been begun 
by Cope and Hartree, and Howarth 8  has similarly developed solutions 
for the case when 	1.0, and cAL.). 1.0. 	In addition approximate 
Eethods have been developed by Frankl9, Oswatitsch and Meghardt 10, 

Young and Winterbottom 	Illingbvorth 12, and Howarth 8 in which 
solutions are obtained of the momentum and energy equations on lines 
analogous to Pohlhausen's method 13, or in which other assumptions 
or approximations suggested by incompressible flow theory are made. 

In the following a general semi-empirical formula is 
developed for the skin friction on a flat plate at zero incidence, 
both with and without hcaji; transfer in a uniform flow of a perfect 
gas with constant specific heats. 	This formula is derived from an 
approximate solution of C:.:'occo's integral equation for the viscous 
stress. 	The form of this solution is retained but the constants 
are adjusted to give the best overall agreement with the available 
calculated results for particular cases. 	The problems of heat 
transfer dissipation and the effect of radiation on the temperature 
measured by a thermometer are briefly discussed in the light of this 
formula. 

The formula is then applied to the development of an 
approximate method for solving the momentum equation of the boundary 
layer on a cylinder with zero heat transfer. 	The accuracy of the 
method cannot as yet be gauged, as there are no accurate results 
available with which to compare it. 	It has, however, two features 
to commend it, firstly, it gives the correct result for the case of 
zero external pressure gradient, secondly, it is relatively simple 
and quick to apply, the main operation in any given case being a 
graphical operation. 

The method has been applied to estimate the distance to 
separate from a flat plate in the presence of a constant negative 
velocity gradient when 0-'= 1.0, and CO= 1.0 . 	This is the case 
considered by Howarth 2  by a method closely analogous to Pohlhausen's 
method. 	It is doubtful whether either method can be relied on to 
give the separation distance accurately, and their results differ 
considerably for high Mach numbers, but both methods agree in 
predicting a rapid forward movement of separation with increase of 
Mach number at the leading edge for constant ratio of velocity fall 
per unit length of plate to initial velocity. 
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2. air FRICTION ON A FLT PLATE AT ZERO INCIDENCE. 

2.1. Boundary Layer Equations  

The equations of motion for the boundary layer are 

pu ( 	'1J ) pv 	= 
5 Y 	r-  y 

p 

the equation of continuity is 

(cv) = 0 .4111. (2) 

and the equation of energy lc 

ou 	ov  
' T 	75  

= 	_L 	+t( ilt) 2  

	

rr bY 	 \,!3Y 
(3) 

when I t Jc T (enthalpy), and ar) is the Prandtl number = ,A 	and. 
is assumed constant. 

The equation of state for a perfect gas is 

p =piTT/n.7 
	

(4) 

where IT is the gas constant and 	is the molecular weight of the 
pa. 	Since p is constant for the flat plate at zero incidence 

.61). 
The viscosity coefficient /4  is a function of T only, the 

relation being given by Sutherland's formula 

T1'5 
AA" °C T c 

where c = 1100K , for air. 

It is convenient to approximate to this relation by writing 

p_ oc TL.), 	 • •• • (5) 

where (r) varies according to the range of T in which we are 
interested, but can be taken equal to 8/9  for T between 75°K 
and 300°K 14. 
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2.2. Crocco's Transformation.6 

The case of the flat plate at zero incidence is the only 
one which permits the reduction of the boundary layer equations to 
ordinary equations in terms of a single independent variable. This 

1! variable is of the form 	= const.y vi-a . In this case we can 
write I = I(u) , e= (> (u , ii,), 7. i4(u) and 

1_ 
= (7 

)u) 41(u). const. 
1.4 	 ,Gc- 

say 

If we transform from IF to u as independent variable, the equations 
(1), (2) and (3) reduce to 2 equations in f and I , viz 

ff" + ti/A = 0, 	 • • • • (7) 

(I" 4-ci• )f + (1-f )I'f' = 0, 	 • • • 

	

(8) 

where dashes denote differentiation with respect to u. 

These equations can be 'out into a non-dimensional form 
by writing 

= 
	
, 	,,, i , 	r 	m 	F(17) _ 	2  	.f(u) ...(9) 

CiPlug 3 

when suffix i refers to quantities in the main stream. 

Equations (7) and (8) then become 

FF" + 2yrm = 0 , 

+0-u 1
2
) F + (1 -cr )i F

, 
 = 0, 

    

2 
and we note that _Ill = (v-- 1) M2 ,where dashes now indicate 

	

differentiation with respect to 	. 

The boundary conditions are 

= 0, F1 =0, i = Iw/I1  ; 

t7
1
=1,F=0, i=1 . 

suffix w denotes quantities measured at the wall. 

