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Diabetic condition induces 
hypertrophy and vacuolization 
in glomerular parietal epithelial 
cells
Takahisa Kawaguchi1, Kazuhiro Hasegawa1, Itaru Yasuda1, Hirokazu Muraoka1, 
Hiroyuki Umino1, Hirobumi Tokuyama1, Akinori Hashiguchi2, Shu Wakino1* & Hiroshi Itoh1

Diabetic nephropathy (DN) is accompanied by characteristic changes in the glomerulus, but little 
is known about the effect of diabetes on parietal epithelial cells (PECs). In this study, a descriptive 
analysis of PECs was undertaken in diabetic db/db mice and in diabetic patients. PEC hypertrophy was 
significantly more prominent in diabetic mice than in nondiabetic mice, and this was evident even at 
the early stage. Additionally, the number of vacuoles in PECs was markedly increased in diabetic mice, 
suggesting the presence of cellular injury in PECs in DN. Although rare, binuclear cells were observed 
in mice with early diabetes. In cultured PECs, a high glucose condition, compared with normal glucose 
condition, induced cellular hypertrophy and apoptosis. Flow cytometry showed that some PECs in the 
G0 phase reentered the cell cycle but got arrested in the S phase. Finally, in human diabetic subjects, 
hypertrophy and vacuolization were observed in the PECs. Our data showed that PECs undergo 
substantial changes in DN and may participate in rearrangement for differentiation into podocytes.

Diabetic nephropathy (DN) has been the leading cause for the initiation of renal replacement therapy, accounting 
for approximately one-third of cases worldwide1. The renal pathological changes in early DN is characterized by 
glomerular basement membrane (GBM) thickening and mesangial expansion, and those in late DN is character-
ized by glomerular nodular lesions2,3. These pathological alterations were mainly examined in the glomerular 
lesions, with focus on podocytes, mesangial cells, and endothelial cells.

In addition to the mentioned glomerular cells, parietal epithelial cells (PECs) comprise another type of 
resident glomerular cells; they are epithelial cells lining the Bowman’s capsule4. Recently, PECs have been receiv-
ing great attention as progenitor cells of podocytes5,6 and as barrier-forming cells that prevent periglomeru-
lar ultrafiltrate leak7. Although PECs were reported to be strongly involved in the pathogenesis of crescentic 
glomerulonephritis8,9 and focal segmental glomerulonephritis (FSGS)8,10,11, only a couple of reports have investi-
gated the role of PECs in the pathogenesis of DN. The thickening of the Bowman’s capsule basement membrane 
(BBM) and capsular drop lesions have been known to be the representative morphological changes in PECs and 
Bowman’s capsule in DN12,13. Similar to the GBM, the BBM is also thickened in DN. PECs contribute to this 
phenomenon through the expression and secretion of Bowman’s capsule proteins, including collagen12. Capsu-
lar drop lesions are insudative lesions that can be identified as a round eosinophilic accumulation of materials 
between the PECs and the BBM in DN13. In human renal biopsies of DN patients, cells marking as podocytes 
on Bowman’s capsule increased, and Ki-67-expressing cells were identified on the glomerular tuft and Bow-
man’s capsule14. Although crescent formation is rarely observed in DN, these crescentic cells coexpressed PEC 
and podocyte markers, which suggested that PEC may transdifferentiate into podocytes in response to severe 
glomerular injury in DN15.

