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From an analysis of the work of Crocco and others, ,

piricel formulae are derived for the skin friction on a b g
. ﬁate at zero incidence with a laminar boundary layer, 1 8
se formulae are

| 17 o

general case of heat transfer, and
. 2 1 et
/R =0, 1 + 0.365 (y=1)M o~ 2
Ji, = 0660 1+ 0365 (o~ ?

there is no heat transfer. |

The problems of heat transfer, dissipation and the
of radiation are discussed in the light of these formulae,
d formule is then utilised in the development of an |
te method for solving the momentum equation of the '
layer on a cylinder without heat transfer. The method 1
with increase of Mach number a marked forward movement
ation from a flat plate in the presence of a constant
velocity gradient.
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A0S Lkl LWL
R

distance measured along surface
distance measured normal to surface
velocity component in x direction
velocity component in y direction
standard length (e.g. length of plate)
ach number

temperature (absolute)

mechanical equivalent of heat

enthalpy ( = JcPT, for a perfect gas with constant
specific heats)

specific heat at constant pressure

gpecific heat at constant volume

cp/cv

viscous stress

coefficient of viscosity

M

coefficient of heat conduction

Prandtl number = pmcy /k

defined by aecT®

Pix 1 refers to quantities measured at outer edge of boundary

er, suffix w to quantities measured at the wall, suffix o to

ge standard condition, e.g. main stream at leading edge of plate,
fix i refers to incompressible flow,

2w/ pu,?
W %/v

wL/Y

/1,
u/u,
P/,
F/h

/ Q




rate of transfer of heat from surface of unit breadth
and length L to gas

local rate of transfer per unit area

total frictional force on surface of unit breadth
and length L

rate of dissipation of mechanical energy by viscosity
on a plate of unit brcadth and length L

Boltzmann' s radiation constant

oc

momentum thickness = o § dy
Pyu :
o 11

oo
displacement thickness = = Jo dy
1%

§'/e

J. 5

L

r/Po
W/
6/
u/u,
/L
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1. INTRODUCTION

The general analysis of the flow in the laminar boundary
layer at high spceds is of formidable complexity. This complexity
derives from thc variation of viscosity, heat conductivity and
density with temperaturc and the consequent inter-dependence of the
equations of motion and encrgy. The simplest problem, viz uniform
flow past a flat plate at zcro incidence, has naturally attracted
most attention, nevertheless results for particular cascs have only
been evaluated after long and laborious calculations, We are
indebted for a store of such results to the work of Busemann |

4
Karman and Tsienz, Hantzsche and Wendt 7, Emmons and Brainerd h,

Cope and Hartree 5, and Crocco 6. The work of the latter is
particularly important since in addition to resultes for particular
cases, it rcveals results of a general character, The more general
problem of the boundary layer on a cylinder is still in large

measurc unsolved, valuable pionecer work on lines analogous to
Howarth's series solution for incompressible flow ! has been begun
by Cope and Hartrece, and Howarth 8 phas similarly developed solutions
for the case when ¢« = 1.0, and = 1.0, In addition aporoximate
rethods have been doveloped by Franklg, Oswatitsch and Wieghardt 10,
11, Illingworth 12, and Howarth 8 in which
golutions are obtained of the momentum and energy equations on lines
analogous to Pohlhausen's method 13, or in which other assumptions
or approximations suggested by incomprecssible flow theory are made,

Young and Winterbottom

In the following a general semi-empirical formula is
developed for the skin friction on a flat plate at zero incidence,
both with and without hcat transfer in a uniform flow of a perfect
gas with constant specific heats. This formula is derived from an
approximate solution of Crocco's integral equation for the viscous
stress, The form of this solution is retained but the constants
arc adjusted to give the best overall agreement with the available
calculated results for particular cases. The problems of heat
transfer dissipation and the efiect of radiation on the temperature
measured by a thcrmometer are briefly discussed in the light of this
formula,

The formula is then applied to the development of an
approximate method for solving the momentum equation of the boundary

layer on a cylinder with zero heat transfer, The accuracy of the
method cannot as yet be gauged, as there arc no accurate results
available with which to compare it, It hag, however, two features

to commend it, firstly, it gives the correct result for the case of
zero external opressure gradient, sccondly, it is relatively simple
and quick to apply, the main opcration in any given casc becing a
graphical operation,

The method has becn applied to estimate the distance to
separate from a flat platc in the prcsence of a constant negative

velocity gradient when &~ = 1,0, and = 1.0 . This is the case
considered by Howarth “ by a method closely analogous to Pohlhausen's
method, It is doubtful whether eithecr method can be relied on to

give the separation distancc accurately, and their results differ
considerebly for high Mach numbcrs, but both methods agrec in
predicting a rapid forward movement of separation with increase of
Mach number at the leading edge for constant ratio of velocity fall
per unit length of plate to initial velocity.
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2, SKIN FRICTION ON A FLAT PLATE AT ZERO INCIDENCE.