The equation of state (4) gives 

_e_ = T. -xi = 
e, T --I- 

and the viscosity - temperature relation (5) becomes 

. Cx) = 1 

Using (12) and (13) equation (10) can be written 

-(1-w) 
FF" + 	i 	= 0 

r 
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2.3 	Hantzsche and Wendt's Tranformation.3  

.,..(16) = 2 )R x d), 
F(17) 

From (6) and (9) it is easy to deduce that 

of 	= F(o) 	 .,..(15) 

where cf  is the local skin friction coefficient ( = 21-w/r, u2) at a 
point distant x from the loading edge, add Rx  = u)4)1 

Once F(9) is determined, tha relation betwoen • and 
u is given by (61 Lid hence 

du 
Y = -r(x,u) 

which reduces to 

Hantzscha and Wendt arrived at different forms of these 
equations by using different no..-,7imensional exurossions involving 
I and f(u). 	Thus, they 7-rote 

j .: I/1112, and G(vi) -i 	2 ....2. . f(u), 
V /...k.-rc,  w 111  

and their rs.:sulting equatlens which correspond to (14) and (11) were 

) /".:...-'7 k (1-=) G. 	0  C-" + - ti r 	_ 	= 0 1 k   

and. 

. 
G( j" + 0-  ) + 	-d`) C-

I 
 a = 0. 

In this case the skin frict3on leefficicnt is givon by 
. 	1- ',L) 

	

Of j-R; - G(o) 	I -7-  = (;.(0) 	Ti  

....(18) 

....(1 9) 

2.4. Some important results of Crocco's analysjs, 

It will be im7-1diate3_:r alyparent from the form of equations 
(14) and (11) ( or from equations (18)and (19)) that considerable 
simplifications result r. hen to 

!
/A = cond. and hence c.A.:9= 1.0, or when 

= 1.0. 

Thus, when cr." = 1.0, equation (11) reduces to 

i" 	2 -0. 	 ....(21) 

and hence i is a quadratic function of n , independent of F and 
taking account of the boundary conditions this function may be vadtten 

 

i = 	- (0)0_1 	u,2  (1 _ ,12)  

21 

 

....(22) 

 

or 
I 	 2i 

—  ill 
2 

i = i( o) + 	1 - i( o) + U I 	ly 
..--.-. 	1 

21 j 
1 	

2I1 

   

 

S. 

Having 0 • 

....(17) 
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having i as a function of u , equation (14) for 	takes the form 

.be 	k (Y)) = 0 

where k (/i) is known. 	For details of an iterative process that 
can be used to solve this equation for F see Reference 6. 

to 
When 0.A.= constant or c = 1.0, equation (14) simplifies 

     

ee" + 2 7 = 0, 	 ....(23) 

which can be transformed to the Blasius equation for incompressible 
flow, viz, 

d 	"•<*d.2 "c 	 +  
d -- 

	

	d 3 	2 

d
2 

by writing F 
d 

The relation between 	and yi  , the lateral ordinate in 

incompressible flow is 

17—t • Yi 1,===,  
VI 	V x 

From equation (16), the lateral ordinate in compressible flow 
corresponding to a given value ail , is 

Y F 
fi 

2x 	o m dIrl _ 2x 	:1 y= 	 m d --Tc = 	m d yi  
4 Rx 	F(11) 	Iii; 	1  

...io 	 j 0. 	 e 

= V i 	 f Yi  • dyi 
= 	

i AA  
I
— dyi . 	 ....(24) 

.)0 	"I'd 	
1 
Jo 

Hence for this case all solutions are simple transformations of the 
incompressible flow solution, the relation between corresponding values 
of y for given values of u (orIl ) being given by equation (24). 

rie note immediately that since 9 = 0 when IT . 0, F(o) is 
the same for compressible as for incompressible flow and hence in all  
cases when 	A.= const. (or CA) =. 1.0)  

of J Rx = F 0) = 0.664 	 ....(25) 

/ 	In 	• • • 

= 0, 

d 
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2 u 
Ii  

i(11 ) = 1 D(r1 

-- 
where 

I 
F(7  

F(o)) 
0(r) ,o-) 

In the general case, when neither CO nor or are necessarily 
unity, let us suppose we have solved for F as a function of 	. 
Then equation (11) which is linear in i can be integrated twice to 
give 

i(TI ) = i(o) 	i'(o).A(1 ,a-) - 	,
2 

I 
B(i 
	

), 

rwhere A(1 20- = ) 	11(M)
- 
 

F(o) 
, 

   

11  

F(o) 
and B(11 0-) 	[F(171).i

ry-,..1 

0 

 

f 0—  

[P(7 2)  . 
F o) 

 

 

 

  

   

Alternatively, taking account of the fact that 
we have 

( ,Z 

ci v i Y 
..,.(26) 

cI  and D(1 	= 

 

( 

-„ 
/. 

  

   

F(t?,  
fl( o) 

F(12); 
F(0) j 

 

 

drip  

"'i 

   

   

   

   

Hence, for the case of zero heat transfer when i (e) = o 

1(r )  

u 1  /2 

and in particular 

1(0) 	I(1)  
u 

 1
2/, 

= 	2 ir D( 

2 o- D(o ,cor.) 