In the present study, we have examined the histopathologic changes in PECs that were evident in DN. Our 
results indicated that PECs were hypertrophied and injured in DN, which may be associated with the pathogen-
esis of DN in mice and humans.
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Results
PEC hypertrophy and damage in DN mice.  Compared with nondiabetic db/m mice, the eight week-
old diabetic db/db mice had significantly higher blood glucose levels (446 ± 138.3  mg/dL vs. 117 ± 7.4  mg/
dL, P < 0.05), which remained persistently elevated above 600 mg/dL at 12, 24, and 36 weeks of age. The db/
db mice developed albuminuria with increased albumin-to-creatinine ratio at as early as eight weeks of age 
(138.3 ± 22.4 μg/mg vs. 51.6 ± 7.4 μg/mg, P < 0.05) and remained thereafter until 36 weeks of age. Serum cre-
atinine levels were not significantly different at 12, 24 and 36  weeks of age. In morphological analysis, light 
microscopy revealed nuclear hypertrophy of flat PECs in 12-week-old diabetic db/db mice by measuring the 
PAX8 positive area per cell (Fig. 1a). On the basis of the cuboidal PEC score, as described in the Methods section, 
the cuboidal cells on the Bowman’s capsule were significantly less prominent in 12-week-old male db/db mice 
than in male db/m mice, respectively (Fig. 1b). CD44, which is an activated PEC marker, was not positive in the 
hypertrophied PECs in the diabetic db/db mice at 12, 24 and 36 weeks, whereas CD44 was positive in PECs in 
adriamycin nephropathy, as previously reported16 (Fig. 1c). On electron microscopy, we confirmed PEC hyper-
trophy (Fig. 1d), which was evident as early as 12 weeks. Examination for the other early histological changes 
in DN revealed evident thickening of both the GBM and BBM from 12 weeks (Fig. 1e,f, respectively). Cellular 
hypertrophy sometimes induces cell apoptosis or cell damages in various cell types17–20. The PECs had no appar-
ent changes in apoptosis but exhibited vacuolar degeneration, which is reported to be a result of cell damage21,22; 
time course analysis revealed that this change was evident at 36 weeks of age (Fig. 1g). In addition, we observed 
PECs with binuclear cells in the 12-week-old db/db mice (Fig. 1h). This morphological change may indicate the 
state of mitotic catastrophe, as previously reported in podocytes23–25.

High glucose exposure induced PEC hypertrophy in  vitro.  To elucidate the mechanisms for the 
hypertrophic changes in PECs, we used an established immortalized PEC cell line23. The expressions of PEC-
specific mRNAs, claudin-1, pax-2, pax-8, and CD10 were high, whereas the expressions of the podocyte-specific 
mRNAs, WT-1, nephrin, podocin, synaptopodin, nestin and desmin were low or barely detected (Fig. 2a). To 
further verify the morphological features of PECs in culture, we stained the cells with the cytoskeletal protein 
F-actin. There was a thin linear staining with F-actin in the cytoplasm and along the cell borders, reflecting the 
characteristic simple cytoskeletal structures of PECs, as previously described23 (Fig. 2b). We examined the effect 
of high glucose exposure. On flow cytometry, cell size was significantly greater in the PECs cultured under high 
glucose (HG, 30 mM) conditions than in those under normal glucose (NG, 5 mM) plus 25 mM mannitol (Man) 
condition (Fig. 2c). The ratio of the total cellular protein to cell number, which is another indicator of cellular 
hypertrophy, revealed HG-induced hypertrophic changes in the PECs (Fig. 2d). The cellular size of PECs was 
not increased by simulation with other hypertrophic factors, including TGF-β124, insulin, or aldosterone, with 
or without sodium chloride25 (Fig.  2e). Because hypertrophy is often accompanied by cell cycle arrest26, we 
analyzed the cell cycle distribution in PECs using flow cytometry. In an HG condition, the percentage of cells 
decreased in the G0/G1 phase and increased in the S phase; these results indicated that some PECs in the G0/G1 
phase entered the S phase after HG stimulation. However, these cells did not further progress into the G2 or M 
phase, indicating that the cell cycle was arrested in these cells (Fig. 2f).

HG exposure induced cellular apoptosis in PECs in vitro.  Treatment of PECs with increasing con-
centrations of glucose for 24  h caused dose-dependent decreases in cell viability (Fig.  3a). Hoechst staining 
(Fig. 3b) and flow cytometry (Fig. 3c) revealed that treatment with increased concentration of glucose for 24 h 
increased apoptosis. Moreover, the live cell analysis system showed concentration-dependent increase in cell 
death (Fig. 3d) and apoptosis (Fig. 3e).

Hypertrophy and vacuolization in human PECs in DN.  Hypertrophied and vacuolated PECs under 
diabetic conditions were further examined using kidney tissue samples from patients with and without diabetes 
(Table 1). Quantitative analysis using plastic-embedded semi-thin sections stained with toluidine blue showed 
that the cellular volume of PECs was significantly increased in the diabetes group compared with the control 
group (p < 0.05) (Fig. 4a–e). With the help of electron microscopy, we examined the morphological changes in 
PECs on human renal biopsy specimens of control patients and patients with diabetes. We observed flat cell 