2,1, Boundary Layer Equations

The equations of motion for the boundary layer are

TS T hu )
A AR Y 3‘?(:“?‘3/’]

sxan L)
§'§ ’ J{
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the equation of continuity is

(e (p) -0, s

~

and the equation of energy is

uel §;[.=_L_é.‘3_l+é_2 saew
P g; Pvay o-'by(‘“rw) M(c};) —

when I £ JcpT (enthalpy), and o° is the Prandtl number = ﬁf}f and
is assumed constant,
The equation of state for a perfect gas is
P =p§T/r?1' W—

where R is the gas constant and # is the molecular weight of the
gas, Since p 1is constant for the flat plate at zero incidence

¢ =P(I)-

The viscosity coefficient A4 is a function of T only,the
relation being given by Sutherland's formula

s Where ¢ = 110°k ¢ LToT azr,

It is convenient to approximate to this relation by writing

Mol r, cive (5)

i ¢ varies according to the range of T in which we are
dnterested, but can be taken equal to 8/9 for T between 75°K

and 300°K

;g2
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2.2, Crocco's Transformation.b

The case of the flat plate at zero incidence is the only
one which permits the reduction of the boundary layer equations to
ordinary equations in terms of a single independent variable, This
variable is of the form ‘§ = const.y/v 2x . 1In this case we can

write I = I(w), @=£(u }(:f\(u) and

- _ufu) L ul, const. _ I
A mn .

If we transform from }f tc u as independent variable, the equations
(1), (2) and (3) reduce to 2 equations in f and I , viz

£1" + uppm = 0, woan L1
(I" 4o )f + (1=~ )I'f* = 0O, veee (8)
where dashes denote differentiation with respect to u.

These equations can be put into a non-dimensional form

by writing
u s I e i {9 = Tr AL ) f(u) 000(9)
s = 3 -l 2 b o s ]
I .
U'l q ] e l”" q ‘lf_q
when suffix 1 refers to quantities in the main stream,
Equations (7) and (8) then become
FF" + 2yrm = 0 ,, sseul10)
(i"+u-u|2) F+ (1 =0)i'PF=0, sk ity
II
2
and we note that 1t = (y - 1) M, ,where dashcs now indicate

I,
differentiation with respect to 11 .

The boundary conditions are

1

q=1,F=O, 3= 3

0, M=0, 1= IW/I| ;

I

suffix w denotes quantities mcasured at the wall,

The equation of state (4) gives

gl f.-:.?.f.:}_!_:_‘__ ....(12)
6 T I i

and the viscosity - tcmperature relation (5) becomes
= ib, 01.0(13)

Using (12) and (13) equation (10) can be written

FF" + 2% o inealTh)
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From (6) and (9) it is easy to deduce that

Cp JBx = F(o) v2es(15)

where C, is the local skin friction coefficient ( = 2’rw/(1 u?) at a
point distant x from the leading edge, and R, = ulx/}n -

Once F(r ) is determined, the relation betwsen y and
u is given by (6) Lhd henca

y = _Asdu du
o
which reduces to

n
I
WY = 2yRy | m . ay vees(16)

2.3 Hantzsche and Wendt's Transformation,”

——— ——

Hantzsches and Wendt arrvived ot different forms of these
equations by using different non-dimensional exprcassions involving
I and £(u). Thus, they wrote

. 2 —_
d = I/u' 5 and G(?,) =v'..__.._2__. - ‘-L'(u), -.-0(1?)
- ST w Uy
and their resulting equations which correspord to (14) and (11) were
G o" o4 ?m,{::{ N (1--.:-.‘) = 0 ; o---(18)
(3 )
!

63" +0°) + (1 =) &'3! = 0, veee(19)

In this case the skin friction ascefficicnt is given by

o JE, = o(o) | 3 }’ < il "*<°)/ i ++..(20)

J W { l! J.-"-v /

2,4. Some important rosults of Crocco's analysis,

It will be im—=diately epparent firom the form of equations
(14) and (11) ( or from equations (1B;a4d (19)) that considerable
simplifications result when a/A = const. and hence ¢3= 1,0, or when
a": 1-01

Thus, when ¢~ = 1.0, equation (11) reduces to

= 2
:L" +U“E-jl:__ :O, .u..(21)

and hence 1 is a quadratic function of v , independent of F , and
taking account of the boundary conditions “this function may be written

4 = 4-3‘.'(0)(1-:.?) +P_t__(‘i"q P \;
a1, L sssel 2E)
or - |
i=3(0) + |1 - i(0) + Eﬁ_ ' s W : i
" zan oy i j



Having i as a function of u , equation (14) for F takes the form
FF" + k (n) =0

where k (*r]) is known, Tor details of an iterative process that
can be used t3 solve this equation for F see Reference 6,

When pa = constant or o= 1.0, equation (14) simplifies

to
FR' + 2% =0, sasat 28}

which can be transformed to the Blasius equation for incompressible
flow, viz,

3

N
4

A5, S4CE - o,
ag’ ag?
2
by writing F:%dg =J§Q§,

252" 1 4y

The relation between 7§ and y; » the lateral ordinate in
incompressible flow is

y.
‘-g"-—"% E_'._' --3'._ .
7y Js

Prom equation (16), the lateral ordinate in compressible flow
corresponding to a given value of‘rl , 1s

2x 7""rnd'q 2x ‘.
y: = md? = mdyi
IRy P(n ) JRx
o o L}
yi a5
= £ ayy = i ay, veuel oh)
i i
[+ o '

Hence for this case all solutions are simple transformations of the
incompressible flow solution, thc rclation between corresponding values
of y for given valucs of u (orn-l) being given by equation (24).