'f 

....(2U) 

Since D(o,r-) does not involve M I  , it will be independent 
of Mach number for all cases where F(17) is independent of Mach number, 
i.e. for all cases where p/tA= const, (or (.J0= 1.0). 	Pohihausen's 

solution15 for incompressible flow gave to a very close order of accuracy 

I(o) - I(±1  = 
2 u /2 

hence 

2 co- D( o 	er- 2  , 

and therefore for all cases where = const. 

Tw 	
(  4- -

2 
 1) 16

12 cr- 
	 .,..(29) 

/ However „, 



6 
However, by a laborious trial and error method Crocco 

integrated equations (11) and (14) step by step for the cases 
et•-• = 0.725, a range of Mach numbers up to 5.0 and values of ta.) of 
1.25, 0.75 and 0.5. 	In every case the results showed the functions 
A, B, C and D to be practically independent of the part3.cular value 
of oo assumed and hence independent of the function F(1) within 
the range of values of co.) considered. 	Crocco suggested that the 
reason for this lay in the fact that whilst the variation of F(7) 
with CO may be considerable, it occurs in the integra.ls from which 
A, B, C and D acre derived in the form [Ti T-oror 1+17 TT-1 . 

The ratio F
(
1) must in every case be unity when 1 e o, and be zero 

F o) 

when / = 1.0, and hence its possible variation with (.)-) is limited. 
Further, as long as a•-'is not far off unity, the exponents (1 - 01-) or 
(o-- 1) are small and reduce still further the sensitivity of the 
expressions A, B, C and D to variations in W. 	The final result is 
therefore that in general the variation of enthalpy with velocity is 
practically independent of the viscosity-temperature relation, for 
values of ar-' not very different from unity and is given by equations 
(26) or (27) with the functions A, B, C and 'D calculated for the case 
0= 1.0 when F (17) is given immediately by the Blasius incompressible 
flow solution. 	In particular, when there is zero heat transfer 
equation (29) for the wall temperature is of general validity, a fact 
that was demonstrated by the cases calculated by Brainerd and Emmons 4  . 

Since i(17) can now be regarded as independent of F(17 ) 
in general, and is readily determined from the case w= 1.0, the 
solution of the main equations (10) and (11) reduce to the solution of 
the equation 

FF" + k(?) = 0 

where k(1) is known. This enabled Crocco to develop a more rapid and 
more accurate process of solution than the first process he had used, 
but for further details see Ref.6. 

2.5. Skin friction distribution. Deduction from Hantzsche and 
Wendt's results for case of zero heat transfer.  

Hantzsche and fiendt's calculations 3  for the case of zero 
heat transfer showed the interesting result that the quantity G(o) 
vas only a slightly varying function of ') and K1  , for 	= 1.0, and 
was independent of o-' and M1  when (.0= 1.0. 	In general therefore, 
we may expect G(o) to vary little with 	le)anq Mi  . The 
importance of this may be seen from equation (20) which with equation 
(29) gives us 

0,1 	x 	c(o)/ l+ (;1)J,2  et',2 	"f  ....(30) 

A reasonable approximation to G(o) , reproducing its small 
variation with (AA c-  and MI  should then give us a reliable formula for 

f FR; , for which the major variation with (-0, a' and M I  is described 

by the denominator of (30). In Fig.1 G(o) is shown as a function of 
M s  , for various values ofeofor the case tr" = 1.0, and this can be 

F o) 
• 

/represented ... 



represented fairly closely by 

G(o);-..z.f0.664 	
r1 

1+0.3(3"-1)i11 2  

This suggests that in general 

1-co 
G(0):="...,  0.66)4. 

[ 

1 +(7-i) Y ---6-. 1  cr- 

1+0.3(Z4=1)M i
2 	1 
cr.  2  

2 

and hence fur the case of zr;:ro heat transfer we may expect from (30) 
that 

cf R 	F( 0) 
1+0.3011)M1 2  

0.664 	F( 0)1,0=1.0 
....(3i) 

2.6. Skin friction distribution with or without heat transfer. 
Deduction from approximate solution of integral equation 
for F. 

From equation (1)+) and the boundary conditions for F it 
follows that 

p 
	 1 	ca-1 

. i 

F Jo 

From a survey of Crocco's results for F it appears that 
in all cases a very close fit to F is given by 

F(o) (1 - -r72)   2 • 

Hence, from (32) vie may expect to get an oven closer fit from the 
relation 

f 	2 

0  F( 0) (1-  r,2  ) 1 
	d ry  

In particular, 

2
c„ 10 r 	,  Pi 2 • • ,.1./  • 3.  