Figure 1.   Morphological changes in PECs in diabetic db/db mouse. (a) Representative images of PAX8-
LTA costaining in the 12-week-old db/m and db/db mice. The magnified view of the boxed region in the 
upper panel is shown in the lower panel. The dot plot graph shows the mean nuclear volume of PECs. (b) 
Representative images of PAS staining (upper) and LTA staining (lower) in the 12-week-old db/m and db/
db mice. The dot plot graph shows the average of semiquantitative cuboidal PEC score in the db/m and db/db 
mice. (c) Immunostaining for CD44 in kidneys from the experimental mice groups (i.e., db/m, db/db, saline-
treated, and adriamycin-treated). (d) Representative PECs (arrows) on transmission electron microscopy at 
12 weeks of age in each mouse group. The dot plot graphs show the temporal changes in the cellular volume of 
PECs. (e,f) Temporal changes in the GBM thickness (e) and BBM thickness (f) in the db/m and db/db mice. 
(g) Representative PECs (arrows) on transmission electron microscopy at 24 weeks of age in the db/m and db/
db mice. Arrowheads indicate the vacuole in PECs. The right inserts are the views on higher magnification. 
Quantitative analysis of the number of vacuoles per cell is shown in the lower panel. (h) A binucleated PEC is 
identified in db/db mice at 12 weeks of age but not in db/m mice. Arrows indicate PECs. PECs, parietal epithelial 
cells. *P < 0.05 vs. db/m mice. Scale bars: (a up) 20 μm, (a low) 5 μm, (b,c) 20 μm and (d,g,h) 5 μm.
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Figure 2.   The mechanisms for PEC hypertrophy. (a) The relative mRNA expressions of PEC-specific (black 
bars) and podocyte-specific (white bars) transcripts in mouse PECs. Quantitative PCR analysis was performed 
in three independent experiments per each molecule. Values were normalized to the mRNA expression of 
β-actin as the housekeeping gene and were expressed as mean ± SE (n = 3). (b) A representative photograph 
of F-actin staining of mouse PECs. (c) Representative flow cytometry images of cultured PECs exposed to 
RPMI medium containing 5 mM of glucose (normal glucose, NG) with 25 mM of mannitol (Man) or 30 mM 
of glucose (high glucose, HG) for 24 h. The dot plot graph on the right shows the mean FSC (forward scatter) 
values. *P < 0.05 vs. NG + Man group (n = 6). (d) The value of the protein/cell number of PECs exposed to 
NG + Man or HG. *P < 0.05 vs. NG + Man group (n = 12). (e) Cultured PECs were exposed to RPMI medium 
with or without TGF-β1 (10 ng/mL), insulin (Ins, 300 nM) or aldosterone (Aldo, 10−7 M), in the presence of 141 
or 146 mEq/L of sodium ion (n = 3). (f) The effects of glucose on the cell cycle in PECs. PECs were exposed to 
HG (30 mM) or normal glucose (5 mM) with mannitol (25 mM) culture for 24 h. The percentages of the cells in 
the G0/G1, S and G2/M phases were determined by computer analysis. *P < 0.05 vs. NG + Man group (n = 3).
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bodies and a little vacuolar changes in the control patients (Fig. 4f), whereas cellular enlargement and vacuolar 
changes in the patients with diabetes (Fig. 4g,h). Quantitative analysis showed that the ratio of vacuolated PEC 
per total PEC number in DN was high compared with that in control subjects but did not reach significance 
(Fig. 4i).

Discussion
In this study, we focused on the morphological alterations in PEC, which is one of the glomerular cells, in DN. 
We found hypertrophy of PECs and decrease in cuboidal PECs in diabetic mice. We analyzed the morphological 
changes on HG stimulation causing cell cycle arrest and cellular hypertrophy. Moreover, in mouse models with 
diabetes, HG stimulation caused PEC injury, which was represented by vacuolization. Although the pathologic 
implications remain to be clarified, our study identified several histologic characteristics of PECs in DN and may 
provide some information for further investigation on PECs.

In human DN, PEC hypertrophy was described as enlargement of the nuclear diameter and the presence of 
euchromatic nuclei on transmission electron microscopy, although the timing of occurrence was not clarified 
and the detailed mechanism was not elucidated12. On electron microscopy, PEC hypertrophy was observed 
in the early stage in the mice model of DN. PEC hypertrophy was apparent as early as the occurrence of BBM 
thickening; this suggested that PEC hypertrophy plays an important role in the hyperproduction of the BBM 
by PECs. In renal cells, HG has been reported to induce cellular hypertrophy in podocytes17,18,27–29, mesangial 
cells30–32 and renal tubular cells33,34. We tested various stimuli, including HG, insulin, TGF-β1 and aldosterone 
and demonstrated that only HG caused hypertrophy of the PECs. The hypertrophic changes in podocytes have 
been reported to be involved with the cell cycle35. Consistently, our cell cycle analysis suggested reentry into the 
cell cycle and the S phase arrest of hypertrophied PECs.