We note immediately that since = Owhen ¥ =0, PF(o) is
the same for compressiblec as for incompressiblc flow and hence in all
cases when & pa= const. (or w= 1,0)

op Ry = P(o) = 0.66L PN




In the general case, when neither ¢4) nor ¢ are necessarily
unity, let us suppose we have solved for F as a function of v .
Then equation (11) which is linear in i can be integrated twice to
give

1(q)=1(o)+1()A(\1,0')-u~%1ﬁ B(r] ,e ), }

(cr...l)
where A(v! y0-) = '? {f‘_(_’h.).] d"'llJ \ ....(26)

A (o)

1? (o | l'h (=0 \
and B(y ,o) = F(y,) ( 2)
i & (o -—?T-F -] - ey My
" 0] / j
Alternatively, taking account of the fact that i(y) =1,

we have

I,

i(-l?) 2l = 4(0) C(r’ ) +o‘u| D(q 207 ) }

i

| T |
where O(r! 407 ) = J ‘.FF:))} 2 d?l 3 saseh )

9

5| Rl

o]
and D(v ,0-) = F(n.) F(
! vl’) {_%%E)] quozi ' dfl2 CAh

/
Hence, for the case of zero heat transfer when i '( o) = o
I) =1(0) = ZrD(q,g‘) A
u'2/2
and in particular «svoel 28)
I(o) - It =2¢"D(0,&").
u'2/2

Since D(o, #) does not involve M, , it will be independent
of Mach number for all cases where F('?) is independent of Mach nurber,

i.,e, for all cases where fJ/u const. (or wd= 1.,0). Pohlhausen's
sn:»].u?,ic:»rft5 for incompressible flow gave to a very close order of accuracy
I(o 2- I(v) 0_,1? 2
u, /2
hence
20~ D(0,0~) = 0“% ’

and thercfore for all cases where (7 /4 = const,

1
T;W = 1-{» (Ié_ll M'zrz . 0:..(29)
7
]
/ However ...



However, by a laborious trial and error method Crocco
integrated equations (11) and (14) step by step for the cases
o~ = 0,725, a range of Mach numbers up to 5,0 and values of ¢ of
1.25, 0.75 and 0,5. In every case the results showed the functions
4, B, C and D to be practically independent of the particular wvalue
of & assumed and hence independent of the function F(ﬂ) within
the range of valucs of D considered., Crocco suggested that the
reason for this lay in the fact that whilst the variation of F(v)
with € may be considerable, it occurs in the integrals from which

A, B, C and D a%c derived in the form [ F(y)]'- o l’zﬂ} ey,
F(o) . o | F(o

The ratio F must in every case be unity when -{ = 0, and be zero
Flo
when = 1,0, and hencc its possible variation with &2 is limited,

Further, as long as &~ is not far off unity, the cxponents (1 -¢*) or
(o~ - 15 arc small and reducc still further the sensitivity of the
gxpressions A, B, C and D to variations in 3. The f'inal result is
therefore that in general the variation of enthalpy with velocity is
practically independent of the viscosity-temperaturc relation, for
values of O~ not very differcnt from unity and is given by equations
(26) or (27) with the functions A, B, C and D calculated for thc case
(= 1,0 when F (a? ) is given immediately by the Blasius incompressible
flow solution. In particular, when there is zero heat transfer
equation (29) for the wall tempcrature is of general validity, a fact
that was demonstratcd by the cases calculated by Brainerd and Emmons & ,

Since i(vy) can now be regarded as independent of F(vyp )
in gencral, and is readily determined from the cas¢ w = 1,0, the
solution of the main equations (10) and (11) reducc to the solution of
the equation

FF" + k(7) =0
where k(q ) is known, This cnabled Crocco to develop a more rapid and
more accurate process of solution than the first process he had used,

but for further details sce Ref,.b.