-0 
j 

(1-‘7 
d7 ....(33) 

We have i as a function of r1 and*" given by (26) or (27) so that in 
theory we can determine F(0)4  from (33) in any given case by integration 
(which must in general be numerical) and hence from (15) we can obtain 
the skin friction coefficient. We are interested, however, in 
obtaining a general explicit formula for F( o) in terms of i(o) 
( or T), 	) , 	, c and (A). 	Analytic integration of (33) appears to 
be impossible in general, the process adopted therefore has been to 
develop a crude a-oproximate solution of (33) to suggest the form of the 
required foroiula for F(o), the constants in this fcrmula have then been 
adjusted to give the best fit with the numerical results of Crocco and 
other workers. 

d.? ....(32) 
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2 sin 0 1+(0-1 
4, 

-JO 

W-1 5- 
F(o) 2  2. A2 sin  e + 1L3 sin2O 

( 

+ Ao - 4 
3 

1il -1i1. (2_ q )  
2 

	

Consider the case when 0- = 1,0. 	Then we can write 

i 	Av- A2  + A3  y,2  , 

where AI = i(o), A2  = 1-i(o) 	
u12 	

A3  

211 	211  

V1 = sir. € 	then (33) can be written 

( 0  ) 2 
- 

c,. 2 „,A-1 2 sin (3 (Al + A2 sine +A3sin ti )  

2 	 2 Let A
4 
 = 1 + i(o)+ u1 , then A 7 A._+ A2  sin 	A3 sin t7 . 

2 1  

Hence, we can write 

- A24_-A1) 	 n 
d 

A3  

2 

This leads to the result that when 

8 
3 

- 3411 + terms in 
(w_1)2 

6.3= 1,0, F(o)2  = 2 - Tr 
2 

and therefore F(o) = 0.655 ( compare the accurate value of 0.664) 

Write equation (31+) in the form 

01-1 
F(o) 	= A —2- 1 + (6)-1) L.  

F(q)=1.0 
Aft: 	

3! 
 74} 

+ A3 	(32 - 97r) 
12 A

4 	
- 	) 

+ terms 
2 

in (t0-1)+ 
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Then assuming W is not very fari  from unity (as will be the case in 
practice), the terms in (0)- 	can be allowed for to some extent by 
approximating to the right hand side with 

[ 20-67i  ] 
12-3/T 

37 -8 	 21-1i —6t;_ 

co-1 

	

+ A3  (32-910 	2 
12 ( 	) 

2 

12-31T + i(o) 
u

1  

2

11 L 12(4.- 

2 ( 
. [0.553 + 0.) 	g )17 	o) + 0.096 111 j-.27— 

-3- 

1 

c2o,---1.0 
A4.  + (A1-A4) + 

A2 (
37r -8) 
12-3 11/ 

2 

.-,,( 35) 

Even before any attempt is made to modify the constants in this formula 
to improve agreement with calculated results Nye may note that it gives 
good agreement with formula (31) for the case of zero heat transfer and 
00- = 1.0. 	Thus, in this case, from (29) 

i(o) = 1 +17:11 1'1
1  
, 2  

2 	
= 1 + 

u
1
2 
, 

2I1  

and hence (35) becomes 

 

	

w-1 	 0J-1 

	

21-T 	 2 
1 t 	

1 2 
1 + 0.32 u 

1 + 0.32 (-Zr-1)M 1 I1  j 

 

This comparison indicates that any modification to (35) should retain 
the following features:- 

(1) The sum of the constant term and the coefficient of 
i(o) should be unity. 

(2) Half the coefficient of i(o) plus the coefficient 

2 
of 111  should be approximately equal to 0.3 

The comparison also indicates that to take account of values of 0' 
other than than unity the coefficient of 1112  should include the term 0-  . 

Formula (35) with this last modification v'as in fact found 
to give results in surprisingly close agreement with the calculations 
of Ref.2 to 6, bearing in mind the approximate nature of the analysis. 
The closest overall agreement was, however, found with the formula 

ic:2 -1 
F(o 	 2 	4  7—  

0,55 i(o) 	0.09 ( ."'3-)M 

F(oL1.0 	
.45 	 1 	2 

/ Using 	• • • 



0.664 [0.45 + 0,55 i(o) + 0,09 (b--1):H.  
2 l• ] 2 

0.)-1 

of •"x 

Using the correct basic value of F(o) 	= 0.664, this can be 
oa,1.0 

written 

For the case of zero heat transfer this reduces to 

co-1 
0.664 	1 + 0.365 (=1)141

2 
 0' 

f x  • • • •(.3-1 

Table I compares the results given by equation (36) and Crocco's 
calculations, and it will be seen that in every case the agreement is 
within l , which is within the accuracy of Crowell's calculations. In 
Table II Crocco's results for zero heat transfer are compared with the 
results given by equation (37), and the agreement will be seen to be 
equally good. Finally, in Fig.2 some of the results of Ref.2, 4 and 
5 are compared with equation (37) for the case of zero heat transfer, 
and in every case close agreement is found. One can conclude that 
the formulae (36) and (37) are reliable to within about 76 for values 
of the Mach rnlnber up to 10, and for values of 04 and 0' likely to 
be of practical interest when air is the working fluid. 