In the process of searching for the hypertrophied PECs in diabetic mice, we carefully distinguished them 
from activated PECs and cuboidal PECs. In activated PECs, various morphological changes were reported, 
including cell enlargement, nuclear swelling, structural changes from flat to cuboidal shape, and extracellular 
matrix production10,36. CD44 is a marker of activated PEC4,9, and the expression is higher in crescentic glomeru-
lonephritis and in FSGS16,37,38. The relationship between CD44 expression and hypertrophy was suggested in 
DN12,39. Indeed, the expression of CD44 on PEC was found in patients with DN, especially in the late phase12. 
However, our findings showed hypertrophy of PECs without CD44 expression in the early stage of diabetic 
model mice, suggesting that PEC hypertrophy in the early stage of DN was independent of CD44 activation. 
The CD 44 expression in human samples with DN in the early stage needs to be further investigated. Cuboidal 
PECs have been defined by their shape, localization on the Bowman’s capsule and the presence of brush borders 
and abundant mitochondria, similar to the shape of proximal tubular cells. These cells were recently reported 
to be more easily activated compared with classical flat PECs in disease conditions11. We found that the area 
lined with cuboidal PECs was decreased in diabetic mice, implying that the hypertrophied PECs may extrude 
cuboidal PECs away into the proximal tubular area. Sex hormones40–42, age43,44 and differences in mouse strain40 
have been described to affect the distribution of cuboidal PECs, although the factor that reduces the cuboidal 
PECs in diabetic mice remain to be clarified.

We demonstrated that HG exposure led to PEC apoptosis in a dose-dependent manner in vitro. PEC apop-
tosis has been reported in high fat feeding mice45, albumin overload model mice and rats46, transgenic mouse 
model of human immunodeficiency virus-associated nephropathy47 and mice with electrocoagulation of the 
renal cortex48 in vivo. Moreover, apoptosis has been reported in cultured PECs exposed to albumin46 and IFN-β 
exposure49. On transmission electron microscopy, our results did not show any apoptotic PECs, but there was 
vacuolization of PECs in early diabetes mice model and in diabetic human subjects. Because vacuolization is one 
of the characteristics of cell injury in podocytes21,22, this result suggested the presence of PEC injury in DN. In 
addition, the presence of binuclear PECs in diabetic mice suggested that PECs in DN undergo mitotic catastrophe 
instead of apoptosis. Mitotic catastrophe is cell death due to aberrant mitosis, and this implies PEC detachment 
from the BBM and death, as previously described in podocytes50–52.

Pathologically, this PEC injury was speculated to reduce glomerular regeneration in DN, because, recently, 
the function of PECs as progenitors of podocytes has been noticed53. PEC injury may also lead to periglomerular 
inflammation through cytokine secretion54, which can result in periglomerular fibrosis, as observed previously 
in diabetic model mice55 and human diabetic patients56.

We acknowledge some limitations in this study. First, the number of human subjects for the assessments of 
PEC morphology was small. Further studies including larger populations of patients with DM are necessary. Sec-
ond, our examination on human diabetic sample was performed only at the late stage of DN, which is associated 
with profound proteinuria and elevated creatinine. Generally, there are few chances of performing renal biopsy of 
patients with early stage of DN. However, hypertrophy and vacuolization of PECs was observed even at late stage 
of DN. Further studies on human subjects with only microalbuminuria and early histologic changes are needed.

In conclusion, diabetic condition induced hypertrophy and injury in PECs. Because PECs are considered pro-
genitors of podocytes, this injury to PECs might impair glomerular regeneration or periglomerular inflammation 
in a later stage. Further studies are warranted to elucidate the potential pathologic role of these morphological 
changes in PECs in DN.