2.5. Skin friction distribution. Deduction from Hantzsche and
Wendt's results for case of zecro heat transfer,

Hantzsche and Wendt's calculations 5 for the cazse of zero
heat trensfer showed thc interesting rcsult that the quantity G(o)
was only a slightly varying function of «» and M, , for o = 1,0, and
was indepcndent of o~ and M, when wy= 1,0, In gencral therefore,
we may expect G(o) to vary little with o- , wani M, ., The
importence of this may be seen from cquation (20) which with cquation
(29) gives us

1-1.2

% R, = G(O)/f1+( 'él M,zav%:‘ . vevs(30)

A reasonable approximation to G(o) , reprcducing its small
variation with «) ¢~ and i, should then give us a reliable formula for

Gf.fﬁ; , for which the major variation with ev, o= and M, 1is described

by the denominator of (30). In Fig.,1 G(o) is showm as a function of
M, , for various valucs of w>for the case & = 1.0, and this can be

/represented ...




represented fairly closely by

r 1-w
G(o) =-0.664 |1+ ( lhw 2
1+0. 3(7_5_—_391«112

This suggests that in general

1
L2t ]
a(0)A= 0,665 |1+ v, o

|

240,301, o

and hence for the casc of zero heat transfer we may oxpect from (30)
that

c. (R 7o, o
IR, _ Xo) [1+o 31, * J (30
0,66 F(o)w=1, o

Mo
o
(SN
®

Skin friction distribution with or without heat transfer,
Deduction from approximate solution of intepral eguation
for B,

From equation (14) and the boundary conditions for F it
follows that

I oy -l
B EELE™:
F = Y ‘_ \BO —-?—E-—--— v d? dV(I 00-3(32)

)
t

From a survey of Crocco's results for F it appears that
in all cases a very closec fit to F is given by |

P 7o) (1- 03 %,

Hence, from (32) e may expect to get an cven closer fit from the

relation
P M
B, ( 21? y dvz .d'\?' .
Dl
Lot ), Hel(l-5)*
" 7

In particular,

2 r r‘?' 2 .1 ]
F(0) o JL_ .dq eeve(33)
'“\OL Jc (1'\7 7

We have i as a function of'g and & given by (26) or (27) so that in
theory we can determine F(0)“ from (33) in any given casc by integration
(which must in goncral be numerical) and hence from (15) we can obtain
the skin friction cocfficient, We arc intcrested, however, in
obtaining a general cxplicit formula for F(o) in torms of i(o)

(or Ty /T,), ¥;, ¢ and W, Analytic integration of (33) appears to
be impossible in general, the process adopted therefore has been to
develop a crude aoproximate solution of (33) to suggest the form of the
required formule for F(o), the constants in this fcermula have then been
adjusted to give thc best fit with the numerical results of Crocco and
other workers.,

/ Consider ...



Consider the case when ¢~ = 1.0, Then we can write

i = Aq+ A2r‘ +A5YL2 §

. 2
where A, = i(o), Aj = 1-i(0) + W '
211 21

“rite Yz = sin ©~, then (33) can be written

o

i 6 . “1
F(o)2 = jl [ X '2 sin B (Al + 4y sin 8 +Ajsin£9)w‘].' d@J ae,

j : 2 ] . . 2
Let A4=l+3.(o)+ u;, , then A4> A1+ A, sin G 4+ A3 sin 8,

211

Hence, we can write

£ -oeq |
F(O)Z L (Ali-)w'-l ‘- 3 l J '2 sin @ [1+(M—1)(£% sin @ + 43 sin_zg
J s

& ° 4 A
Ly =4
"jl*‘ 1\, +--:J1 d@,
Sy -

§ - _?_1 + terms in.
g k] @-1)2 § «-(34)

This leads to the result that when

I = I-O, F(O)2 =2 - __’12?_

?

and therefore F(o) = 0.655

Write equation (34) in the form

Ga-1 Aok A
= A {1+ (-1) [ “}**u+ﬁg (%_21{ ETTS%
i 02,1 ¥=1,0 o B b

( compare the accurate value of 0,66.)

}:j
I @]
—

=
+ B3 (32 =~ ogy) + terms in (m-l)f } -
124, (& -°7)

/ Then



Then assuming ¢ is not very far from unity (as will be the case in
practice), the terms in (- 1)“ can be allowed for to some extent by
approximating to the right hand side with

F(o

1]

w=1
A+ (A-A) + A (37'*' -8) , A3 (30-9%) | 2
{ L < iy VAL 12-37 i 12 ( 4=7w) }

3 2 =1
- | 3w =8 i(o) 20-6|| } + Ul 217 =6l L
12-377 12-37r 271 12(L- 77)

L

1

D = |

[0.553 + 0u447 i(0) + 0,096 _}_] T2 siael 35)
I

Even before any attempt is made to modify the constants in this formula

to improve agreement with calculated results we may note that it gives

good agreement with formula (31) for the case of zero heat transfer and
= 1.0, Thus, in this case, from (29)

5 2 2
i(o) = 1 +(__).351 B e 1l

e
211
and hence (35) becomes
wr-1 =1
28 i
w 2 2
Flo =} L4 0432 1 = | 1+ 0,32 (F-1)u -
F(o)w=1 Il 1

This comparison indicates that any modification to (35) should retain
the following features:-

(1) The sum of the constant term and the coefficient of
i(o) should be unity.