3. HET TRANSFER AND DISSIPATION - FLAT PLATE AT ZERO IriCIDENCE, 

3.1. Heat Transfer 

If Q is the total heat transferred per unit time from a 
surface of unit breadth and length L, say, q is the local rate of 
heat transfer per unit area and S

F 
is the total frictional force on 

the surface, then it readily follows from Crocco's analysis that for 
ole near unity 

g =  J Op  
op 	 0-,  273  

[ 	Tth.]  

u 
 

VUO0(3E 

where Tth' is the temperature measured by a thermoneter, i.e. 

for zero heat transfer Tth = 

= T1 
[I1+ g'-1) m 2  

c' —2 1  • 

If we now use equation (36) to derive SF and 17g , we find 

S 	= 0.664 F 1' 

and 

= 0:532 
#4Tri 

2  (21 '1 0.45 4- 

O.45 

0.55 i(o) 

+0.55i(0) 

0.09-1)M 2  

2 
+ 0.096Y-1)M1 er - 

-(1-co) 

( 24-( 

r: L 

2 11  
1 	1 2  

. . 
x 

Equations (38), (39) and (40) enable us to calculate q and Q in any 
case where 'E. T1, M

1, 0- and (A) are given. 

/3.2 ... 

ful  



or 

'Top 	Tth -k,,o or - T„3 
• F(o) F(1). dr 

0 
727 	uI 

2 

3.2. Dissipation 

2 
It has been pointed out by Karman and Tsien that when a 

hot gas is cooled by a cold surface, the rate of heat transfer from 
the gas to the wall is increased by increase ofDaoh number ( see 
equation (35)) but on the other hand so is the mechanical energy which 
is dissipated by viscosity. 	The latter increases more rapidly than 
the former and eventually at some Mach number the gas becomes heated 
and not cooled. The results of calculations by Karman and Tsien2  

and Hantzsche and Wendt3 for the oases when i(o) 	d- = 1.0, and 
W= 1.0 and 0.76 are shown in Fig.3. In the following a simple 
formula is derived for the Mach number at which the change from 
cooling to heating takes place. 

The rate of dissipation of mechanical energy by viscosity on 
a plate of unit breadth and length L is 

 

c12 	2 
dy 

L Jo 14' k AY  ) 

2 	c 1  
F( 1 ) . 

J 0 

  

rL 
= 

0 
.dx 

 

 

air? ....(41) 

where RL  = u1L/)1  

The rate of heat transfer from the gas to the wall is from (33) 

TI 21.( 	
m 1 
	2 Q 	j  01) 	T 	 u L 	 ....(42) 

Hence the gas is cooled or heated according as 

2 	7 	 F(0)  
1 + 	2 	M 	i( 0) 	

F(fl)  

cr 	(r-i) M.1
2  

L., 0 

Wormmake use of the close approximation 

F(i) 	F( 0) 	-1
2
)
-i 

then (143) becomes 

1 + 9e-1  M1 2  
2 

1(0) > or ‹ Cr
2/3 

 "Tr (Y-1)Mi
2  

/1_ 

 

or 2 
< or 1 	> 	

1  - 3.(o)  
ai-7'173-  

77  

•.••(44) 
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For the cases considered by barman and Hantzsche axed Wendt, 
viz. i(o) = it- and 	= 1.0, this relation predicts that heating of 
the gas begins when 

2 	7  
M -1  6.58 

1 	( '-1) 7;.=—:) 

or M 	= 2.56. 

This value is in good agreement with the value shown in Fig.3, where 
it will also be seen that in conformity with relation (44) above the 
value of the Mach number at which heating begins is practically 
independent of the value of w . 

3.3. Effect of radiation on thermometer temperature. 

The following treatment is a modification of that due to 
Hantzsche and Wendt 3, use being made of the explicit formula for 
F(0, equation (36). 

Allowing for the radiation of heat in the thermometer 
problem, then the rate of heat transfer from gas to wall must equal 
the rate at which heat is radiated. Hence 

Q = 	GB  (Ti  - T..14"). dx, 
, o 

where C
B 

= Stufan-Boltzmann's constant multiplied by the 

Using equation (38) we, have therefore 

c(T 	T). 2F(o) 	2 	 4 
2 	u1  L = CB  L(T77

4 — Ti  p w 	th ) 7 

or 

2 [i( 	- 1 -L- 2 11r 	M1 cr- 	F( o) 	ap 	 = CT3 B 1 
 

t_'2/3 (i( 04-1) 

3 
Write 	Ktz = OB11 L 

c R 
P L' 

,1„4 
1 

  

0060(45; 

Then 

  

 

2 F(o) KR = 

	

	 2  

cr- 2/3  L
i(o)4-11 

0 • II • 

txTe l  as before, we have 

   

 

2 2  
P(o) = 0.664 [0.45 + 0.55 i(o) + 0.09 M1 6-  

   

    

emissivity, 

•
2/3 

	

	r—  u1 

/ Tr 



The problem in general is, given KR  , what is the value of i(o) 

With the aid of equation (i6) the problem is best treated in reverse, 
that is for gi'ren values of MI, 	u- and i(o) the corresponding 

values of KR can be calculated and the values of i(o) can be 

plotted against KR 	We may note immediately that for KR  = 0 

(as when L = 0) Tvx  = Tth" for KR  =c•G (as when L ='a), 

i(o) = 1, i.e. Tw. = T1 . 	For intermediate values, i(o) decreases 

steadily with increase of KR  . 