Methods
Animal experiments.  Obese-type diabetic db/db mice were used as the DN model. Two congenic strains, 
male db/db mice with diabetes (BKS.Cg-Leprdb/Leprdb) and db/m mice without diabetes (BKS.Cg-Leprdb/+), 
were obtained from CLEA Japan (Tokyo, Japan). Adriamycin nephropathy was induced in eight week-old male 
BALB/c mice (CLEA Japan) by tail vein injection of adriamycin (doxorubicin hydrochloride; Sigma-Aldrich, 
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St. Louis, MO, USA) at a dose of 10 mg/kg body weight, as reported previously57. Throughout this study, the 
mice were housed in individual cages and were given water ad libitum. The animal room was maintained under 
controlled conditions (20 °C, 65% humidity and a 12 h light/12 h dark photoperiod with lights on at 8:00 a.m.). 
Urine albumin was determined using an Albuwell M ELISA kit (Exocell, Philadelphia, PA, USA). Urine cre-
atinine was determined using a colorimetric microplate assay (BioAssay Systems, Hayward, CA, USA). At 12, 
24 and 36 weeks of age, the mice were anesthetized by pentobarbital injection (50 mg/kg) and exsanguinated 
through a cervical artery incision under anesthesia. All procedures were conducted in accordance with relevant 
guidelines and regulations approved by the Keio University Animal Care and Use Committees. Every effort was 
made to minimize suffering of the mice.

Assessment of cultured PECs hypertrophy.  A conditionally immortalized mouse PEC line26, which 
was kindly provided by Professor Stuart Shankland (University of Washington, Seattle, WA, USA), was used for 
the cell culture studies. Differentiated PECs were stimulated with normal glucose (5 mM); normal glucose with 
mannitol (25 mM); HG (30 mM); 10 ng/mL of recombinant human TGF-β1 (R&D Systems, Minneapolis, MN); 
300 nM of insulin (Sigma-Aldrich) or 10−7 M of aldosterone (Sigma-Aldrich) for 24 h. A medium with high salt 
content (146 mEq/L of sodium chloride; Wako, Osaka, Japan) was made, as previously reported25. Hypertro-
phy of the cultured PECs was assessed by measuring the cellular protein/cell counts and by flow cytometry, as 
described previously29. To directly determine the cell size, the cells were stained with propidium iodide (PI) and 
analyzed by forward light scattering using a flow cytometer (Gallios; Beckman Coulter, Brea, CA). We counted 
5,000–15,000 cells per each experiment. Data were analyzed with Kaluza software (Beckman Coulter).

Cell cycle analysis.  The cell cycle status was analyzed by PI staining and flow cytometry, as previously 
described58. Briefly, 106 cells were washed twice with PBS. The adherent cells were collected and fixed in ethanol 
overnight at 4 °C and then incubated with a mixture of PI (50 mg/mL, Sigma-Aldrich) and RNase A (25 mg/mL, 
Sigma-Aldrich) at 37 °C for 30 min. The level of PI fluorescence was measured with a Gallios flow cytometer, 
and the proportion of cells in the G0/G1, S and G2/M phases was measured by computer analysis. We counted 
5,000–15,000 cells per each experiment.

Apoptosis assessment.  Apoptosis was measured by Hoechst 33,342 staining (Invitrogen, Thermo Fisher 
Scientific, Waltham, MA) and by careful morphological analysis, as previously reported17. The Annexin V FITC 
Apoptosis Detection Kit (BD Biosciences, Franklin Lakes, NJ, USA) was also used to detect apoptosis by Gal-
lios flow cytometer. About 106 cells were washed twice with PBS. The adherent cells were detached with 0.05% 
trypsin–EDTA after about 1 min. Annexin V FITC, in combination with PI, was used for quantitative determi-
nation of the percentage of cells undergoing apoptosis, with the aid of Kaluza software. We counted 3,000–20,000 
cells. Apoptosis was also analyzed by the IncuCyte Live Cell Imaging system (Essen BioScience, Ann Arbor, 
MI, USA). Caspase-3/7 green stain (1:1000 dilution, Essen Biosciences) and Cytotox red stain (1:4000 dilution, 
Essen Biosciences) were used according to the manufacturer’s instructions to label apoptotic and dead cells, 
respectively.

Immunofluorescence staining of F‑actin in cultured PECs.  Cells were fixed with 4% paraformalde-
hyde for 15 min at 37 °C and were permeabilized with 0.3% Triton X-100 (Sigma-Aldrich) for 5 min at room 
temperature. Nonspecific binding was quenched with a blocking solution (10% normal goat serum) for 30 min at 
room temperature. For F-actin detection, cells were incubated with Alexa Flour 488 phalloidin (Invitrogen) after 
permeabilization. The sections were examined under a confocal fluorescence microscope (Carl Zeiss LSM-710; 
Carl Zeiss, Jena, Germany).