(2) Half the coefficient of i(o) plus the coefficient

2
of Y,  should be approximately equal to 0.3

—

I

The comparison also indicates that to take account of wvalues of ¢~ 1

other than unity the cocfficient of u12 should include the term o~ °

I3

Formula (35) with this last modification vas in fact found
to give results in surprisingly closc agreement with the calculations
of Ref.2 to 6, bearing in mind the approximate naturec of the analysis.
The closest overall agrcement was, howcver, found with the formula

7 @

Flo ” 3 5, ;
ﬁé?%EETTo = [jO.L5 + 0.55 i(o) + 0,09 (¥ 1)Ml z } .
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Using the correct basic value of F(o) = 0.664, this can be

w=1.0
written
Cp ﬁx = 0,664 [0.45 + 0,55 i(o0) + 0,09 (23'-1)1~L_L2 g’ ] . (36
For the case of zero heat transfer this reduces to
- 4 -l
o, R, = 0.664 | 1+ 0.365 (3*—1)1&12 ?] . vvr ol B

Table I compares the results given by equation (36) and Crocco's
calculations, and it will be seen that in every case the agreement is
within 1% , which is within the accuracy of Croccds calculations, In
Table II Crocco's results for zero heat transfer are compared with the
results given by equation (37), and the agreement will be seecn to be
equally good, Finally, in Fig,2 some of the results of Ref.2, 4 and
5 are compared with equation (37) for the case of zero heat transfer,
and in every casc close agreement is found, One can conclude that
the formulae (36) and (37) are rcliable to within about 1% for values
of the Mach nfnber up 1o 10, and for values of ) and & likely to
be of practical interest when air is the working fluid.

3. HEAT TRANSFER AND DISSIPATION ~ FLAT PLATE AT ZERO INCIDENCE,

3.1, Hcat Transfer

If Q 4is the total heat transferred per unit time from a
surface of unit breadth and length L, say, @ is the local rate of
heat transfer per unit area and S_ 1s the total frictional forece on
the surface, then it rcadily follows from Crocco's analysis that for
¢~ ncar unity

-

Q SR w2 y WIS

a - s w tht s e

Sp P "Fh. 5573 l_T_ (3¢
i

where T, . is the temperature mcasured by a thermometer, i,e,

Tth = Tw for zero hcat transfer
A 2 &
el “

Tl [1+ _('1.2__) M, o ].

If we now use cquation (36) to derive Sp and Ty » we find

2 1
Sp = 00664 PL% L | 0.45+ 0.55 i(0) + O.O9Q§.'~1)M125- 2] ’ vel B

fr————

‘ 1
Jil&
,
and =(1-G3
2 i L3 2
2

2
- =033 1% L 0.45 +0.554(0) + 0.09(¥-1)M, e o (e

‘ﬁ—h-

/ul x

A ))1

Equations (38), (39) and (40) enable us to calculate g and Q in any
o Tl’ Ml’ g~ and L are given.

case where T
/3.2 "o 0



J¢2, Dissipation

It has been pointed out by Karman and Tsien2 that when a

t gas is cooled by a cold surface, the rate of heat transfer from
gas to the wall is increased by increase of Mach number ( see
uetion (38)) but on the other hand so is the mechanical energy which
dissipated by viscosity. The latter increases more rapidly than

e former and eventually at some llach number the gas becomes heated
and not cooled. The results of calculations by Karman and Tsien?

and Hantzsche and Wendt” for the cases when i(o) = £, 6~ = 1.0, and

= 1,0 and 0.76 are shown in Fig,3. In the following a simple
ula is derived for the Mach number at which the change from
ng to heating takes place,

The rate of dissipation of mechanical energy by viscosity on
@ plate of unit breadth and length L 1is

SR

R

= M 1112":,L S (). dy vons(41)

)

R = ulL/pl .
The rate of heat transfer from the gas to the wall is from (38)
~—/ 2
-Q :% Tin = Ty , 2H0) , %101 u, L. seeslid)
B ™ i

ence the gas is cooled or heated according as

\ - 1
Jop [T -], #o) » oor < [ 7q). av,
B L7

o

g >or< | Mgy v (83)
o 43 (re1) i o (o)
e now make use of the close approximation
, 2,%
F(q) = #(o) (1 -0)°,
en (43) beccmes
G- 1% o7 i(o) or o At (2
i+ A~ o - S o - ‘Tl_" M1
B 2 2 1 = i(o) (1)
(OI‘} - . a8 e
(3"1) 3"2/3-5-'- _oh.:lz'
- 2
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For the cases considered by Karman and Hantzsche ard Wendt,
viz, i(o) =% and ¢~ = 1,0, this relation predicts that lLeating of
the gas begms when

5 1
M = =
1 ¥-1) (7-2) e

=
=
il

2,56,

This value is in good agreement with the value shown in Fig.3, where
it will also be seen that in conformity with relation (44) above the
‘value of the Mach number at which heating begins is practically
independent of the value of w ,

%3.3. Effect of radiation on thermometer temperature.