1.. THE LAMINAR BOUNDARY LAYER ON A. CYLINDER.   

The method to be developed here is essentially the same as 
a method previously put forward by the author 11, but with a number 
of improvements suggested by the results given in paragraph 2. 

Suffix o will be used to denote undisturbed stream values, 
and suffix 1 to denote values just outside the boundary layer. 

The momentum equatiox. of the boundary layer is readily 
shown to be 11  

  

ul
I 	t] 

Ci u 
u 	j 

  

of (H 2) = 

ui 2 
....(47) 

  

Where 

= 

P111 

  

r 
6 	 dy 

0 	11'11 
1 

  

  

	

H = t 	, and dashes denote differentiation with 

respect to x the distance along the surface. 

We will now follow some of the implications of an approach 
on the lines of Pohlhausen's method for incompressible flow. Instead 
of expressing the velocity distribution as a function of y however, 
it will be expressed as a function of 

Y 	f „„4.,ody 	, since we 
J /" 

know that on a flat plate, with (A) = 1.0, the velocity distribution 
expressed as a function of y is independent of Mach number. Thus 
suppose the velocity distribution across the boundary layer to be given 
by the quartic 

u = a y +by2 
+ a  y3  4- d y 
	 ....(48) 

with the boundary conditions that 

_ 2u  
61 , u = 	, 21.A 	 o; and 

cyy y2 

	

for y. 0, 	u = o, T o , and hence 	= o. 
a y 	 ra y 

The quantity 4 	is at present unknown, but is assumed to correspond 

to the value of '( defining the outer edge of the boundary layer. 

/ The 000 



The first boundary layer equation yields 

( & L. 
c)y. 	 = - 

13ut a 	

;L;  NV y = LA 	

) 

6y 	 /-t7 

2 
u 

,Mw 

since o p  

    

    

Hence 
	

2u 	, 14-,7 . 	ui  . 
TT 	 9 

With these boundary conditions we can solve for the coefficients a, 
b, c and d in terms of S4  , and we obtain 

a 	u1 (12 +A) 

6 eSi  
-u1/\ 

2 2  

C 
—ul (4 

2 d'1 3  

 

  

a 	u1(6 -A) 	
where 

6 Si  

= 
r 2 u1 	441 r 1 

Po 

Further, since 
1  VI u  /kJ (c) 	w  

tu\ 
y)y.T 

,/..40  (12 -,A) 
2 ( 111.1 	6 131 u1  

From this point the method departs from the classical Pohlhausen 
approach. It depends on the solution of the momentum equation, 
making the following assumptions 

(1) Equation (50) is accepted. 

(2) Thu variation of H with local velocity, 
pressure gradient, GJ and te is neglected, 
H being treated as a function of Mo,only. 
The justification for this lies in the fact 
that H enters the solution of the momentum 
equation in a form suggesting that the 

IL 	

solution is relatively insensitive to small 
variations of H , and for slim bodies at 
small incidences the possible variations of 
H are unlikely to be large.+ 

+ It is possible to avoid making this assumption, but the 
computing f_nvolired then becomes considerably heavier. 



For a flat plate at zero incidence, with (k.) and cr-  both 

unity we know that u is a unique function of )( and also the 
uo  

total energy is constant across the boundary layer. Hence 

6*1 I en° 
= 	u 	( 1 - 	dy = 	u (1_  u )  d'( 

uo 	u0 	 uo 0 o o 	 uo 

_ t9 • , 

where suffix i denotes the value in incompressible flow. 
Also 

00 	 oc 

- 	) dy = 

o roux 	 0  /40 

u 
u0  

d y. 

   

= T 	= 1 
To  

2 
0 

(1 - 
2 'Lk 

uo
2 

But 

  

  

P• 2 

Hence uo ) 	‘1/ + 
	1) Ivio2  

2 

u2 
- 

o uo
2 dy 

2 = 	++ be- 	1)  -14 ( 	B. 

	

i 	 0 
2 

Therefore 

H = 	- 41- 	• { 1 + 	M 	1 + 4_11 ) 
°

2 	

Hi 

The Blasius solution gives 

H. = 2.59, 

hence 	H = 2.59 	1 + 0.277 Mo2 ....(51) 
This relation is in almost exact agreement with the results of the 
calculations of Brainerd and Emmons 4. 

(3) The ratio 47//e is also assumed to be 
independent of variations in local velocity 
and pressure gradient. For the present we 
write 

making no furthar assumptions at this stage 
about the form of the function, except to 
note that we expect it to be constant when 
Ai= 1.0. 
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(012 (9 21 	4 LA 
1 	 / 0 

g -1 
....(56) 

[ o 

xl 

 

4)uo  

f ul(xi)g  

x 

J o  

g-1  
p
1  U1 	

dy:  
t,  r

2 2 
6 

  

From (50) and the ex-Iression for A, in (49) we have 

7.7 o  

2 
el ul 	

6riu1 

1 .0 2  u 
1 	1 (01 + 121 

AA  2 
0 

 

i ul 	O1 + 2E:1_ 
6u1 	P0 	ri  ui  S'i  
I 

4!  f' 
A, u

1  
/--o  = 	Li! f e 	4. 