RNA isolation, reverse transcription and quantitative polymerase chain reaction.  The total 
RNA from the cultured cells was extracted using the RNeasy Plus Mini Kit (QIAGEN, Hilden, Germany). Real-
time reverse transcriptase polymerase chain reaction (RT-PCR) was performed using a sequence detector (ABI 
Step One Plus; Applied Biosystems, Thermo Fisher Scientific, Waltham, MA) and the SYBR GREEN System 

Figure 3.   Cell damage and apoptosis of PECs in vitro. (a) Representative images of cultured PECs (original 
magnification × 40) exposed to RPMI medium containing 5 mM of glucose (normal glucose, NG) with 25 mM 
of mannitol (Man) or 30 mM of glucose (high glucose, HG) for 24 h. The bar graph shows quantification of 
the viability of the cultured PECs exposed to increasing concentrations of glucose. *P < 0.05 vs. NG, #P < 0.05 
vs. NG + Man (n = 5–6). (b) Hoechst 33,342 staining of cultured PECs. The arrow shows a cell with condensed 
nuclei, which is suggestive of an apoptotic cell. The dot plot graph shows quantification of the apoptotic cultured 
PECs exposed to increasing concentrations of glucose. *P < 0.05 vs. NG, #P < 0.05 vs. NG + Man (n = 4–6). (c) 
Apoptosis was determined by flow cytometry. Each graph for flow cytometry represents the population of cells 
stained with Annexin V (X axis) and PI (Y axis). The dot plot graph shows the percentage of early apoptotic 
cells. **P < 0.01 vs. NG + Man (n = 3). (d, e) Cell viability and apoptosis were assessed using an IncuCyte 
imaging system. Representative microscopy images of the degree of viability, which was measured as Cytotox 
fluorescence (red) (d), and the degree of apoptosis, which was measured as Caspase 3/7 activation (green) (e) at 
the 0 and 24 h time points. *P < 0.05 vs. NG, #P < 0.05 vs. NG + Man (n = 8–10). Scale bars: (a,d,e) 100 μm and 
(b) 50 μm.
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Table 1.   Clinical and pathological data of controls and patients with diabetes mellitus. CO control, DM 
diabetes mellitus, RPS DN class scores as defined by the Renal Pathology Society Diabetic Nephropathy 
Classification.

Sample name Sex Age [years]
Serum creatinine 
[mg/dL]

eGFR (mL/
min/1.73 m2)

Proteinuria [g/
day] HbA1c [%] RPS DN Class

PEC volume 
[µm3]

Vacuolated 
PEC% per total 
PEC number

Controls

CO-1 Male 22 0.94 85 0.17 4.9 504 18

CO-2 Male 20 0.80 98 0.23 5.1 404 14

CO-3 Male 51 0.83 77 0.12 5.7 308 0

CO-4 Female 39 0.65 80 0.09 5.2 215 44

CO-5 Female 39 0.72 74 0.46 5.0 388 0

CO-6 Female 30 0.63 90 0.06 5.4 406 29

CO-7 Female 65 0.75 59 0.06 5.8 361 17

CO-8 Male 55 1.16 52 0.32 6.2 555 50

Diabetes mellitus

DM-1 Male 51 2.60 22 5.00 5.9 2 750 50

DM-2 Female 57 0.50 96 0.40 8.9 2 518 40

DM-3 Female 41 1.27 38 8.72 6.0 3 571 0

DM-4 Male 67 1.36 41 0.44 5.7 2 256 50

DM-5 Male 44 1.09 60 1.24 7.7 2 908 91

DM-6 Female 41 1.53 32 5.13 6.5 3 563 0

DM-7 Male 66 0.90 65 3.03 7.1 2 679 25

Figure 4.   Morphological findings of PECs in diabetic human subjects. (a–d) PECs in human renal biopsy 
specimens from control patients (Con) (a,b) and patients with diabetes mellitus (DM) (c,d) (plastic-embedded 
semi-thin section stained with toluidine blue). Arrows indicate PECs. (b,d) The magnified view of the boxed 
region in (a) and (c), respectively. (e) Quantification of PECs’ cellular volume in Con and patients with DM. 
(f–h) Transmission electron microscopic evaluation of the PECs in Con without diabetes (f) and patients with 
DM (g,h). (f) An example of a PEC (arrow) is shown to have a flat cell body and a flat nucleus on the BBM in 
a nondiabetic subject. (g,h) The PECs in patients with DM were enlarged (arrow) and exhibited cytoplasmic 
vacuolization (arrowhead). Each figure was obtained from corresponding patients in Table 1, (e) CO-7, (f) 
DM-1, (g) DM-5. (i) Quantification of the ratio of vacuolated PEC number per total PEC number in Con and in 
patients with DM. Scale Bars: (a,c) 10 µm, (b,d,f–h) 5 µm.
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(Applied Biosystems)59. The relative mRNA level for each gene was normalized to the mRNA express level of 
β-actin. The primer sequences for the forward and reverse primers are listed in Table 2.