The following treatment is a modification of that due to
Hantzsche and Wendt 3, use being made of the explicit formula for
(o), equation (36). '

Allowing for the radiation of heat in the thermometer
oblem, then the rate of heat transfer from gas to wall must equal
¢ rate at which heat is radiated, Hence

L
= jocE (z,* - 2.2, ax,

where GB = Stefan-Boltzmann's constant multiplied by the

emissivity,
Using equation (38) we have therefore
c (T -7 ) 2F( o) 1,_
D th .
7 P wt g unt -1t

uw  JR

2 %
[i(o) -1 -_(?1”%1)_1%1 o J (o). % ,“1101/“‘1 =CBT"5
2/3 L L |

4 (i(0) -1)

or

3
ite I&l " GBT‘IﬁL saxalil)
OPRL -M‘I
[1(0) P e %] \
K={ 5 | BE F(o)
r2/3 [i(o)h'-‘l]

& vooo(16)

Where, as before, we have

_(1-.&2
F(o)._0664[Ol+5+0551(o)+0091ﬁ 6‘ /

/ Tro e



The problem in general is, given K, , what is the value of i(o) ?

With the aid of equation (46) the problem is best treated in reverse,
that is for given values of M,, ey, 6~ and i(o) the corresponding

values of K, can be calculated and the values of i{o) can be
R
plotted against KR . We may note immediately that for K =0
(ag when L =0) Ty = Type, for Ky =o< (as when L =o9),
io) =1, i.e T, = T4 . For intermediate values, i(o) decreases
w 1
steadily with increase of K, .

4, THE LAMINAR BOUNDARY LAYER ON A CYLINDER,

The method to be developed here is e¢sgentially the same as
a method previously put forward by the author " , but with a number
of improvements suggested by the results given in paragraph 2,

Suffix o will be used to denote undisturbed stream values,
and suffix 1 to denote values just outside the boundary layer.,

The momentum equatiop of the boundary layer is readily
shown to be '

e' + (H + 2) 111—‘ " _f__:_ @ = M o---(h—?)
= DI & Loy

where

8 - §
6 = £u ( K T ( . Lu
o ST % 5% Y

+
3= g /@ , and dashes denote differentiation with
respect to x the distance along the surface,

We will now follow some of the implications of an approach
on the lines of Pohlhausen's method for incompressible flow, Instead
of expressing the velocity distribution as a function of y however,
it will be expressed as a function of y = /uody , Since we

5

Vo
know that on a flat plate, with @ = 1.0, the velocity distribution
expressed as a function of Y is independent of Mach number, Thus
suppose the velocity distribution across the boundary layer to be given
by the quartic

u=&Y+bY2+c\(3+dY4 llol(}-l-'a)
with the boundary conditions that
2
fo::"‘r‘z‘s‘| g W= g, du . 2u = o; and
for = O, u=o0, 3T = 0, and hence M - o,
Y 3Y

]
' The quantity J1 is at present unknowm, but is assumed to correspond
to the value of “ defining the outer edge of the¢ boundary laycr,

/Thc “ee



The first boundary

layer equation yields

o du | ! f
st | Ry =8P - - u,4, .
a7 ( 3y )W dx %5
2
But ?._ (,i.&g.‘.:") = p Quz) ,since(%“—) = O
oy ¥ i dy° Jw o Jw
e 2
A, ( .
/}W' r)Y W
2 A
Hence < - L 5 (O1u aul
e
YY" 1.
With these boundary conditions we can solve for the coefficients a,
b, cand d in terms of 54 , and we obtain
a=n{2+4) A (s -
6<§1 2;&2 2 6‘5
1 1
d = u1(6 -h) 5 where 0-00(2-1—9)
L
6 &,
t c2
2\ = U-1 J'i ":"1 .".fig
/%
du Jdu
Furthe 1 = —_— =
urther, since /Llw (by e /‘-‘O(a‘r »
il R 12 + A
L _f“z( +J) ) 0-00(50)
1% P14

From this point the method departs from the classical Pohlhausen

approach,

It depends on the solution of the momentum equation,

making the follcwing assumptions

(1)
(2)

Equation (50) is accepted.

The variation of H with local velocity,
pressure gradient, <) and ¢ is neglected,

H being treated as a function of M, ,only.
The justification for this lies in the fact
that H enters the solution of the momentum
equation in a form suggesting that the
solution is relatively insensitive to amall
variations of H , and for slim bodies at
small incidences the possible variations of
H are unlikely to be large.t

+ It is po

ssible to avoid making this assumption, but the

computing involved then becomes considerably heavier,



For a flat plate at zero incidence, with ¢J and 6 both

unity we know that ._‘L..J'l_. is a unique function of Y , and also the
o

total energy is constant across the boundary layer, Hence

o Fo Y o o Uy

o , e
azg ..-Ju (1.._“11_)dy:v[- adbail ¥ =By 4%
Yo
-6,

where suffix i denotes the value in incompressible flow,
Also

% 8 s
§= -£2)e | (A& - L) av.
"0 (oo o Mo Yo
i -1 2 2
et A =_T -1, : M (1 - u_
A 41 2
g™ o ug
ag
+ = 2
Hence cf = (1 —l"_) aYy + (¥-1) Mz ’ - a
u ™ Y
] o 2 (o] 110