6 u1 	Po 	c1  u1f 6 

Hence, the momentum equation (47) becomes 

6Y14.  (H + 2) ul  1 + P1 1] 0 	u 1  1 ?II 
u

1 1°1 	 Ji  1,1,0  

2 Multiply both sides by c51  ti and we get 

. f e 
2/A0  

u 1 1 fe  

dx 
[ 2

0  21 + 2 
12 e 2 	a ul 

jui  

    

(H 	- f  ,___, 	/4.4o1 

1 

.1.1(53) 

   

At this stage a further assumption is mane, viz. the value of 
/(d o  

in the second bracket is taken to be that for a flat plate at zero 
incidence. 	This gives 

  

r i 	)--2- I)  Cpl` Mo2 	L.)  
L 

( 54) 

  

Write H + 2 - 	/'7 . --- = g (M0,4J, a-) /2, say. 
-b 

Then (53) can be integrated with respect to x to yield 

....(55) 

The leading edge is taken at x = 0, where either u1  = 0, or u1  is 

finite. If u1 is finite, then e = 0 there, since we cannot have 
a finite momentum loss there. 	Hence 

....(57) 
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,re may note here that g occurs as an exponent of u1  inside the 

integral, and as an exponent of 111(x1) outside the integral in the 

denominator. This suggests that provided the variation of ui  

with x is small, small errors in g will have little effect, and 
this provides the justification for the neglect of the variation of 
H and /Ow with pressure gradient and local velocity. 

/° 
We have yet to determine the function f. 

For the flat plate at zero incidence (57) reduces to 

0 

 2 1".o1  
9  x1 	f 

or OK /1 = _ 

	

2x 	f 

	

e 	i 	i and 	 = 

	

(Xe 	IT; JT 

But cf 
2 "I'w  

u2  
0 0 

2 	1 
TR; rf- 

It follows that 

- 

of 	= 0.664 1+ 0.365 (Y- 1)0-1  M021) 2  

from equation (37) 

Hence 
	2 

Vl 

f = 9.072 	1 + 0.365 (Y-1)0-15  Mo  2 ....(53) 

The function g is given by 

g = 2(H + 2) - f /44Y7  
3 

/-0 

= 9.13+ 1.436 m,2  - 	111 +  (r-1)  
la, 	3  

2 

.._ 
2 

Mo 	....(59) 

It is sometimes convenient to express these relations in non-dimensional 
forms. Thus, write 

+ 	+ c+ . 	, p. = AL 	 + , u = u , (9 , e_ 
N 	fb 	u0 	L 

L is some standard length, then (57) becomes 

dx 
[ + 2 * 2 	 4  R  _ 

e 	a   
r xi 

e i  .1  + +g-1 + 
i 

xl 	u1 (x1) g f 	I 
0 

where R = Ijolii1)0  . 

x 	when 
L 

....(60) 
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The relation between ri and u
1
+ 

is 

   

1:=11 o2  (1  - 
2 

2) 

 

Having u1+  as a function of x + , we can then obtain 0+ 
point from equations (58), (59), (60) and (61), the solution 
being obtained by graphical or numerical integration. 

at any 

of (60) 

To obtain the local skin 
known, we have 

friction coefficient when 0 is 

of  = r u, 
( 	+ 12) ui 

3 R 9' f 

and A = u 	r 2 
1 ° P1 p by  

" AF L 
....(62) 

R( ui+i 
0

+ 2 
1-1 	tA  vr 	• 

For 1"11 &'7 
 

$ we may use equation (54) but it is probably more 
0 

accurate- at this point 

T1, and u1, is the same 

relation 

w 

to assume that the local relation between Two 
as for the flat plate which leads to the 

U1 ( 2 1) 
2 

u  2 
+ 	1)  Li t  

2  [. 1 
2 

....(63) 

The accuracy of the method outlined above cannot as yet 
be assessed, this must await the development of a method that can be 
accepted as accurate and its application to a few test cases. In 
favour of the above method it should be noted that it gives the 
correct answer for the flat plate at zero incidence and the numerical 
work involved in its application is relatively small. It may also 
be noted that when applied to incompressible flow (Ref.11) the method 
gave results which were in very close agreement with results given by 
the standard Pohlhausen method. 

5. 	SEPARATION OF THE BOUNDARY LAYER. 

It is unlikely that the above method will be any more 
successful in predicting the separation point of the laminar boundary 
layer than is the Pohihausen method in incompressible flow. 
Nevertheless, it should provide a guide as to the effect of increase 
of Mach number on tendency to separation. 

From (49) separation occurs when A = - 12, i.e. when 

-12  	from (62). R e ?1  
u 1f2 
1 	14A  

/ Hence ... 