Immunohistochemical analysis.  Immunohistochemistry was performed, as previously described59. 
Briefly, paraffin-embedded kidney pieces were stained using rat monoclonal antibody against CD44 (1:500; BD 
bioscience, San Diego, California; catalog number 550538). Before incubation, the tissue sections underwent 
antigen retrieval in 0.01 mol/l of sodium citrate buffer (pH 6.0) at 120 °C for 20 min. Then, the sections were 
incubated with biotin-labeled goat anti-rat IgG (1:200; Vector Laboratories, Burlingame, CA) antibody then 
treated with the Vectastain Elite ABC Kit (Vector Laboratories). Sections were examined using a biological 
microscope (Olympus BX53; Olympus Corporation, Tokyo, Japan). Quantitative computer-assisted image anal-
ysis was performed by a blinded observer using the Image-Pro Plus software (version 5.1; Media Cybernetics, 
Bethesda, MD), which is an image analysis software program.

Immunofluorescence staining.  Immunofluorescence staining for PAX8 was performed on paraffin-
embedded sections using rabbit polyclonal anti-PAX8 antibody (1:100; Proteintech Group, Rosemont, IL; cat-
alog number 10336–1-AP). Alexa Fluor 594 donkey anti-rabbit IgG (Invitrogen) was used as the secondary 
antibody. Immunofluorescence staining for Fluorescein-labeled LTA (Vector Laboratories) was performed in 
a similar manner. The slides were premounted with VECTASHIELD mounting medium with DAPI (Vector 
Laboratories) and kept in darkness to dry. For fluorescence microscopy, all sections were stained and analyzed 
simultaneously to exclude artifacts due to variable decay of the fluorochrome. The sections were examined using 
a confocal fluorescence microscope (Carl Zeiss LSM-710) at a magnification of 400 × .

Identification of flat PECs and cuboidal PECs.  PECs comprise mainly of flat and cuboidal PECs. We 
discriminated between flat and cuboidal PECs using PAX8 which stain flat PECs and cuboidal PECs in Bow-
man’s capsule)60, and LTA which only stain cuboidal PECs in Bowman’s capsule11. Flat PECs were identified as 
PAX8 positive LTA negative cells internally lining the Bowman’s capsule. We measured flat PEC nuclear volume 
as a substitute for flat PEC cellular volume, because the ratio between nuclear and cytoplasmic size has long been 
observed to be maintained at a constant value61. The flat PECs’ nuclear area was measured as PAX8 positive area 
per cell, and then the nuclear volume was calculated as described in morphological analysis. Cuboidal PECs 
were identified as LTA positive cells in the Bowman’s capsule for immunofluorescent staining11. For morpho-
metric analysis of cuboidal PECs, each glomerulus within the kidney section was ranked on a scale of zero to 
five, depending on the degree of cuboidal PECs. Each rank was represented as follows: 0 = no cuboidal PECs; 
1 = cuboidal PECs up to one-fourth of the glomerular circumference; 2 = cuboidal PECs < 50% of the glomerular 
circumference; 3 = cuboidal PECs < 75% of the glomerular circumference; 4 = cuboidal PECs < 100% of the glo-
merular circumference and 5 = entirely cuboidal PECs without the classical flat PECs. Age46,47, gender43–45 and 
genetic background43 affect the distribution of cuboidal PECs and flat PECs; therefore, we matched age, gender, 
and genetic background to compare cuboidal PECs other than compared conditions. We compared cuboidal 
PEC score of male db/m mice with that of male db/db mice. The background of mice is shown in Supplementary 
Table S1. Thirty glomeruli were obtained for each sample, and the total mean score was calculated.