1
O
B &
,{.
n
I.\J--»\-
=
Q
[4%]
&
g
+
(=)

Therefore

§" ¥ 2
H . L :Hi 1+(__11MO (1+___1_) o
6 2

The Blasius solution gives

Hi = 2-593

hence H = 2.59 |1+ 0,277 M %

N L 1y

This relation is in almost exact agreement with the results of the
caloulations of Brainerd and Emmons 4,

(3) The ratio J:/@ is also assumed to be
independent of veriations in local velocity
and pressurc gradicnt. For the present we
write

&/8= £ (lgy L o) sexalD2)

making no furthcr assumptions at this stage
about the form of thc function, except to
note that we expcet it to be constant when
&= 1,0,

/ From,..




From (50) and the expression for A in (49) we have

"T"w2 =EJ"‘O u, ‘01 /“w + 42
A% ﬁu‘\'g; /“o
i
= ___..u1 611 -’TE + —L—z 2o
6 u, Mo 1wy
{
= u1 &E’ f@ + -...._.__.2/1""0 .
6 u, Mo P1u1ft9

Henoe, the momentum equation (47) becomes

1 1 1
B @2 n L el 10 m e g, 2p0
u, P1 . 61,11 f"‘o ;\'::1u1f‘

Multiply both sides by (’12 6  and we get

2n2 22 ! W o
2 [pe%] 262 el L(Hw)-.fz %} o I

At this stage a further assumption is made, viz. the value of _&I

Mo
in the second bracket ic taken to be that for a flat plate at zero
incidence, This gives

z::f < [1 g ﬁ; 1) ﬁ-%Moz ]("‘“) savel k)

L s |

t& H + 2= }A“T = g (I\fio’m, 6-) /2’ SaY‘ illl(55)
/"o

Then (53) can be integrated with respect to x to yield

Xy X4 g=1
[ u1g F1262_l = % ﬂo J (01 u,{ v Ox aoo.(56)
o " o

'

The leading edge is taken at x = 0, where either u, =0, or u, is
Pinite, If u, is finite, then B8=0 there, since we cannot have
‘& finite momentum loss there. Hence

1 g-1
[‘01 8 ] ° (-71111 o Ox cunal 9y}

£ Uy (X-i)




de may note herc that g occurs as an cxponcnt of u, inside the

integral, and as an cxponent of u1(x1) outside the integral in the
denominator.  This suggests that provided the variation of u

with x is smwall, small errors in g will have little effect, and
this provides the justification for the ncglcet of the variation of

Hand Mw with pressurc gradient and loecal velocity,

Mo
We have yet to determine the function f.

For the flat plate at zero incidence (57) reduces to

[60192] s Mo ¥
: X,

uof
T

1
f

1 1

. 9 )

' Y
gy

==}

&

Q
H

0

N
4
(

W = 1

4 a
Hencc _J_Z:. = Cp JR, = 0,664 [1 + 0,365 (¥-1)o-? M02] ’
; i

from equation (37) .

It follows that

: g o (1 -w)
& = 9.072 [1 + 0,365 (¥=1) o=~ % H, ] sees(58)
The function g is given by
g = 2(H+ 2) -z .&"f
3 Mo
= Sk 2""‘"‘J
= 9.16 + '1.}-1-36 MO2 "%l"l + {‘_n ¥- 12 0""21‘50 J -ao-C59)
5

It is sometimes convenient to express these relations in non-dimensional
forms, Thus, write

- e + +

=sl . =4A , u =
o e *

s Wwhen

L is some standard length, then (57) becomes

+2 52 ~ L *4 +  +g- + €0
[e1 4 ]x? _ u(xy) & ¢ Jr C1 ™ e el
8]

where R = UOL/’L)D .




The relation between F1+ and u1+ is

1
o= {1 « (4] M2 (1 - ) ] ¥ voeel1)

+
Having u{* as a function of x~ » We can then obtain G at any

point from equations (58), (59), (60) and (61), the solution of (60)
being obtained by graphical or numerical integration,
+
To obtain the local skin friction coefficient when 6 is
knowri, we have

Of = ;-JTW = (A + 12) \.11 \
Folo 3R 67 ¢
and A =

P

Mo
+2 .2 o+ +
e £ (31 }_"AW )

1 po2
u' & R ? veeo(62)

1

+
= R( Uy ’)
+ A
For ‘/1w_= Z;_E , W may use equation (54) but it is probably more
)

accurate at this point to assume that the local relation between Tos

T4, and uy, is the same as for the flat plate which leads to the

relation
+ 2 2 X i
M :{“uf__l; Mo L Pl L) teee(63)
u, &

The accuracy of the method outlined above cannot as yet
be assessed, this must await the development of a method that can be
accepted as accuratec and its application to a few test cases, In
favour of the above method it should be noted that it gives the
correct answer for the flat plate at zero incidence and the numerical
work involved in its application is relatively small, It may also
be noted that when applied to incompressible flow (Refe.11) the method
gave results which were in very close agrecment with results given by
the standard Pohlhauscen method.