L 



2 

1 
Cr-1  -1 y-1 (1  _-1) 	• 

Hence, from (60) separation occurs at x1 	if , 

[ 	
XI °A.  

3  +
g 

C1+-1 
(71 u1 

	

+ 	g-1 
• (14 • 

u
+1 	4- 
l  f 	xi  

V 0  

Howarth has considered the case of a uniform adverse velocity gradient 
with (A)= 1.0 and or = 1.0 	and has estimated the separation 
distance for different main stream Mach numbers at the beginning of 
the plate, using a method that is essentially an analogue of 
Pohlhausen's method. It is of interest to compare his results with 
the results given by the present method. 

With 00.= 1.0, and Or= 1.0, 
f = 9.072, 
g = 6.156 + 0.831 1402  , 

andiu.+.w  = • r- 	M 2 .  
2 	- 

  

u1  = 110  - pix , 	where p is a constant. Suppose 

  

Then 

  

and  u1 
 1 

u1 = '1 - 	. x 
0 

-  ts ▪ 	- o(, Gay. 
uo 

Equation (64) becomes 

  

 

3 

 

1 	 P+(1 1 
( 1 	- e,t xi+  ) g toi+ ("1) 

0 

 

9.972 (1 	r-i m 2).t 
2 ° 

and, from (61) 	 1 [ + 	t4.2x+1 	(r-1) 	( 2 01-x 
2 

+ 
Let ubL x = 	, then we have 

(Ip mol 
x 

0.331 
(1 - -cog [1 	(r.1)  E02 (2 	- 

2 

%.11 TI  

2 (2  c 

-.2)] 2 ° 

with g = 6,156 + 0.831 M02  . 

The process then is given 1:10  , to evaluate the R.H.S. numerically 

for a range of values of T , and to interpolate to obtain the value 

of T i  for which equation (65) is satisfied. 
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The results for the separation distance (xi) given by this 
method are compared with those given by Howarth's method in the 
following table: 

"o 
Harraxth 

--xs  /uo 
Prt-Jsc.nt :dothod. 

o 0.156 0.165 

1 0.148 0,148 

3.16 0.107 0.081 

10 0.052 0.013 

The agreement between the two methods is poor for the higher Mach 
numbers, but neither method can be claimed a priori as very reliable 
for predicting the point of separation, and it is impossible at this 
stage to estimate their relative degrees of reliability for this 
purpose. It can be inferred from both sets of results, howeve:, that 
the separation point moves forward with increase of initial lac 
number for constant 	 - du i( u  i,e. for constant ratio 

u 	dx 
0  

o , 

of velocity fall per unit length of plate to initial velocity. 



i(o) Of  

1.25 0.25 

1.25 0.25 

1.25 0,25 

1.25 1.0 

1.25 1.0 

1.25 1.0 

1.25 2.0 

1.25 2.0 

1.25 2.0 

0.75 0.25 

0.75 0.25 

0.75 0.25 

0.75 1.0 

0.75 1.0 

0.75 1.0 

0.75 2.0 

0.75 2.0 

0.15 2.0 

0.5 0.25 

0.5 0.25 

0.5 0.25 

0.5 1.0 

0.5 1.0 

0.5 1.0 

0,5 2.0 

0.5 2.0 

0.5 2.0 

of  

(co = 1.0 ) 

( Crocco ) 

of, sillx  

0.661+ 

(Equation 36) 

0.940 

0.957 

1.040 

1.006 

1.016 

1.076 

1.056 

1.066 

1.111 

1.070 

1.049 

0.960 

0.996 

0.985 

0.928 

0.946 

0.940 

0.903 

1.139 

1.098 

0.931 

0.991 

0.970 

0.868 

0.897 

0.886 

0.815 

0.942 

0,960 

1.039 

1.004 

1,015 

1.074. 

1.059 

1.066 

1.111 

1.062 

1.041 

0.963 

0,996 

0.986 

o„931 

0.944 

0.938 

0.900 

1.128 

1.089 

0.927 

0.992 

0,971 

0,868 

0.892 

0.879 

0.811 

( 0- 	0.725) 

To minimise the affects of a possible error of the order of 1% in Crocco's 
calculations, ratios rather than absolute values of skin friction 
coefficients are compared. 



T i, B L E II. COLTLRISON OF CROCCO' S 	 V.,,LLTES OF SKIN 

FRICTION ON x FL.,T PLATE WITH ViLLUES GIVEN BY 

	

EQUA,TION 37 FOR 	OF ZERO lia.T TILITS10.0. 

	

( 	= 0.725 ) 

1,1 CO 
of  fig; Of ir7; 

cflis; (6). 1.0 ) 0.664 

(Ecivation 37) 

1 1.25 1.015 1.015 

1.25 1.053 1.052 

5 1,25 1.194 1.193 

1 0.75 0.984 0.986 

2  0.75 0.950 0.951 

5 0.75 0.842 0.838 

1 0.5 0.969 0.971 

2 0.5 0.908 0.904 

5 0.5 0.707 0.702 
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