Electron microscopy.  The kidney tissues were fixed on 2% glutaraldehyde and embedded in epoxy resin. 
The semi-thin sections stained with toluidine blue were inspected under the light microscope. The ultrathin 
sections, stained with uranyl acetate and lead citrate, were investigated and snapped using an electron micro-
scope. To evaluate PEC morphometry, electron micrographs of at least five glomeruli per kidney were randomly 
obtained from each mouse and observed at a magnification of 2000 × . To evaluate GBM thickness and BBM 
thickness, a mean of 30 measurements were taken per kidney at random sites where the GBM and BBM were 
displayed in best cross-section as previously described62.

Table 2.   List of primer sequences used for the RT-PCR analysis in this study.

Genes Forward primer Reverse primer

Claudin 1 AGC​TGT​GCA​TGG​CCT​CTT​GTT​ AGG​GCC​TTT​CCT​ATG​GAT​GAG​AGT​

PAX-2 AGC​TAC​ATG​CCC​ACT​AAA​GCA​CAG​ CAC​GGG​ACC​ATG​TTC​GTC​A

PAX-8 TGC​TAT​CGC​AGG​CAT​GGT​G ACT​ACA​GAT​GGT​CAA​AGG​CTG​TGG​

CD10 TTA​TGT​CCT​GTC​ATA​GCA​GCC​AAA​G CAG​CAG​GAA​TCT​AGG​CAC​CAGAG​

WT-1 TGA​AGA​CCC​ACA​CCA​GGA​CTC​ TGT​GAT​GGC​GGA​CCA​ATT​C

Nephrin GTG​ATG​ACG​TCA​CAG​AAG​CAA​GAA​ TTT​GTG​TGG​CAT​ACA​CTG​TCAGG​

Podocin TAT​GGG​CCC​AAA​CAT​CTA​CACAA​ CAG​AGG​CAG​CCA​GTC​AGT​CA

Synaptopodin GCT​CGA​ATT​CCG​ATG​CAA​ATA​AAC​ CAG​GCC​AC AGT​GAG​ATG​TGA​AGA​

Nestin GAG​GTG​TCA​AGG​TCC​AGG​ATGTC​ ACA​CCG​TCT​CTA​GGG​CAG​TTA​CAA​

Desmin TCA​TGC​TCAGC GAG​ATT​GAA​CAG​ TTA​CCC​GAT​GCC​CAG​GTG​ATA​

Β actin CAT​CCG​TAA​AGA​CCT​CTA​TGC​CAA​C ATG​GAG​CCA​CCG​ATC​CAC​A
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Human renal biopsy specimens.  We obtained renal needle biopsy specimens from 15 patients. We ret-
rospectively identified eight control cases without diabetes and seven cases with diabetes. Control cases were 
obtained from patients without glomerular abnormalities in light microscopy. Before study enrollment, written 
informed consent was obtained from all patients. The study was performed in accordance with the Declaration 
of Helsinki, and the study protocol was approved by the human ethics review committee of the Department of 
Internal Medicine, School of Medicine, Keio University. Patients for whom fewer than nine PECs were observed 
on biopsy were excluded. PECs with sclerotic glomeruli were excluded. All visible PECs from each human sam-
ple were assessed by morphology. All the biopsies were categorized based on the pathologic classification of 
the Renal Pathology Society (RPS) Diabetic Nephropathy Classification3. PEC area was measured in plastic-
embedded semi-thin sections stained with toluidine blue using light microscopy at a magnification of 1000 × . 
The area measurement was performed using Image-Pro Plus software. The volume was calculated as described in 
morphological analysis below. Vacuolated PECs were counted and assessed by the ratio to the total PEC number 
using electron microscopy. The patient clinical data at the time of renal biopsy and the pathological data are 
summarized in Table 1.

Morphological analysis.  Podocyte volume has been estimated using various methods63–66. However, to 
the best of our knowledge, a method to quantitatively estimate PEC volume and PEC nuclear volume has not 
been reported to date. Therefore, we substituted the measurement methods of podocytes for those of PECs. 
First, for counting the PEC number, we used the Weibel and Gomez method. Briefly, the PEC number was 
calculated from the cell density per volume (Ncv) and the volume density of PECs (Vcv) according to the equa-
tion: Ncv = k/β × NcA

1.5/Vcv
0.5 with β = 1.5 and k = 1. The average volumes of individual PEC and PEC nuclei were 

calculated with Vc = Vcv × Vglom
66.

Statistical analysis.  Data are expressed as the mean ± standard error of mean and were analyzed by one-
way analysis of variance, followed by the Bonferroni post hoc test. The criterion for statistical significance was 
a P value < 0.05.
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