5. SEPARATION OF THE BOUNDARY LAYER.

It is unlikely that the above method will be any more
successful in predicting thc separation point of the laminar boundary
layer than is the Pohlhausen method in incompressiblc flow,
Nevertheless, it should provide a guide as to the effect of increase
of Mach number on tendency to separation,

From (49) separation occurs when /A = - 12, i,c, when

+1 -12
R i o S S from 62 .
6 (1 + 1f2 * ’ ( )

u
1 w

/ Hence ..




Hence, from (60) separation occurs at x, , if
+
+g2 .+ X4
- 3 -1
o 00 - M veea(6L)
u+1 £ + (01 1
1 dxy o

Howarth has considered the case of a uniform adverse velocity gradient
with (W= 1,0 and ¢ =1,0 , and has estimated the separation
distance for different main stream Mach numbers at the beginning of
the plate, using a method that is essentially an analogue of
Pohlhausen's method, It is of interest to compare his results with
the results given by the present method,

With ¢0=1,0, and ¢ = 1,0,
f = 9.072, 5
g = 6,156 + 0,831 M “ ,
2
m#+w‘"'1+”’51)ﬂo "
Suppose u =u, - ﬁx \, where [3 is a constant,
Then
11+ =1-£_.L_.3? s and u+1 = - 8L =ol , 58Y.
1 2 1 -

o
O

Equation (6)4) becomes

X4 "
5 _ 1 R —wd i
94072 (1 + {_;_1_1«502)0( (1 -t )8 o (%))

and, from (61)

1
i [1 P D M, (2ekd - e 2>] e
&

Tet ol x'

(}

‘g , then we have

[ X 4 '(iél)' MOZJ x

-
(1 -'!.'1)8 [1 + r; M02 (2%, - 1512)] ¥-1
“1) M
2

0331

%..

[

= -
02 (2 E-‘EZ)J ¥ - ¥ ag , -.(65)

with g = 6.156 + 0.831 Moz :

&

The process then is given L‘J,o , to evaluate the R.H.S. numerically
for a range of values of % 40 and to interpolate to obtain the value
of 4 for which equation (65) is satisfied,

/ The ...




The results for the separation distance (zg) given by this

method are compared with those given by Howarth's method in the '
~ following table:

M - B%/v
Howarth Present Method.

o 0,156 0.165

1 0.148 0.148

3.16 0.107 0,081

10 0.052 0.013

~ The agreement between the two methods is poor for the higher lach
numbers, but neither method can be claimed a priori as very reliable
. for predicting the point of separation, and it is impossible at this
gtage to estimate their relative degrees of relisbility for this
purpose, It can be inferred from both sets of results, however, that
the separation point moves forward with increase of initial Mach
mumber for constant £ _ - du /u_, i.e, for constant ratio
uo dx 0

of velocity fall per unit length of plate to initial velocity.

p————




1 cp JRY i b E
S i(o) ‘ o By (w=1.0) 0664

| ( Crocco ) (Equation 36)
1425 0.25 | 0,940 0e 942
1625 0.25 0,957 0.960
1.25 0,25 | 1,040 1,039
1425 1.0 | 1,006 1,004
1425 1.0 1,016 1,015
1425 10 1.076 10074
1425 2.0 1.056 1,059
1.25 240 1,066 1,066
1425 2,0 1141 Pyh e
0.75 0425 1,070 1,062
0,75 0425 1,049 1,041
0.75 0.25 0,960 0.963
0s75 1.0 0.996 0,996
0475 1.0 0.985 0.986
0,75 1.0 0.928 0.931
0.75 2.0 0.946 0,94
0.75 2.0 0,940 0.938
0475 2.0 | 0,903 0.900
055 0.25 i 1,139 1.128
065 0.25 i 1,098 1,089
0.5 0.25 | 0,931 0.927
0.5 1.0 0,991 0,992
0.5 1.0 ' 0.970 0,971
045 ; 1.0 0.868 | 0,868
0,5 | 2,0 0.897 | 0,892
0e5 2,0 0,886 0.879
0e5 2.0 | 0,815 0,811

To minimise the affects of a possible error of the order of 1% in Crocco's
calculations, ratios rather than absolute values of skin friction
coefficients are compared,




TABLE TII. COMPARISON OF CROCCO'S CalCULATED V.ALUBS OF SKIN

FRICTION ON .4 FL.T PLATE WITH V.ILUES GIVEN BY
EQUATION 37 FOR CuaSE OF ZERO HELT TRLUNSFER.

( o = 0-725)

M, o % Py % P
ijﬁ; (3= 1,0) 0. 664
(Bquation 37)
1 | el 1,015 1,015
2 1425 1.053 1.052
5 1425 1e194 1,193
1 0. 75 0,984 0.986
2 0.75 04950 0. 951
5 075 0.842 0.838
1 0¢5 0. 969 0.971
2 0eb 0.908 04 9504
5 0.5 0,707 0,702
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